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In this paper, we propose and study a diagonal inexact version of Bregman proximal methods, to solve convex optimization
problems with and without constraints. ,e proposed method forms a unified framework for existing algorithms by
providing others.

1. Introduction

Let fi: Rd⟶ R (i � 0, 1, . . . , m) convex functions and C
the nonempty subset of Rd are defined by

C � x ∈ R
d

: fi(x)≤ 0, i � 1, . . . , m􏽮 􏽯. (1)

Let us consider the problem of convex optimization:

(P) : min f0(x), x ∈ C􏼈 􏼉. (2)

To solve (P), many authors [1–7] have combined the
exterior penalty methods with the proximal method (PM)
defined by

x
k ∈ εk − Argmin f(·) +

1
2λk

· − x
k− 1

�����

�����
2

􏼨 􏼩, (3)

wheref ∈ Γ0(Rd) is set of proper closed convex functions on
Rd. PM and its variants have been studied by several authors
[6, 8–13]. In this labor, we generalize this process by in-
troducing Bregman’s distance Dh(., .) defined by

Dh(x, y) ≔ h(x) − h(y) − 〈x − y,∇h(y)〉, (4)

where h is Bregman’s function [14].
In order to solve (P), we study the coupling of the

methods of the exterior penalty with the diagonal inexact
version of the Bregman proximal methods defined by

x
k ∈ εk − Argmin f(·) + λ− 1

k Dh ·, x
k− 1

􏼐 􏼑􏽮 􏽯. (5)

,e exact version PMD is defined by

x
k

� argmin f(·) + λ− 1
k Dh ·, x

k− 1
􏼐 􏼑􏽮 􏽯, (6)

has been studied by several authors [15–18].
We propose and study a diagonal inexact version of the

Bregman proximal method, which we call DBPM, defined by

x
k ∈ εk − Argmin f

k
(·) + λ− 1

k Dh ·, x
k− 1

􏼐 􏼑􏽮 􏽯, (7)

where the sequence fk􏼈 􏼉k ⊂ Γ0(Rd) is given and approaches
f.

By introducing the penalty functions in DBPM, we
deduce a solution of (P).

If fk � f∀k, the proposed method appears as an inexact
version of (6) and solves the problem of convex optimization
without constraints:

P′( 􏼁 : min f(x), x ∈ R
d

􏽮 􏽯. (8)

For h(·) � (1/2)‖·‖2, DBPM coincides with diagonal
proximal method of Alart and Lemaire [1] as well as the
penalization method given by Auslender [2].

2. Preliminary

In this section, we remind some theoretical properties of the
approximations called entropic studied by Kabbadj in [17].
,is study covers the properties of regularity and approx-
imations of the Moreau–Yosida approximations [19]. ,ese
results are necessary for the analysis of the methods pro-
posed in Section 3.

Hindawi
Journal of Applied Mathematics
Volume 2020, Article ID 3108056, 9 pages
https://doi.org/10.1155/2020/3108056

mailto:kabbajsaid63@yahoo.com
https://orcid.org/0000-0001-8504-1319
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3108056


Let S be an convex open subset of Rd and
h: S⟶ R. We define Dh(., .) by

∀x ∈ S,∀y ∈ S: Dh(x, y) ≔ h(x) − h(y) − 〈x − y,∇h(y)〉.

(9)

Let us consider the following hypotheses:

H1: h is continuously differentiable on S.
H2: h is continuous and strictly convex on S.

H3: ∀r≥ 0,∀x ∈ S,∀y ∈ S, the sets L1(x, r) and L2(y, r)

are bounded where

L1(x, r) � y ∈ S/Dh(x, y)≤ r􏼈 􏼉,

L2(y, r) � x ∈ S/Dh(x, y)≤ r􏼈 􏼉.
(10)

(i) H4: if yk􏼈 􏼉k ⊂ S is such that yk⟶ y∗ ∈ S, then,

Dh y
∗
, y

k
􏼐 􏼑⟶ 0. (11)

H5: if xk􏼈 􏼉k and yk􏼈 􏼉k are two sequences of S such that
Dh(xk, yk)⟶ 0 and xk⟶ x∗ ∈ S, then

y
k⟶ x

∗
. (12)

Definition 1

(i) h: S⟶ R is a Bregman type function on S or “D-
function” if h verifies H1, H2, H3, H4, and H5.

(ii) Dh(., .) is called entropic distance if h is a Bregman
function.
We put
A (S)� {h: S⟶ R verifying H1 and H2}
B (S)� {h: S⟶ R verifying H1, H2, H3, H4, and
H5}.

