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*is paper is concerned with an optimal control problem governed by a Kirchhoff-type variational inequality. *e existence of
multiplicity solutions for the Kirchhoff-type variational inequality is established by using some nonlinear analysis techniques and
the variational method, and the existence results of an optimal control for the optimal control problem governed by a Kirchhoff-
type variational inequality are derived.

1. Introduction

Let Ω be a bounded domain of RN with a smooth boundary
zΩ, U be a nonempty bounded closed and convex subset of
the space Lq(Ω)(1< q<min 4, 2∗{ }, 2∗ � (2N/N − 2)),
ψ: Ω⟶ [0, +∞) be a proper and convex function, and

Kψ � u ∈ H
1
0(Ω): u(x)≤ψ(x), a.e.x ∈ Ω􏽮 􏽯. (1)

Let H1
0(Ω) be endowed with the norm ‖·‖, and let g: Ω ×

R⟶ R and l: Ω × R⟶ R. *e objective functional
J: U × Kψ⟶ R is defined by

J(w, u) �􏽚
Ω

g(x, u)dx +􏽚
Ω

l(x, w)dx, ∀(w, u) ∈ U × Kψ .

(2)

In this paper, we will be discussing the following optimal
control problem governed by a state variational inequality:

(P) inf
(w,u)∈U×Kψ ,u∈S(w)

J(w, u), (3)

where S(w) is the solution set of the following Kirchhoff-
type variational inequality: for each w ∈ U, find
u � u(w) ∈Kψ (the state function of the system), such that

h(‖u‖)􏽚
Ω
∇u(∇v − ∇u)dx≥ λ􏽚

Ω
f(x, u)(v − u)dx − μ􏽚

Ω
τ(w)(v − u)dx, ∀v ∈Kψ , (4)

where λ> 0, μ> 0, f(x, t): Ω × R⟶ R, τ: U⟶
Lq′(Ω)(q′ � (q/q − 1)) and h: R⟶ R satisfies, (h1) h is
continuous on R; (h2) there exists a> 0 such that h(t)> a for
all t ∈ R; (h3) there exists b> 0 such that limt⟶+∞ h(t)/t2 � b.

A typical example of h is h(t) � a + bt2. *en, h satisfies
(h1) − (h3),

‖h(u)‖ � a + b􏽚
Ω

|∇u|
2
, (5)

and the variational inequality (4) will become to be the usual
variational inequality of the Kirchhoff type: for each w ∈ U,
find u � u(w) ∈Kψ , such that
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a + b􏽚
Ω

|∇u|
2dx􏼒 􏼓􏽚

Ω
∇u(∇v − ∇u)dx≥ λ􏽚

Ω
f(x, u)(v − u)dx − μ􏽚

Ω
τ(w)(v − u)dx, ∀v ∈Kψ . (6)

*e Kirchhoff Dirichlet problem was first proposed by
Kirchhoff by taking into account a differential equation
describing the changes in length of the string produced by
transverse vibrations for free vibrations of elastic strings. For
more details on the physical and mathematical background
of Kirchhoff-type problems, we refer the readers to the
papers [1–3] and the references therein. By variational
methods, many interesting results about the existence
multiplicity of solutions for Kirchhoff-type problems have
been established in the last ten years, see, e.g., [1–7] and the
references therein.

*e study of variational inequalities like (4) with b � 0
and related optimal control problems was proposed by
Lions [8–10], and this topic has been widely studied by
many authors in different aspects (cf. [11–23]). One of the
most important methods is the approximation of the
variational inequality by an equation where the maximal
monotone operator (in this case, the subdifferential of a
Lipschitz function) is approached by a differentiable single-
value mapping with Moreau–Yosida approximation tech-
niques. *is method, mainly due to Barbu [11], leads to
several existence results and to first-order optimality sys-
tems. Lou [12] discussed the regularity of an obstacle
control problem, wherein the variational inequality is as-
sociated to the Laplace operator. Lou [13] considered the
existence and regularity of the control problem governed
by the quasilinear elliptic variational inequality. Bergou-
nioux and Lenhart [15] studied obstacle optimal control for
semilinear and bilateral obstacle problems. Chen et al. [21]
studied an optimal control problem for quasilinear elliptic
variational inequality. Ye and Chen [16] studied the ex-
istence and necessary condition of an optimal control
problem for a quasilinear elliptic obstacle variational in-
equality in which the obstacle was taken as the control and
the cost functional were specific. Zhou et al. [17] estab-
lished the existence of the optimal control for an optimal
control problem governed by an abstract variational in-
equality and obtained the existence of the optimal control
for the optimal control problem governed by a quasilinear
elliptic variational inequality with an obstacle. By using
nonlinear Lagrangian methods, Zhou et al. [18] studied an
optimal control problem where the state of the system is
defined by a variational inequality problem for monotone-
type mappings. Khan and Sama [19] obtained the existence
of an optimal control for a quasivariational inequality with
multivalued pseudomonotone maps. Chen et al. [20]
studied an optimal control problem for a quasilinear el-
liptic variational inequality with source term, established
the existence results, and derived the optimality system for
this optimal control problem. In [22], Migorski et al. in-
vestigated an inverse problem of identifying the material
parameter in an implicit obstacle problem given by an
operator of p-Laplacian type. In [23], Khan et al. studied
inverse problems of identifying a variable parameter in
variational and quasivariational inequalities.

