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A set of linear second-order differential equations is converted into a semigroup, whose algebraic structure is used to generate novel
equations. The Lagrangian formalism based on standard, null, and nonstandard Lagrangians is established for all members of the
semigroup. For the null Lagrangians, their corresponding gauge functions are derived. The obtained Lagrangians are either new or
generalization of those previously known. The previously developed Lie group approach to derive some equations of the semigroup
is also described. It is shown that certain equations of the semigroup cannot be factorized, and therefore, their Lie groups cannot be
determined. A possible solution of this problem is proposed, and the relationship between the Lagrangian formalism and the Lie
group approach is discussed.

1. Introduction

Let Q be a set of all linear second-order differential equations
(ODEs) of the form D̂yðxÞ = 0, where D̂ ≡ d2/dx2 + BðxÞd/d
x + CðxÞ, and BðxÞ and CðxÞ are smooth (C∞) and ordinary
(B : R→R and C : R→R) functions to be determined. In
general, Q contains a wide variety of ODEs that can be sep-
arated into two subsets, one with known solutions and the
other with unknown solutions. According to Murphy [1],
there are more than five hundred ODEs in Q whose solu-
tions are known, and many of those solutions are given
by the special functions (SF) of mathematical physics as
defined in [1, 2].

An algebraic structure can be added to Q, and as a result,
the set becomes a semigroup. Let S be a semigroup and let
“+” be the binary operation of addition, such that ∀s1, s2 ∈
S : ðs1 + s2Þ ∈ S . Moreover, the associativity axiom requires
that ∀s1, s2, s3 ∈ S : s1 + ðs2 + s3Þ = ðs1 + s2Þ + s3. With the
above conditions being obeyed by all elements of S , the semi-
group also preserves the commutative rule ∀s1, s2 ∈ S : ðs1
+ s2 = s2 + s1Þ ∈ S , which means that S is a commutative
semigroup. It must be pointed out that the algebraic structure
imposed on the commutative semigroup allows generating

both new and known ODEs (see Section 2) that are also ele-
ments of S .

Let us also point out that an identity element may
also be formally introduced into the semigroup S by taking
BðxÞ = CðxÞ = 0 and finding the solution yðxÞ = a0x + b0 with
a0 and b0 being constants. Having defined this identity ele-
ment, the semigroup S becomes a monoid M, and since
the original S is commutative, M is also commutative. The
monoid structure of the considered ODEs is an interesting
property that may be studied further in future papers; how-
ever, in this paper, only the commutative semigroup of ODEs
is investigated.

The first main objective of this paper is to establish the
Lagrangian formalism for all ODEs of S by using standard
and nonstandard Lagrangians. The standard Lagrangians
(SLs) are typically expressed as the difference between terms
that can be identified as the kinetic and potential energy [3].
On the other hand, for nonstandard Lagrangians (NSLs),
originally introduced by Arnold [4] who referred to them
as nonnatural Lagrangians, identification of kinetic and
potential energy terms may not be obvious. Among different
applications, Alekseev and Arbuzov [5] used the NSLs to
formulate the Yang-Mills field theory. Extensive discussions
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of methods to derive NSLs can be found in some previous
[6–8] and more recent work [9, 10]. Other important
methods to obtain NSLs were developed by El-Nabulsi
[10], Nucci [11–14], Cariñena et al. [15–17], and Saha
and Talukdar [18].

Lagrangians are not unique, which means that some extra
terms may be added to them and they give the same original
equation. These are null (NLs) or trivial Lagrangians (TLs) as
they make the Euler-Lagrange (E-L) equation to vanish iden-
tically [19, 20]. In other words, the NLs can be added to any
Lagrangian without changing the derivation of the original
equation. It is also required that the NLs can be expressed
as the total derivative of a scalar function, which is called a
gauge function [19, 21, 22]. The null Lagrangians have been
extensively studied in mathematics [23–28] but only with a
couple of applications in physics [29, 30].

In theoretical physics, the Lagrangian formalism is cen-
tral to any classical or quantum theory of particles, waves,
or fields, and the fundamental equations of modern physics
are typically derived from given Lagrangians [3]. If the orig-
inal equations are given but their Lagrangians are not known,
then the inverse (or Helmholtz) problem of the calculus of
variations must be solved [31]. In this paper, the inverse
problem for all ODEs of S is solved, and their SLs, NLs,
and NSLs are derived; the existence of the obtained Lagrang-
ians is verified by using the Helmholtz conditions [32], and it
is demonstrated that the derived NSLs violate the Helmholtz
conditions.

As the second main objective of this paper, the Lie group
approach is applied to the ODEs of S . A Lie group for a given
ODE of S must be known in advance, so its irreducible rep-
resentations (irreps) can be determined and used to obtain
the corresponding solutions of this ODE. Moreover, opera-
tors of the Lie algebra of the selected Lie group can be used
to obtain the original ODE. This work has been done so far
for the ODEs whose solutions are the SF of mathematical
physics [33–37] (called here the SF ODEs), and its limitations
are explored in this paper. Now, if the original equation is
given but its Lie group is not known, then the original equa-
tion must be factorized [38, 39], and the resulting lower-
order ODE must be related to the Lie algebra, from which
the corresponding Lie group is determined. In this paper,
we establish the validity of the Lie group approach to ODEs
of S (beyond the SF ODEs) and demonstrate the existence
of limits on the factorization for some ODEs of S .