Theorem 1 (see [17]). Let f ∈ Γ0(Rd) and h ∈ A(S) such
that domf ∩ S≠ϕ.

If one of the two following conditions is verified,

(i) inf
S
f> − ∞ and h verifies H3

(ii) Im∇h � Rd,

then for all x ∈ S and for all λ> 0, the function
u⟶ f(u) + λ− 1Dh(u, v) has a unique minimum point on S.

Definition 2. f and h verify the hypothesis of ,eorem 1.

(i) ,e entropic approximation of f compared to h, of
parameter λ(λ> 0), is the function defined by

fhλ(x) ≔ inf
y∈S

f(y) + λ− 1
Dh(y, x)􏽮 􏽯, ∀x ∈ S. (13)

(ii) ,e application entropic proximal of f comparing to
h, of parameter λ, is the operator defined by

h
f

λ (x) ≔ proxh
λf(x) ≔ argmin

y∈S
f(y) + λ− 1

Dh(y, x)􏽮 􏽯, ∀x ∈ S.

(14)

Proposition 1 (see [17]). Let h ∈ A(S) and f ∈ Γ0(Rd) such
that

(a) ri (dom f) ∩ S≠ϕ
(b) Im∇h � Rd

/en, ∀x ∈ S,∀λ> 0.

h
f

λ (x) ∈ S, (15)

inf
S

fhλ � inf
S

f, (16)

∇h(x) − ∇h h
f

λ (x)􏼐 􏼑

λ
∈ zf h

f

λ (x)􏼐 􏼑, (17)

fhλ(x)≤fhμ(x)≤f(x), ∀μ: 0< μ≤ λ. (18)

Proposition 2 (see [17]). We suppose that h and f verify the
conditions of Proposition 1.

If inf(f)> − ∞ and h verify H3, then h
f

λ : S⟶ S is a
continuous application.

Proposition 3 (see [17]). We suppose that h and f verify the
hypothesis of Proposition 2.

If h is twice continuously differentiable on S and Dh(., .)

and jointly convex, then fhλ is continually differentiable and
convex such that ∀x ∈ S:

∇fhλ(x) � λ− 1
H(x) x − h

f

λ (x)􏼐 􏼑, (19)

where H � ∇2h.

Proposition 4. We suppose that h and f verify the hypothesis
of the Proposition 3. If H is defined positive, then

Argmin
S

f � Argmin
S

fhλ. (20)

Proof. Let u∗ ∈ ArgminSfhλ.

fhλ u
∗

( 􏼁 � inf
S

fhλ⟺ 0 ∈ zfhλ u
∗

( 􏼁

⟺ 0 � ∇fhλ u
∗

( 􏼁

⟺H u
∗

( 􏼁 u
∗

− h
f

λ u
∗

( 􏼁􏼐 􏼑.

(21)

Since H is defined positive, we deduct then that u∗ �

h
f

λ (u∗). From (17), we have

u
∗

� h
f

λ u
∗

( 􏼁⟹ 0∈ zf u
∗

( 􏼁⟹ u
∗ ∈ argmin

S
f. (22)

We get then ArgminSfhλ ⊂ ArgminSf.

Reciprocally, let x∗ such that f(x∗) � infSf. From (16)
and (18), we have
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f x
∗

( 􏼁 � inf
S

fhλ ≤fhλ x
∗

( 􏼁≤f x
∗

( 􏼁; (23)

thus, we have f(x∗) � infSfhλ � fhλ(x∗), which completes
the demonstration.

Some examples of Bregman functions are given
below. □

Example 1. If S0 � Rd and h0(x) � (1/2)‖x‖2, then

Dh0
(x, y) �

1
2
‖x − y‖

2
. (24)

Example 2. If S1 � Rd
++ ≔ x ∈ Rd/xi > 0, i � 1, . . . , d􏼈 􏼉 and

h1(x) � 􏽘
i�d

i�1
xilog xi − xi; ∀x ∈ S1, (25)

with the convention 0 log 0 � 0, then

Dh1
(x, y) � 􏽘

d

i�1
xilog

xi

yi

+ yi − xi, ∀(x, y) ∈ S1XS1.

(26)

Example 3. If S2 � [− 1, 1]d and h2(x) � − 􏽐
i�d
i�1

�����
1 − x2

i

􏽱
, then

Dh2
(x, y) � h2(x) + 􏽘

d

i�1

1 − xiyi�����
1 − y2

i

􏽱 , ∀(x, y) ∈ S2XS2.

(27)

We easily verify that hi ∈ B(Si), i � 0, 1, 2.

3. Analysis of the Diagonal Bregman
Proximal Method

In this paragraph, we assume the following:

(A): h ∈ B(S): Im∇h � Rd and domf ⊂ S

(B): f, fk ∈ Γ0(Rd): domfk ⊂ S, k � 1, 2, . . .