*e purpose of the present paper is to investigate the
optimal control problem governed by the state Kirchhoff-
type variational inequality (4), i.e., the problem (P) in the
case of b> 0. *is case is more complicated since the so-
called nonlocal term b􏽒Ω|∇u|2dxΔu is involving in the
variational inequality. To the best of our knowledge, the
study on optimal control problems controlled by the state
Kirchhoff-type variational inequality is still lacking in
mathematics literatures. Our first intention is to establish the
existence and multiplicity of solutions for the inequality (4)
by using some nonlinear analysis techniques and the vari-
ational method. *en, as an application, we obtain the
existence of solutions for the optimal control problem (P).

*e paper is structured as follows. Section 2 contains
some basic definitions and preliminary facts needed in the
sequel. In Section 3, we shall show that there exist at least two
solutions of the Kirchhoff-type variational inequality (4)
when some suitable conditions on f, h, and τ are satisfied. In
Section 4, we apply the obtained results to study the optimal
control problem governed by the state variational inequality
(4) and obtain the existence of solutions for the problem
(P).

2. Preliminary

Let X be a Banach space and X∗ its dual. *e following
definitions and theorems can be found in, e.g., [24, 25].

Definition 1. Let X be a Banach space, φ: X⟶ R be a
continuously differentiable functional, and let
ψ: X⟶ R∪ +∞{ } be a proper (i.e., ≠ +∞), convex, and
lower semicontinuous functional. *e functional
φ + ψ: X⟶ R∪ +∞{ } is called Szulkin-type functional.
φ + ψ is said to satisfy the Palais–Smale condition (the (PS).
condition for short), if every sequence un􏼈 􏼉 ⊂ X with
φ(un) + ψ(un) bounded and for which there exists a se-
quence εn􏼈 􏼉 ⊂ R+, εn↘0, such that

〈φ′ un( 􏼁, v − un〉+ψ(v) − ψ un( 􏼁≥ − εn v − un

����
����, ∀v ∈ X,

(7)

contains a (strongly) convergent subsequence in X.

Definition 2. Let I � φ + ψ: X⟶ X∪ +∞{ } be a Szulkin-
type functional. A point u ∈ X is said to be a critical point of
I � φ + ψ if

〈φ′(u), v − u〉+ψ(v) − ψ(u)≥ 0, ∀v ∈ X. (8)

*e value c of I at a critical point u ∈ X is said to be a
critical value of I, that is, I(u) � c.

Theorem 1. Let I � φ + ψ: X⟶ X∪ +∞{ } be a Szulkin-
type functional which is bounded below. If I satisfies the (PS)

condition for c � infu∈XI(u), then c is a critical value.
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Theorem 2. Let I � φ + ψ: X⟶ X∪ +∞{ } be a Szulkin-
type functional and assume that

(1) I(u)≥d0 for all ‖u‖ � ρ for some d0, ρ> 0, and
I(0) � 0

(2) 4ere is e ∈ X with ‖e‖> ρ and I(e)≤ 0

If I satisfies the (PS) condition, then I has a critical point
u∗ ∈ X with critical value c0 � I(u*) such that

c0 ≥d0,

c0 � inf
g∈Γ

sup
t∈[0,1]

I(c(t)), (9)

where

Γ � g ∈ C([0, 1], X): g(0) � 0, g(1) � e􏼈 􏼉. (10)

Let f(x, t): Ω × R⟶ R be a function. We denote by

F(x, t) � 􏽚
t

0
f(x, s)ds. (11)

*e hypotheses on the f are the following:
(f1)f(x, t) is measurable in x for every t ∈ R and

continuous in t for a.e. x ∈ Ω;
(f2)|f(x, t)|≤ α(x) + β(x)|t|q− 1 uniformly for almost

all x ∈ Ω, where
α ∈ L
∞

(Ω),

β ∈ L
∞

(Ω),

1< q<min 4, 2∗􏼈 􏼉,

2∗ �
2N

N − 2
.