(C): lim inf (inffk)> − ∞

From (15), we can then construct the sequence xk􏼈 􏼉k

defined by (Algorithm 1):
In what follows, we will derive a convergence result

(,eorem 2) for the DPMD framework. First, we need to
establish a few technical results.

Lemma 1 (see [20]). Let f1, f2 be two functions of Γ0(Rd) if
there exists x ∈ domf 1 in which f2 is finite and continuous,
then for ε> 0, for all y ∈ domf 1 ∩ domf 2,

zε f1 + f2( 􏼁(y) � ∪
ε1+ε2�ε,ε1≥0,ε2≥0

zε1f1(y) + zε2f2(y).

(28)

Definition 3. ,e sequence (λk; ak; bk; ck; dk)􏼈 􏼉k ∈ R+∗XS4

verifies the K-property only if the following properties are
verified:

K1 : ∃ λ > 0,∀k, λk ≥ λ .

K2 : ak􏼈 􏼉 is bounded and Adh ak􏼈 􏼉 ⊂ S.

K3 : Dh(ak, bk)⟶ 0.

K4 : Dh(ak, ck)⟶ 0.

K5 : dk � (∇h(bk) − ∇h(ck))/λk.

Lemma 2. If the sequence (λk; ak; bk; ck; dk)􏼈 􏼉k verifies the K-
property, then dk⟶ 0.

Proof. If the sequence dk􏼈 􏼉 does not tend to zero, then it
exists that M> 0 and the subsequence dki

􏽮 􏽯 of dk􏼈 􏼉 such that

∀ki, dki

�����

�����>M. (29)

,e sequence aki
􏽮 􏽯 is bounded and Adh aki

􏽮 􏽯 ⊂ S; it
exists that the subsequence aki

􏽮 􏽯 of aki
􏽮 􏽯 and u∗ ∈ S such

that akj
⟶ u∗. Dh(akj

, bkj
)⟶ 0 and Dh(akj

, ckj
)⟶ 0

allow to write, from H5, bkj
⟶ u∗ and ckj

⟶ u∗. On the
other hand,

0≤ dkj

�����

����� �
∇h bkj

􏼒 􏼓 − ∇h ckj
􏼒 􏼓

λkj

�������������

�������������

≤ λ
− 1
∇h bkj

􏼒 􏼓 − ∇h ckj
􏼒 􏼓

������

������,

(30)

∇h is continuous on S, then ∇h(bkj
) − ∇h(ckj

)⟶ 0. It
follows that ‖dkj

‖⟶ 0. dki
􏽮 􏽯 is a subsequence of dki

􏽮 􏽯, from
with the entropic proximal method (29), we have 0≥M> 0,
so dk⟶ 0.

Lets consider now the function hu,λ defined by
hu,λ: S⟶ R, ∀λ> 0,∀u ∈ S.

hu,λ(x) � λ− 1
Dh(x, u), ∀x ∈ S. (31)

□

Proposition 5. ∀ε> 0,∀λ> 0,∀u ∈ S,∀x∗ ∈ S.

zεhu,λ x
∗

( 􏼁 �
z

z
�
∇h(x) − ∇h(u)

λ
withx ∈ S andDh x

∗
, x( 􏼁≤ λε􏼨 􏼩.

(32)

Proof. z ∈ zεhu,λ(x∗).

⟺ hu,λ(x) − hu,λ x
∗

( 􏼁≥ 〈z, x − x
∗〉 − ε, ∀x ∈ S,

⟺ λ− 1
h(x) − h(u) − 〈x − u,∇h(u)〉 − h x

∗
( 􏼁 + h(u)􏼂

+〈x∗ − u,∇h(u)〉􏼃≥ 〈z, x − x
∗〉 − ε, ∀x ∈ S,

⟺ h x
∗

( 􏼁 − h(x) − 〈x∗ − x,∇h(u)〉

≤ 〈λz, x
∗

− x〉 + λε, ∀x ∈ S,

(33)

which is equivalent to

h x
∗

( 􏼁 − h(x) − 〈x∗ − x,∇h(u) + λz〉 ≤ λε. (34)

According to (A), it exists that x ∈ S such that
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∇h(u) + λz � ∇h(x), (35)
which means

z �
∇h(x) − ∇h(u)

λ
∃x ∈ S. (36)

Replacing in (34) x by x, we get

Dh x
∗
, x( 􏼁≤ λε. (37)

Finally

zεhu,λ x
∗

( 􏼁 ⊂
z

z
�
∇h(x) − ∇h(u)

λ
withx ∈ S andDh x

∗
, x( 􏼁≤ λε􏼨 􏼩.