(12)

(f3) *ere exists a constant c>max 2, q􏼈 􏼉 and a function
χ ∈ L∞(Ω) such that

lim sup
t⟶0

F(x, t)

t c||
≤ χ(x), (13)

uniformly for almost all x ∈ Ω;
(f4) *ere exist x0 ∈ Ω, u0 ∈ R+ and δ > 0 such that

F x, u0( 􏼁> η0, a.e. x ∈ U x0, δ( 􏼁, (14)

where η0 is a positive constant and U(x0, δ) �

x ∈ Ω: |x − x0|< δ􏼈 􏼉 ⊂ Ω.
Let h: R⟶ R+ satisfy the conditions (h1) − (h3). We

denote by

H(t) � 􏽚
t

0
h(s)ds, 􏽢H(t) � 􏽚

t

0
H(s)ds. (15)

Let λ> 0, μ> 0, and let us introduce the Euler functional
φλ,μ: H1

0(Ω)⟶ R corresponding to the Kirchhoff-type
variational inequality problem (4) as

φλ,μ(u) � ‖u‖H(‖u‖) − 􏽢H(‖u‖) − λ􏽚
Ω

F(x, u)dx

+ μ􏽚
Ω
τ(ω)udx.

(16)

Let Kψ be defined by (1). We define the indicator
functional of the set Kψ by

ϕ(u) �
0, if u ∈Kψ ,

+∞, if u ∉Kψ .

⎧⎨

⎩ (17)

Denote

Iλ,μ � φλ,μ + ϕ. (18)

Obviously, Iλ,μ is a Szulkin-type functional.

Remark 1. For any s ∈ R+, if h(s) � a + bs2, then h satisfies
(h1) − (h3), and

tH(t) − 􏽢H(t) �
a

2
t
2

+
b

4
t
4
. (19)

*e variational inequality (4) will become to be the
classic Kirchhoff-type variational inequality: find u �

u(w) ∈Kψ, such that

a + b􏽚
Ω

|∇u|
2dx􏼒 􏼓􏽚

Ω
∇u(∇v − ∇u)dx≥ λ􏽚

Ω
f(x, u)(v − u)dx − μ􏽚

Ω
τ(w)(v − u)dx, ∀v ∈ Kψ . (20)

3. Existence of Multiple Solutions for a
Kirchhoff-Type Variational Inequality

As usual, we denote “⟶ ” and “⇀” by the strong and weak
convergence in the space H1

0(Ω).

Proposition 1. Let U be a nonempty bounded closed and
convex subset of the space Lq(Ω)(1< q<min 4, 2∗{ }). If
f: Ω × R⟶ R satisfies (f1), (f2), h: R⟶ R satisfies
conditions (h1) − (h3), and τ: U⟶ Lq′(Ω)(q′ � q/q − 1)

is a weakly continuous mapping. 4en, every critical point
u ∈ H1

0(Ω) of Iλ,μ � φλ,μ + ϕ is a solution of (4), where φλ,μ
and Iλ,μ are defined by (16) and (18), respectively.

Proof. It is easy to see that φλ,μ ∈ C1(H1
0(Ω),R) and for each

u, v ∈ H1
0(Ω),

〈φλ,μ′ (u), v〉 � h(||u||)􏽚
Ω
∇u∇vdx − λ􏽚

Ω
f(x, u)vdx

+ μ􏽚
Ω
τ(ω)vdx.

(21)
If u ∈ H1

0(Ω) is a critical point of Iλ,μ, from Definition 2,
we obtain

〈φλ,μ′ (u), v − u〉 + ϕ(v) − ϕ(u)≥ 0, ∀v ∈ H
1
0(Ω). (22)

It follows from (17), (21), and (22) that u ∈Kψ and (4)
holds. □
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Proposition 2. Let U be a nonempty bounded, closed, and
convex subset of the space Lq(Ω)(1< q<min 4, 2∗{ }). If
f: Ω × R⟶ R satisfies (f1), (f2), h: R⟶ R satisfies
conditions (h1) − (h3), and τ: U⟶ Lq′(Ω)(q′ � q/q − 1)

is a weakly continuous mapping such that τ(U) is a bounded
set. 4en, Iλ,μ is coercive in the sense of Iλ,μ(u)⟶ +∞ as
‖u‖⟶ +∞ and bounded from below in Kψ, where Kψ is
defined by (1) and Iλ,μ is defined (18).