(38)

Conversely, let z such as

z �
∇h(x) − ∇h(u)

λ
,

Dh x
∗
, x( 􏼁≤ λε,

Dh x
∗
, x( 􏼁≤ λε⟹ h x

∗
( 􏼁 − h(x) − 〈x∗ − x,∇h(x)〉 ≤ λε≤ λε

+ Dh(x, x),

⟹ h x
∗

( 􏼁 − h(x) − 〈x∗ − x,∇h(x)〉 − h(x)

+ h(x) +〈x − x,∇h(x)〉≤ λε,

⟹ h x
∗

( 􏼁 − h(x) − 〈x∗ − x,∇h(x)〉 ≤ λε.
(39)

Replacing ∇h(x) by ∇h(u) + λz, we get (34). According
to what precedes,

(34)⟺ z ∈ zεhu,λ x
∗

( 􏼁, (40)

which establishes the desired equality. □

Definition 4.
∀λ> 0,∀ρ≥ 0,∀f, g ∈ Γ0 R

d
􏼐 􏼑,

d
ρ
h,λ(f, g) ≔ sup

‖x‖≤ρ,x∈S
fhλ(x) − ghλ(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(41)

Theorem 2. We assume that

(i) 􏽐kεk + 2dk,ρ < +∞,∀ρ≥ 0, where

dk,ρ ≔ d
ρ
h,λ f

k
, f􏼐 􏼑. (42)

(ii) /e sequence xk􏼈 􏼉 generated by DPMD is bounded.
/en

(a) fk(xk)⟶ inff
(b) Moreover, if f and h verify the conditions of

Proposition 4, then

Adh x
k

􏽮 􏽯 ⊂ Argminf. (43)

Proof.

x
k ∈ εk − Argmin f

k
(u) + λ− 1

k Dh u, x
k− 1

􏼐 􏼑􏽮 􏽯

⟹f
k

x
k

􏼐 􏼑 + λ− 1
k Dh x

k
, x

k− 1
􏼐 􏼑≤f

k
hλk

x
k− 1

􏼐 􏼑 + εk,

(44)

according to (18), we can write

f
k
h λ x

k
􏼐 􏼑 + λ− 1

k Dh x
k
, x

k− 1
􏼐 􏼑≤f

k
h λ x

k− 1
􏼐 􏼑 + εk. (45)

,e sequence xk􏼈 􏼉 is bounded; let ρ≥ 0 such that

∀k, x
k

�����

�����≤ ρ. (46)

Considering (45),

λ− 1
k Dh x

k
, x

k− 1
􏼐 􏼑 + fh λ x

k
􏼐 􏼑≤fh λ x

k− 1
􏼐 􏼑 + εk + 2dk,ρ.

(47)

,erefore,

fh λ x
k

􏼐 􏼑≤fh λ x
k− 1

􏼐 􏼑 + εk + 2dk,ρ. (48)

So, from (i), we have

limfh λ x
k

􏼐 􏼑 � l≥ inffh λ � inff≥ − ∞. (49)

On one hand,

fk xk( 􏼁≤fk
h λ xk− 1( 􏼁 + εk

⇓

fk xk( 􏼁≤fh λ xk− 1( 􏼁 + dk,ρ + εk,

(50)

on the other hand, we have

fh λ x
k

􏼐 􏼑 − dk,ρ ≤f
k

x
k

􏼐 􏼑; (51)

finally, the two previous inequalities make it possible to
write

fh λ x
k

􏼐 􏼑 − dk,ρ ≤f
k

x
k

􏼐 􏼑≤fh λ x
k− 1

􏼐 􏼑 + dk,ρ + εk. (52)

If l � − ∞, then inff � − ∞ and fk(xk)⟶ − ∞. So,

f
k

x
k

􏼐 􏼑⟶ inff. (53)

If l> − ∞, then, from (52),

limf
k

x
k

􏼐 􏼑 � limfh λ x
k

􏼐 􏼑 � l. (54)

(1) Input: x0 ∈ S

(2) Choose λ≥ λk ≥ λ > 0 and εk ≥ 0, and find xk ∈ S, such that xk ∈ εk − Argmin fk(·) + λ− 1
k Dh(·, xk− 1)􏽮 􏽯.

(3) Set k⟵ k + 1 and go to step 2

ALGORITHM 1: DPMD.
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Let us show that l � inff, from (45),
λ− 1

k Dh(xk, xk− 1)⟶ 0 when k⟶ +∞.

As λ ≤ λk ≤ λ, we have

Dh x
k
, x

k− 1
􏼐 􏼑⟶ 0. (55)

On the other hand,

x
k ∈ εk − Argmin f

k
(u) + λ− 1

k Dh u, x
k− 1

􏼐 􏼑􏽮 􏽯

⟺ 0 ∈ zεk
f

k
(·) + λ− 1

k Dh ·, x
k− 1

􏼐 􏼑􏽨 􏽩 x
k

􏼐 􏼑.
(56)

From Lemma 1, there exists εk1
, εk2
≥ 0 such that εk1

+

εk2
� εk and

0 ∈ zεk1
f

k
x

k
􏼐 􏼑 + zεk2

λ− 1
k Dh ·, x

k− 1
􏼐 􏼑􏼐 􏼑 x

k
􏼐 􏼑. (57)

Since zεf
k increases with ε, we have

0 ∈ zεk
f

k
x

k
􏼐 􏼑 + zεk

λ− 1
k Dh ·, x

k− 1
􏼐 􏼑􏼐 􏼑 x

k
􏼐 􏼑. (58)

,erefore, there exists zk ∈ zεk
fk(xk) such that

− zk ∈ zεk
λ− 1

k Dh ·, x
k− 1

􏼐 􏼑􏼐 􏼑 x
k

􏼐 􏼑. (59)

From Proposition 5, there exits xk ∈ S such that

− zk �
∇h xk􏼐 􏼑 − ∇h xk− 1( 􏼁

λk

,

Dh x
k
, x

k
􏼐 􏼑≤ λkεk.

(60)

Finally, there exists xk􏽮 􏽯 such that

zk �
∇h xk− 1( 􏼁 − ∇h xk􏼐 􏼑

λk

∈ zεk
f

k
x

k
􏼐 􏼑withDh x

k
, x

k
􏼐 􏼑≤ λkεk.

(61)

From (55) and (61), we have

zk �
∇h xk− 1( 􏼁 − ∇h xk􏼐 􏼑

λk

∈ zεk
f

k
x

k
􏼐 􏼑,

Dh xk, xk􏼐 􏼑⟶ 0,

Dh xk, xk− 1( 􏼁⟶ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(62)

Since Adh xk􏼈 􏼉 ⊂ ∪ domfk ⊂ S, the sequence
(λk; xk; xk; xk− 1; zk)􏽮 􏽯

k
verifies then the K-property. From

Lemma 2, zk⟶ 0. On the other hand, for all y ∈ S,

f
k
(y)≥f

k
x

k
􏼐 􏼑 +〈zk, y − x

k〉 − εk⟹f
k
(y) + λ

− 1
Dh(y, x)

≥f
k

x
k

􏼐 􏼑 +〈zk, y − x
k〉 − εk,

(63)

there exists 􏽢xk such that for all k ∈ N,

inf f
k
(y) + λ

− 1
Dh(y, x)􏼨 􏼩 � f

k
h λ(x)

� f
k

􏽢x
k

􏼐 􏼑 + λ
− 1

Dh 􏽢x
k
, x􏼐 􏼑.

(64)

By replacing y by 􏽢xk in (63), we get

f
k

􏽢x
k

􏼐 􏼑 + λ
− 1

Dh 􏽢x
k
, x􏼐 􏼑≥f

k
x

k
􏼐 􏼑 +〈zk, 􏽢x

k
− x

k〉 − εk.

(65)

It is still

f
k
h λ(x)≥f

k
x

k
􏼐 􏼑 +〈zk, 􏽢x

k
− x

k〉 − εk. (66)

􏽢xk􏽮 􏽯 is bounded. Indeed,

− ∞< inf
k
inf

S
f

k ≤f
k

􏽢x
k

􏼐 􏼑, (67)

so it exists K1 ∈ R such that K1 ≤fk(􏽢xk).

From (i),

dk,ρ⟶ 0⟹ f
k
h λ(x)􏼚 􏼛is convergent, (68)

so

∃K2 ∈ R: K2 ≥K1,

f
k
h λ(x)≤K2.

(69)

From (64), we have

Dh 􏽢x
k
, x􏼐 􏼑≤ λ K2 − K1( 􏼁. (70)

From H3, 􏽢xk􏽮 􏽯 is bounded. Going to the limit in (66), we
have

fh λ(x)≥ limf
k

x
k

􏼐 􏼑 � l, (71)

then,

f(x)≥ l, ∀x⟹ inff≥ l,

(52)⟹fh λ x
k

􏼐 􏼑≤f
k

x
k

􏼐 􏼑 + dk,ρ,

⟹ inff � inffh λ ≤f
k

x
k

􏼐 􏼑 + dk,ρ,

⟹ inff≤ limf
k

x
k

􏼐 􏼑 � l.