Proof. By (f2), Hölder inequality, we have

􏽚
Ω

F(x, u(x))dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤􏽚
Ω
α(x)|u(x)|dx + 􏽚

Ω

β(x)

q
|u(x)|

qdx

≤ |Ω|
1/q′

‖α‖L∞(Ω)‖u‖Lq(Ω) +
‖β‖L∞(Ω)

q
‖u‖

q

Lq(Ω)

≤ c1‖u‖ + c2‖u‖
q
,

(23)

where c1 and c2 are positive constants.
Since τ(U) is bounded, there exists ρ> 0, such that

‖τ(w)‖
Lq′ < ρ, ∀w ∈ U. (24)

*us,

􏽚
Ω
τ(w)udx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 􏽚
Ω

|τ(w)|
q′

􏼒 􏼓
1/q′

􏽚
Ω

|u|
qdx􏼒 􏼓

1/q

≤ ρ‖u‖Lq(Ω) ≤ c3||u||,

(25)

where c3 is a positive constant.
By (h3), we have

lim
t⟶+∞

tH(t) − 􏽢H(t)

t4
� lim

t⟶+∞

h(t)

4t2
�

b

4
. (26)

Let u ∈Kψ . By (16), (18), (23), and (25), we have

Iλ,μ(u) � φλ,μ(u)≥ ‖u‖H(‖u‖) − 􏽢H(‖u‖) − λc1 + μc3( 􏼁‖u‖

− c2λ‖u‖
q
.

(27)

By noting that 1< q< 4 and from (26), we obtain that Iλ,μ
is coercive and Iλ,μ is bounded from below inKψ . *e proof
is complete. □

Proposition 3. Let all conditions in Proposition 2 be satis-
fied. 4en, Iλ,μ satisfies the (PS) condition in the sense of
Definition 1.

Proof. Let un􏼈 􏼉 ⊂ H1
0(Ω) such that Iλ,μ(un)􏽮 􏽯 is bounded,

and there exists εn􏼈 􏼉 ⊂ R+ with εn↘ 0 and

〈φλ,μ′ un( 􏼁, v − un〉 + ϕ(v) − ϕ un( 􏼁≥ − εn v − un

����
����, ∀v ∈ H

1
0(Ω).

(28)

From (17), it can be noted that it is easy to obtain
un􏼈 􏼉 ⊂Kψ . By Proposition 2, Iλ,μ is coercive, and then un􏼈 􏼉 is
bounded inKψ ⊂ H1

0(Ω). Hence, by the Sobolev embedding
theorem, we may assume that going to a subsequence,

un⇀ u, inH
1
0(Ω);

un⟶ u, in L
q
(Ω),

(29)

since 1< q<min 4, 2∗{ }.
As Kψ is weakly closed, u ∈Kψ. Setting v � u in (28)

and combining with (21), we have

h un

����
����􏼐 􏼑􏽚
Ω
∇un ∇un − ∇u( 􏼁􏼂 􏼃dx − λ􏽚

Ω
f x, un( 􏼁 un − u( 􏼁dx

≤ εn un − u
����

���� − μ􏽚
Ω
τ(w) un − u( 􏼁dx.

(30)

*us,

h un

����
����􏼐 􏼑 u − un

����
����
2

� h un

����
����􏼐 􏼑􏽚
Ω
∇u ∇u − ∇un( 􏼁 + ∇un ∇un − ∇u( 􏼁􏼂 􏼃dx

≤ h un

����
����􏼐 􏼑􏽚
Ω
∇u ∇u − ∇un( 􏼁dx + λ􏽚

Ω
f x, un( 􏼁 un − u( 􏼁dx

+ εn u − un

����
���� − μ􏽚

Ω
τ(w) u − un( 􏼁dx.

(31)

By the Hölder inequality and the condition (f2), for
un􏼈 􏼉 ⊂Kψ ,

􏽚
Ω

f x, un( 􏼁 un − u( 􏼁

≤􏽚
Ω

α(x) + β(x) un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q− 1

􏼐 􏼑 un − u
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dx

≤ ‖α‖L∞ un − u
����

����L1 +‖β‖L∞ un

����
����Lq− 1 un − u

����
����Lq.

(32)

Note that εn↘ 0(as n⟶∞), un􏼈 􏼉 is bounded in H1
0(Ω)

and h satisfies (h1) − (h2); by (29)–(32), we have

0≤ lim
n⟶∞

a u − un

����
����
2 ≤ lim

n⟶∞
h un

����
����􏼐 􏼑 u − un

����
����
2 ≤ 0. (33)

*erefore un⟶ u in H1
0(Ω). □

Theorem 3. Let U be a nonempty bounded closed and convex
subset of the space Lq(Ω)(1< q<min 4, 2∗{ }). If
f: Ω × R⟶ R satisfies (f1) − (f4), h: R⟶ R satisfies
the conditions (h1) − (h3), and τ: U⟶ Lq′(Ω) is a weakly
continuous mapping such that τ(U) is a bounded set. 4en,
there exists λ∗ > 0, 0< μ∗ < 1, such that for each λ> λ∗, μ< μ∗,
the Kirchhoff-type variational inequality (4) has two solutions
uλ, vλ, satisfying Iλ(uλ)< 0< Iλ(vλ).