(72)

Finally, we have

limf
k

x
k

􏼐 􏼑 � inff. (73)

(b) Let x∗ ∈ Adh xk􏼈 􏼉, there exists then the subsequence
xki􏼈 􏼉 of xk􏼈 􏼉 such that xki⟶ x∗, we have

inffh λ ≤fh λ x
∗

( 􏼁≤ limfh λ x
ki􏼐 􏼑≤ limf

ki x
ki􏼐 􏼑

� inff � inffh λ⟹ inffh λ � fh λ x
∗

( 􏼁.
(74)

From (20), we have

x
∗ ∈ Argminfh λ � Argminf. (75)

□

4. Exterior Penalty Coupled with Bregman
Proximal Method

Let fi: Rd⟶ R, i � 1, . . . , m, be the convex function and
let C the set of constraints given by

C � x ∈ R
d
: fi(x)≤ 0, i � 1, . . . , m􏽮 􏽯. (76)

Journal of Applied Mathematics 5



We suppose that C verifies the condition of Slater:

∃x∗ ∈ R
d
: fi x

∗
( 􏼁< 0, i � 1, . . . , m. (77)

Let us consider the functions of the linear penalty de-
fined by

φn
1(x) � rn 􏽘

m

i�1
f

+
i (x), ∀x ∈ R

d
, ∀n ∈ N

∗
, (78)

and the quadratic exterior penalty defined by

φn
2(x) � rn 􏽘

m

i�1
f

+
i (x)􏼂 􏼃

2
, ∀x ∈ R

d
, ∀n ∈ N

∗
, (79)

where a+ �max 0, a{ } and rn􏼈 􏼉n is an increasing sequence of
strictly positive real numbers which tends to +∞.

Let us put ∀n ∈ N∗:

f � f0 + ΨC,

f
n
1 � f0 + φn

1,

f
n
2 � f0 + φn

2.

(80)

In what follows, we assume

(A′): h ∈ B(Rd): Im∇h � Rd

(B′): infRd f> − ∞,

so conditions (A), (B), and (C) of Section 3 are verified
for f and fn

j , j� 1, 2; n ∈ N.

We give below an estimate of dh
λ,ρ(fn

j , f), j� 1, 2.

Proposition 6

(a) ∀ λ > 0,∀ρ≥ 0,∃rh ≥ 0,

d
h
λ,ρ f

n
1, f( 􏼁 � 0, ∀n: rn ≥ rh, ∀λ≥ λ . (81)

(b) ∀ λ > 0,∀ρ≥ 0,∃μh ≥ 0,

d
h
λ,ρ f

n
2, f( 􏼁≤

μh

rn

, ∀n≥ 1, ∀λ≥ λ . (82)

Proof. Let λ> 0 and x ∈ Rd.

fhλ(x) � inf f + λ− 1
Dh(·, x)􏽮 􏽯 � inf

C
f0 + λ− 1

Dh(·, x)􏽮 􏽯.

(83)

Since Slater’s condition is verified, there exists from
Ekeland-Temam [21] (chap 3,,eorem 5.2) multiplicators of
Lagrange

pj(λ, x)≥ 0; j � 1, . . . , m, (84)

such that ∀y ∈ Rd.

fhλ(x)≤f0(y) + λ− 1
Dh(y, x) + 􏽘

m

j�1
pj(λ, x)fj(y). (85)

From (18), we have fhλ(x)≥ infCf0, by replacing y with
x∗, we obtain

inf
C

f0 ≤f0 x
∗

( 􏼁 + λ− 1
Dh x

∗
, x( 􏼁 + 􏽘

m

j�1
pj(λ, x)fj x

∗
( 􏼁,

(86)

where x∗ verifies (3). On the other hand

􏽘

m

j�1
pj(λ, x)fj x

∗
( 􏼁≤ 􏽘

m

j�1
pj(λ, x)⎡⎢⎢⎣ ⎤⎥⎥⎦ sup

j

fj x
∗

( 􏼁. (87)

Let us put

sup
j

fj x
∗

( 􏼁 � − c, where c> 0. (88)

It follows that

􏽘

m

j�1
pj(λ, x)fj x

∗
( 􏼁≤ − c‖p(λ, x)‖1, (89)

where p(λ, x) � (p1(λ, x), . . . , pm(λ, x)). ,erefore,

Dh x
∗
, x( 􏼁≤Dh x

∗
, x( 􏼁 + Dh x, x

∗
( 􏼁

�〈x∗ − x,∇h x
∗

( 􏼁 − ∇h(x)〉

≤ x
∗

− x
����

����· ∇h(x) − ∇h x
∗

( 􏼁
����

����,

(90)

which leads to

Dh x
∗
, x( 􏼁≤ ‖x‖

∗
+‖x‖( 􏼁 ∇h x

∗
( 􏼁

����
���� +‖∇h(x)‖􏼐 􏼑. (91)

From (86), (89), and (91), we obtain

‖p(λ, x)‖1 ≤
1
c

f0 x
∗

( 􏼁 + λ
− 1

x
∗����
���� +‖x‖􏼐 􏼑 ∇h x

∗
( 􏼁

����
����􏼐􏼢

+‖∇h(x)‖) − inf
C

f0􏼕.