Proof. Noting the conditions (f3) and (f4), we have

0≤M1 � ‖α‖L∞ u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
q
‖β‖L∞ u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q < +∞. (34)

Denote by

t0 �
1
2

M1

η0 + M1
􏼠 􏼡

1/N

+ 1⎛⎝ ⎞⎠, (35)

where η0 is given in (f4). Let us define
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ut0
(x) �

0, x ∈ ΩU x0, δ( 􏼁,

u0, x ∈ U x0, t0δ( 􏼁,

u0

δ 1 − t0( 􏼁
δ − x − x0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑, x ∈ U x0, δ( 􏼁\U x0, t0δ( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

where x0 is given in (f4). *en,

ut0

�����

�����
2

� 􏽚
Ω
∇ut0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dx � 􏽚

B x0 ,δ( )\B x0 ,t0δ( )

u0

δ 1 − t0( 􏼁
􏼠 􏼡

2

dx,

� ωNδ
N− 2 1 − t

N
0􏼐 􏼑

u2
0

1 − t0( 􏼁
2,

(37)

where ωN is the volume of unit sphere in RN, and δ, u0 are
defined in (f4). *us, ‖ut0

‖ is a positive constant which
follows from (37). In the following, assume that 0< μ< 1.
*erefore, from (25) and the condition (h1),

ut0

�����

�����H ut0

�����

�����􏼒 􏼓 − 􏽢H ut0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + μ􏽚
Ω
τ(w)ut0

dx≤A, (38)

where A is a positive constant.
By (f2), (f4) and (32) and (36) we have

􏽚
Ω

F x, ut0
􏼐 􏼑dx,

� 􏽚
U x0,δ( )\U x0 ,t0δ( )

F x,
u0

δ 1 − t0( 􏼁
δ − x − x0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼠 􏼡dx

+ 􏽚
U x0 ,t0δ( )

F x, ut0
􏼐 􏼑dx

≥􏽚
U x0 ,t0δ( )

η0dx − 􏽚
U x0 ,δ( )\U x0 ,t0δ( )

α u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
β
q

u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼢 􏼣dx

≥ωNδ
N

t
N
0 η0 − 􏽚

U x0 ,δ( )\U x0 ,t0δ( )
M1dx

� ωNδ
N

t
N
0 η0 − M1 + M1t

N
0􏼐 􏼑,

(39)

where η0 is defined in (f4). Note that 0< μ< 1, it follows
from (16), (18), (38), and (39) that

Iλ,μ ut0
􏼐 􏼑 � ut0

�����

�����H ut0

�����

�����􏼒 􏼓 − 􏽢H ut0

�����

�����􏼒 􏼓 − λ􏽚
Ω

F x, ut0
􏼐 􏼑dx

+ μ􏽚
Ω
τ(w)ut0

dx≤A − λωNδ
N η0t

N
0 − M1 + t

N
0 M1􏼐 􏼑.

(40)

By (35), we obtain that

M1

η0 + M1
< t

N
0 < 1. (41)

*us,

η0t
N
0 − M1 + t

N
0 M1 � t

N
0 −

M1

η0 + M1
􏼠 􏼡 η0 + M1( 􏼁> 0.

(42)

*erefore, there exists λ* > 0, such that

Iλ,μ ut0
􏼐 􏼑〈0, ∀λ〉λ∗. (43)

By Proposition 2, the function Iλ,μ is bounded from
below. By Proposition 3, the function Iλ,μ satisfies the (PS)

condition. *us, Iλ,μ attains its global minimum at some
uλ,μ ∈ H1

0(Ω) by *eorem 4. Obviously,

Iλ,μ uλ,μ􏼐 􏼑≤ Iλ,μ ut0
􏼐 􏼑〈0, ∀λ〉λ∗. (44)

Next, we will prove the existence of the second critical
point of Iλ,μ via theMountain Pass theorem (see*eorem 2).

By the condition (f3) for any ε> 0, there exists t∗ > 0,
such that

F(x, t)

|t|c
≤ χ(x) + ε, ∀t ∈ − t∗, t∗􏼂 􏼃. (45)

It follows from (f2) that for all |t|> t∗,

|F(x, t)|≤ α(x) + β(x)|t|
q− 1

􏼐 􏼑|t|≤
α(x)

t
c− 1
∗

+
β(x)

t
c− q
∗

􏼠 􏼡|t|
c
.

(46)

From (45) and (46), we obtain that for all t ∈ R and a.e.
x ∈ Ω,

|F(x, t)|≤ χ(x) + ε +
α(x)

t
c− 1
∗

+
β(x)

t
c− q
∗

􏼠 􏼡|t|
c
. (47)

By the conditions (h1) and (h2), we obtain

lim
t⟶0

tH(t) − 􏽢H(t)

t2
� lim

t⟶0

h(t)

2
�

h(0)

2
>

a

2
, (48)

and then there exists a positive constant t such that for all
t ∈ (0, t),

tH(t) − 􏽢H(t)>
a

2
t
2
. (49)

*erefore, by (47) and (49), the Hölder inequality and
the Sobolev embedding theorem, for all λ> λ* and
u ∈Kψ ∩ ‖u‖≤ t: u ∈ H1

0(Ω)􏼈 􏼉, we have

Iλ,μ(u) � φλ,μ(u)≥
a

2
‖u‖

2
− λc4‖u‖

c
− μc5‖u‖, (50)

where c4 and c5 are positive constants.
Denote

Λ � min
1
2

ut0

�����

�����,
a

4λc4
􏼠 􏼡

1/c− 2

, t
⎧⎨

⎩

⎫⎬

⎭,

μ∗ � min
a

8c5
Λ,

1
2

􏼨 􏼩.

(51)

Let λ> λ∗ and μ< μ∗. Note that c>max 2, q􏼈 􏼉. It follows
from (50) that
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Iλ,μ(u)≥
a

8
Λ2 > 0, ∀u ∈ H

1
0(Ω), ‖u‖ � Λ. (52)

Obviously, Iλ,μ(0) � 0 and

Iλ,μ ut0
􏼐 􏼑< 0, ut0

�����

�����>Λ. (53)

By Proposition 3 and*eorem2, there exists a critical point
vλ,μ of Iλ,μ. We notice that the vλ,μ cannot be trivial because

Iλ,μ vλ,μ􏼐 􏼑≥
a

8
Λ2 > 0. (54)

By Proposition 1, we conclude that uλ,μ and vλ,μ are two
solutions of the Kirchhoff-type variational inequality (4). It
follows from (44) and (54) that Iλ(uλ)< 0< Iλ(vλ).*e proof
is complete. □

By *eorem 3, we have

Theorem 4. Let U be a nonempty bounded closed and
convex subset of the space Lq(Ω)(1< q<min 4, 2∗{ }). If
f: Ω × R⟶ R satisfies (f1) − (f4) and h(s) � a + bs2,
τ: U⟶ Lq′(Ω) is a weakly continuous mapping such that
τ(U) is a bounded set. 4en, there exist λ∗ > 0, 0< μ∗ < 1,
such that for each λ> λ∗, μ< μ∗, the Kirchhoff-type varia-
tional inequality (20) has two solutions uλ, vλ, satisfying
Iλ(uλ)< 0< Iλ(vλ).

4. Existence of an Optimal Control Governed by
a Kirchhoff-Type Variational Inequality

*is section is concerned with the existence results of an
optimal control for the optimal control problem (P).

Lemma 1. Suppose g(x, t): Ω × R⟶ R satisfies
(g1)g(x, t) is measurable in x for every t ∈ R and con-

tinuous in t for a.e. x ∈ Ω;
(g2) 4ere exist positive constants Ci, i � 1, 2, such that

|g(x, t)|≤C1 + C2|t|
r
, ∀(x, t) ∈ Ω × R. (55)

where 1< r< 2∗.

*en, the functional G defined by

G(u) � 􏽚
Ω

g(x, u)dx, u ∈ L
r
(Ω), (56)

is continuous.

Proof. Let un􏼈 􏼉 be a sequence in Lr(Ω), such that un⟶ u0
as n⟶ +∞. Since g satisfies the conditions (g1) and (g2),
the operator u↦g(x, u) from Lr(Ω) to L1(Ω) is con-
tinuous. *erefore, we have

􏽚
Ω

g x, un( 􏼁dx⟶ 􏽚
Ω

g(x, u)dx, (57)

as n⟶∞. *e proof is complete. □

Lemma 2. Suppose l(x, t): Ω × R⟶ R is C1 and for al-
most all x ∈ Ω, l(x, t) is convex with respect to t ∈ R, and
there exist positive constants Ci, i � 3, . . . , 6, such that

l1( 􏼁|l(x, t)|≤C3 + C4|t|
q
, ∀(x, t) ∈ Ω × R,

l2( 􏼁
zl(x, t)

zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤C5 + C6|t|

q− 1
, ∀(x, t) ∈ Ω × R,

(58)

where 1< q< 2∗. 4en, the functional L defined by

L(w) � 􏽚
Ω

l(x, w)dx, w ∈ L
q
(Ω), (59)

is weakly lower semicontinuous.