(92)

(a) From (85),

fhλ(x)≤f0(y) + λ
− 1

Dh(y, x) +‖p(λ, x)‖1 􏽘

m

i�1
f

+
i (y).

(93)

For x ∈ Bρ, from (92), we have

‖p(λ, x)‖1 ≤
1
c

f0 x
∗

( 􏼁 + λ
− 1

�
x
∗����
���� + ρ􏼐 􏼑􏼢

· ∇h x
∗

( 􏼁
����

���� + sup
x∈Bρ

‖∇h(x)‖⎛⎝ ⎞⎠ − inf
C

f0
⎤⎥⎥⎦≕ rh.

(94)

,us, for n such as rn ≥ rh,

fhλ(x)≤fn
1(y) + λ− 1Dh(y, x), ∀y ∈ Rp

⇓

fhλ(x)≤ fn
1( 􏼁hλ(x), ∀x ∈ Bρ.

(95)
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Conversely,

f
n
1( 􏼁hλ(x) � inf

y∈Rp
f0(y) + rn􏽘

i�1

m

f
+
i (y) + λ− 1

Dh(y, x)
⎧⎨

⎩

⎫⎬

⎭

≤ inf
y∈C

f0(y) + λ− 1
Dh(y, x)􏽮 􏽯

� inf f(y) + λ− 1
Dh(y, x)􏽮 􏽯.

(96)

,erefore,

f
n
1( 􏼁hλ(x)≤fhλ(x). (97)

(b) If ‖·‖m indicates the Euclidean norm on Rd, so

􏽘
j�1

m

pj(λ, x)fj(x)≤
1
2rn

‖p(λ, x)‖
2
m +

rn

2
􏽘

m

i�1
f

+
i (y)􏼂 􏼃

2
; (98)

by proceeding as below, we deduce the result.

Let us consider now the methods of the coupled exterior
penalties with the entropic proximal method (Algo-
rithm 2): □

Theorem 3. Let us suppose

(i) 􏽐
∞
n�1εn < +∞, and 􏽐

∞
n�1(1/rn)< +∞

(ii) ∃i0 ≥ 1: fi0
is coercive

/en the sequence xn
j􏽮 􏽯

n
generated by (DBPM)j j� 1, 2 is

bounded, Adh xn
j􏽮 􏽯 ⊂ Argminf, and

f
n
j x

n
j􏽮 􏽯⟶ inff, j � 1, 2 . . . . (99)

Proof. Let us show that xn
1􏼈 􏼉n is bounded.

f
n
1 x

n
1( 􏼁 + λ− 1

n Dh x
n
1, x

n− 1
1􏼐 􏼑≤f

n
1(u) + λ− 1

n Dh u, x
n− 1
1􏼐 􏼑 + εn.

(100)

By replacing u by xn− 1
1 in (100), we obtain

f0 x
n
1( 􏼁 + rn 􏽘

m

i�1
f

+
i x

n
1( 􏼁≤f0 x

n− 1
1􏼐 􏼑 + rn 􏽘

m

i�1
f

+
i x

n− 1
1􏼐 􏼑 + εn.

(101)

Let R� infRd f0, we have

f0 xn
1( 􏼁 − R

rn

+ 􏽘
m

i�1
f

+
i x

n
1( 􏼁≤

f0 xn− 1
1( 􏼁 − R

rn

+ 􏽘
m

i�1
f

+
i x

n− 1
1􏼐 􏼑 +

εn

rn

,

(102)

rn􏼈 􏼉 is increasing, so we put

An �
f0 xn

1( 􏼁 − R

rn

+ 􏽘
m

i�1
f

+
i x

n
1( 􏼁, (103)

we deduce

An ≤An− 1 +
εn

rn

. (104)

which leads to

An ≤A0 + 􏽘
n

k�1

εk

rk

. (105)

Let ε such as εk ≤ ε, since (f0(xn
1) − R/rn)> 0, we have

fi0
x

n
1( 􏼁≤A0 + 􏽘

∞

k�1

ε
rk

. (106)

From (i) and (ii), we deduce that the sequence xn
1􏼈 􏼉n is

bounded, so by application of ,eorem 2 and Proposition 6,
the result is immediate.