Proof. Let wn􏼈 􏼉 be a sequence in Lq(Ω), such that wn⇀w0
as n⟶ +∞. Since l(x, t) is C1 and satisfies the conditions
(l1) and (l2), L is Gâteaux differentiable in the space Lq(Ω)

and L′(w0) ∈ Lq′(Ω) (the dual space of Lq(Ω)). Note that for
each x ∈ Ω, l(x, .) is convex, and then

L wn( 􏼁≥L w0( 􏼁 +〈L′ w0( 􏼁, wn − w0〉. (60)

As wn⇀w0, from the inequality mentioned above by
taking limits, we obtain

lim inf
n⟶+∞

L wn( 􏼁≥ L w0( 􏼁. (61)

*e proof is complete. □

Theorem 5. Let U be a nonempty bounded closed and
convex subset of the space Lq(Ω)(1< q<min 4, 2∗{ }). Assume
that h: R⟶ R satisfies the conditions (h1) − (h3), f: Ω ×

R⟶ R satisfies the conditions (f1) − (f4),
g: Ω × R⟶ R satisfies (g1), (g2), τ: U⟶ Lq′(Ω) a
weakly continuous mapping such that τ(U) is a bounded set,
and g(x, t): Ω × R⟶ R and l: Ω × R⟶ R satisfy all the
conditions in Lemma 1 and Lemma 2, respectively. 4ere exist
λ∗ > 0, 0< μ∗ < 1, such that for each λ> λ∗, μ< μ∗, there
exists an optimal control (w0, u0) ∈ U × S(w0) for the op-
timal control problem (P).

Proof. From *eorem 3, there exist λ∗ > 0, 0< μ∗ < 1, such
that for each λ> λ∗, μ< μ∗, S(w)≠ ϕ, where S(w) is the
solution set of the variational inequality (4).

Let (wn, un)􏼈 􏼉n∈N (un ∈ S(wn)) be a minimizing sequence
for problem (P) such that

lim
n⟶∞

J wn, un( 􏼁 � inf
(w,u)∈U×S(w)

J(w, u), (62)

where the cost function J is defined by (2).
As un ∈ S(wn), we have

h un

����
����􏼐 􏼑􏽚
Ω
∇un ∇v − ∇un( 􏼁dx

≥ λ􏽚
Ω

f x, un( 􏼁 v − un( 􏼁dx − μ􏽚
Ω
τ wn( 􏼁 v − un( 􏼁dx, ∀v ∈Kψ .

(63)

We claim that (wn, un)􏼈 􏼉n∈N is bounded. In fact, as U is
bounded, wn􏼈 􏼉 is bounded. Let v � 0 in (63). We get
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h un

����
����􏼐 􏼑 un

����
����
2 ≤ λ􏽚

Ω
f x, un( 􏼁undx − μ􏽚

Ω
τ wn( 􏼁undx

≤ λ􏽚
Ω

f x, un( 􏼁un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx + μ􏽚

Ω
τ wn( 􏼁undx

≤ λ􏽚
Ω
α un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + β un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdx + μ􏽚

Ω
τ wn( 􏼁undx

≤ λ ‖α‖L∞ un

����
����L1 +‖β‖L∞ un

����
����

q

Lq􏼐 􏼑

+ μ τ wn( 􏼁
����

����
Lq′ un

����
����Lq

≤ c6(λ + μ) un

����
���� + c7 λun

����
����

q
,

(64)

where c6 and c7 are positive constants. As 1< q< 4 and h
satisfies (h1) − (h3), un􏼈 􏼉 is bounded.

Since Lq(Ω) and H1
0(Ω) are reflexive spaces, there exists

a weakly convergent subsequence of (wn, un)􏼈 􏼉. Without loss
of generality, we may assume (wn, un)⇀ (w0, u0) as
n⟶∞. Hence, wn⇀w0 in Lq(Ω) and un⇀ u0 in
H1

0(Ω) as n⟶∞. SinceU andKψ are weakly closed sets,
w0 ∈ U and u0 ∈Kψ . *en, let v � u0 in (63). We get

h un

����
����􏼐 􏼑􏽚
Ω
∇un∇ u0 − un( 􏼁dx≥ λ􏽚

Ω
f x, un( 􏼁 u0 − un( 􏼁dx

− μ􏽚
Ω
τ wn( 􏼁 u0 − un( 􏼁dx.