In a similar way, we deduce the result for j� 2. □

5. Example

Let us consider the following optimization problem:

P1( 􏼁:
min〈a, x〉,

‖x‖2 ≤ b,
􏼨 (107)

where a ∈ Rd and b ∈ R+∗.
,e (DBPM)2 algorithm can be applied to solve (P1). We

take

∀n, εn � 0,

rn � 2n
,

λ≥ λn ≥ λ > 0.

(108)

Let us consider the function h: Rd⟶ R defined by

h(x) �
1
p

􏽘

i�d

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
; p≥ 2; ∀x ∈ R

d
. (109)

We easily show that h ∈ B(Rd) and which checks (A′)
Let us put ∀x ∈ Rd:

f0(x) � 〈a, x〉,

f1(x) � x
2����
���� − b,

φn
(x) � φn

2(x) � rn f
+
1(x)􏼂 􏼃

2
, ∀n ∈ N

∗
.

(110)

C � x ∈ Rd: f1(x)≤ 0􏼈 􏼉 is compact and f0 is continuous, so

Argminf≠∅,

inf
Rd

f � inf
C

f0 > − ∞.
(111)

We have

f � f0 + ΨC,

f
n ≔ f

n
2 � f0 + φn

.
(112)

,e sequence xn{ } generated by the (DBPM)2 algorithm
is defined by x0 ∈ Rd and

x
n ∈ Argmin f

n
(·) + λ− 1

n Dh ·, x
n− 1

􏼐 􏼑􏽮 􏽯, n≥ 1. (113)

By writing the condition of optimality, we have
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∇fn
x

n
( 􏼁 + λ− 1

n ∇h x
n

( 􏼁 − ∇h x
n− 1

􏼐 􏼑􏼐 􏼑 � 0. (114)

On the other hand,

∇ f
+
1􏼂 􏼃

2
(x) � 2f

+
1(x)∇f1(x) � 4f

+
1(x)x. (115)

,en,

2n+2
f

+
1 x

n
( 􏼁x

n
+ λ− 1

n ∇h x
n

( 􏼁 � λ− 1
n ∇h x

n− 1
􏼐 􏼑 − a, (116)

where

∇h x
n

( 􏼁( 􏼁i � sign x
n
i( 􏼁 x

n
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p− 1

, i � 1, . . . , d, (117)

f1 is coercive, so by applying ,eorem 3, we have

Adh x
n

􏼈 􏼉 ⊂ Argminf � x ∈ R
d
: f0(x) � inf

C
f0􏼚 􏼛,

f
n

x
n

􏼈 􏼉⟶ inf
C

f0.

(118)

Remarks 1

(i) ,e convergence performance of the xn{ } can be
discussed according to the parameter p. We take note
that for p � 2,

h(x) �
1
2
‖x‖

2
. (119)

(ii) Let

f0(x) �
1
2
<Ax, x> − < c, x> , ∀x ∈ R

d
, (120)

where A is matrix symmetric definite positive and c ∈ Rd.

Previously developed methods can solve optimization
problems of the type

P2( 􏼁:

min
1
2

〈Ax, x〉 − 〈c, x〉,

‖x‖2 ≤ b.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(121)

6. Conclusion

,e class of the methods studied in this work constitutes a
unified framework for several existing methods that solve

convex optimization problems with and without constraints
while providing others, more precisely.

(i) For h(·) � (1/2)‖·‖2, DBPM coincides with the
diagonal proximal method DPM studied by Alart
and Lemaire [1].

(ii) If h(·) � (1/2)‖·‖2 in DBPM, j� 1, 2, we find then
the methods of penalization studied by Auslender
[2].

(iii) If fk � f∀k, DBPM appears as an inexact version of
BPM and solves the problem of convex optimization
without constraints:

P′( 􏼁: min f(x), x ∈ R
d

􏽮 􏽯, (122)

the convergence of this version is included in our
analysis and responds to the question asked by Eckstein in
[15].

(i) If fk � f and εk � 0,∀k in DBPM, we find then
BPM studied by [15–18].

(ii) If fk � f and h(·) � (1/2)‖·‖2 in DBPM, we find
then PM studied by [6, 8–13].

(iii) If fk � f and h1(x) �􏽐
i�d
i�1xilogxi − xi; ∀x ∈ S1,

DBPM allows to minimize f on

S1 � R
d
++ ≔ x ∈ R

d/xi > 0, i � 1, . . . , d􏽮 􏽯. (123)
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