(65)

Since f satisfies the conditions (f1) − (f4) and τ is
bounded,

lim
n⟶∞

λ􏽚
Ω

f x, un( 􏼁 u0 − un( 􏼁dx � 0,

lim
n⟶∞

􏽚
Ω
τ wn( 􏼁 u0 − un( 􏼁dx � 0.

(66)

*en, from (65) and (66), we have

lim sup
n⟶∞

h un( 􏼁
����

����􏽚
Ω
∇un∇ un − u0( 􏼁dx≤ 0. (67)

Since un􏼈 􏼉 is bounded and h satisfies (h1) and (h2),

lim sup
n⟶∞

􏽚
Ω
∇un∇ un − u0( 􏼁dx≤ 0. (68)

Note that un⇀ u0 in H1
0(Ω) as n⟶∞, and we have

lim
n⟶∞

􏽚
Ω
∇u0∇ un − u0( 􏼁dx � 0. (69)

By (68) and (69), we get

lim sup
n⟶∞

􏽚
Ω
∇ un − u0( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx≤ 0. (70)

*us, un⟶ u0 in H1
0(Ω) as n⟶ +∞. *erefore, by

(63), we have

h u0
����

����􏼐 􏼑􏽚
Ω
∇u0 ∇v − ∇u0( 􏼁dx≥ λ􏽚

Ω
f x, u0( 􏼁 v − u0( 􏼁dx

− 􏽚
Ω
τ(w) v − u0( 􏼁dx, ∀v ∈Kψ,

(71)

that is, u0 ∈ S(w0). Denote

G(u) � 􏽚
Ω

g(x, u)dx, u ∈Kψ ,

L(w) � 􏽚
Ω

l(x, w)dx, w ∈ U.

(72)

Since un⟶ u0 in H1
0(Ω) as n⟶ +∞ and the em-

bedding H1
0(Ω)↪ Lr(Ω) is continuous compact

(1< r< 2∗), un⟶ u0 in Lr(Ω) as n⟶∞. By Lemma 1
and Lemma 2, G: Kψ⟶ R is continuous and
L: Lq(Ω)⟶ R is weakly lower semicontinuous. *erefore,

J w0, u0( 􏼁 � G u0( 􏼁 + L w0( 􏼁

≤ lim inf
n⟶+∞

G un( 􏼁 + L wn( 􏼁( 􏼁,

� lim inf
n⟶+∞

J wn, un( 􏼁,

� inf
w∈U,u∈S(w)

J(w, u).

(73)

*at is, (w0, u0) ∈ U × S(w0) is an optimal control for
problem (P). *e proof is complete.

Theorem 6. Let U be a nonempty bounded closed and
convex subset of the space Lq(Ω)(1< q<min 4, 2∗{ }). Assume
that h satisfies the conditions (h1) − (h3), f satisfies the
conditions (f1) − (f4), and τ: U⟶ Lq′(Ω) is a weakly
continuous mapping such that τ(U) is a bounded set. Let
1< r<p∗, g(u) � C7|u − ud|r, and l(w) � C8|w − wd|q, for
some constants C7 and C8, where ud ∈ Lr(Ω), wd ∈ Lq(Ω).
4ere exist λ∗ > 0, 0< μ∗ < 1, such that for each λ> λ∗, μ< μ∗,
there exists an optimal control (w0, u0) ∈ U × S(w0) for the
optimal control problem (P).

Proof. Firstly, we claim that J: U × Kψ⟶ R is weakly
lower semicontinuous. In fact,

J(w, u) � 􏽚
Ω

g(u) + 􏽚
Ω

l(w),

� C7􏽚
Ω

u − ud

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
r

+ C8􏽚
Ω

w − wd

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
,

� C7 u − ud

����
����

r

Lr + C8 w − wd

����
����

q

Lq .

(74)

By the weakly lower semicontinuity of the norm,
J: Lq(Ω) × Lr(Ω)⟶ R is weakly lower semicontinuous.

Let (wn, un)⇀(w0, u0) ∈ U × Kψ . *en, wn⇀w0 in
U and un⇀ u0 in Kψ. Since 1< r< 2∗, it follows from the
Sobolev imbedding theorem that the imbedding
H1

0(Ω)⟶ Lr(Ω) is a compact imbedding. Hence,
un⟶ u0 in Lr(Ω) and (wn, un)⇀ (w0, u0) in
Lq(Ω) × Lr(Ω). Since J: Lq(Ω) × Lr(Ω)⟶ R is weakly
lower semicontinuous, J: U × Kψ⟶ R is weakly lower
semicontinuous. *en, similar to the rest of the proof given
in *eorem 5, we obtain our conclusion. □
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