Finally, the Lagrangian formalism and the Lie group
approach, the two independent methods of obtaining the
ODEs of S , are compared. The advantages and disadvantages
of each method are discussed, and it is shown that the
Lagrangian formalism can be established for all considered
ODEs; however, the Lie group approach is only limited to
some ODEs that form a subsemigroup of S . Applications of
the obtained results to selected problems in mathematical
physics are also discussed.

The outline of the paper is as follows: a procedure of gen-
erating new ODEs in S is described and applied to some
ODEs in Section 2; the Lagrangian formulation for all ODEs
of S is established by using standard and nonstandard
Lagrangians and applied to selected ODEs in Section 3; the

Lie group approach and factorization methods are presented
in Section 4; comparison between the two methods is dis-
cussed in Section 5; and conclusions are given in Section 6.

2. Commutative Semigroup of
Differential Equations

An interesting property of S is that its algebraic operation
can be used to generate novel ODEs by simply adding two
different elements of the semigroup. Since any two elements
(two chosen ODEs) of S can be added up, the results
may be rather surprising as shown by a couple of examples
below. Let D1 = d2/dx2 + B1ðxÞd/dx + C1ðxÞ and D̂2 = d2/d
x2 + B2ðxÞd/dx + C2ðxÞ, where B1ðxÞ, B2ðxÞ, C1ðxÞ and C2ðxÞ
are smooth and arbitrary functions, be two operators, and
let D̂1yðxÞ = 0 and D̂2yðxÞ = 0 be two ODEs of S . Then, the
binary operation of S allows writing

D̂y xð Þ = D̂1 + D̂2
� �

y xð Þ = 0, ð1Þ

where BðxÞ = ½B1ðxÞ + B2ðxÞ�/2 and CðxÞ = ½C1ðxÞ + C2ðxÞ�/2.
Here are some interesting examples. All Bessel (regular,

modified, spherical, and modified spherical) equations are
elements of S . To add the regular and modified Bessel equa-
tions, we have B1ðxÞ = B2ðxÞ = 1/x, C1ðxÞ = 1 − μ2/x2 and C2
ðxÞ = −ð1 + μ2/x2Þ, where μ is either real or integer constant,
which gives

y′′ xð Þ + xy′ xð Þ − μ2x2y xð Þ = 0: ð2Þ

Since the eigenvalue of this equation is λ = 0 (see Section
4), the resulting ODE is neither regular nor modified Bessel
equation, but instead, it is known as the Euler equation [1].
Addition of other Bessel equations gives novel Bessel and
Euler equations.

To show these novel equations, let a general form of
Bessel equation be

y′′ xð Þ + a
x
y′ xð Þ + β −

μ2

x2

� �
y xð Þ = 0, ð3Þ

where BðxÞ = α/x and CðxÞ = βð1 + γμ2/x2Þ. In addition, α
and β are constants, whose values correspond to four Bessel
equations and the Euler equation (see Table 1). In addition,
μ is either integer or real. Note that the form of Eq. (3) con-
sidered here is more general than that used in [10] as it allows
reducing the general Bessel equation to the Euler equations
(see Table 1).

Note that for α = 3/2, a new name “semispherical” was
introduced for both Bessel and Euler equations. Additions
of Bessel equations required to obtain the Euler equation
and the novel equations (see Table 1) are presented in
Table 2. It must be pointed out that further additions of the
Bessel equations and the derived equations are also possible
but not considered here.

Another interesting result is obtained when the regular
Legendre equation with B1ðxÞ = −2x/ð1 − x2Þ and C1ðxÞ =
lðl + 1Þ/ð1 − x2Þ is added up together with the associated
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Legendre equation with B2ðxÞ = −2x/ð1 − x2Þ and C1ðxÞ =
lðl + 1Þ/ð1 − x2Þ −m2/ð1 − x2Þ2, where l and m are con-
stants. The resulting ODE is again the associated Legendre
equation given by

y′′ xð Þ − 2x
1 − x2ð Þ y′ xð Þ + l l + 1ð Þ

1 − x2ð Þ −
�m2

1 − x2ð Þ2
" #

y xð Þ = 0,

ð4Þ

where �m2 =m2/2. This shows that only the constant �m is
affected by the addition, but the form of the resulting
ODE does not change.

The considered simple examples show that numerous
novel ODEs can be generated by using the algebraic opera-
tion of the semigroup S . Since the process of adding the ele-
ments of S to each other can be carried on ad infinitum, there
are infinite different resulting ODEs, and all of them are the
elements of S .

3. Lagrangian Formalism and Its Lagrangians

Let J ½yðxÞ� be a functional that depends on an ordinary and
smooth function yðxÞ, and let J ½yðxÞ� be defined by an inte-
gral over a smooth function L, which is called Lagrangian,
and depends on y′ðxÞ = dy/dx, y and on x, so Lðy′, y, xÞ.
The principle of least action or Hamilton’s principle [3]
requires that δJ = 0, where δ is the variation defined as the
Fréchet derivative of J ½yðxÞ� with respect to yðxÞ. Using
the condition δJ = 0, the E-L equations are obtained and

their solutions give yðxÞ that makes the action stationary.
The described procedure is the basis of the classical calculus
of variations, and it works well when the Lagrangian Lðy′, y
, xÞ is either already given or it can be determined for a given
physical system.

The basis for the Lagrange formalism is the jet-bundle
theory [25, 26]. Let X and Y be differentiable manifolds of
dimensions m and M +m, respectively, and let π : Y → X
be a fibred bundle structure, with π being the canonical pro-
jection of the fibration. Let JrmðYÞ→ X be the rth jet bundle,
with x ∈ X, y ∈ Y , and r ∈ IN. Then, an ODE of order q is
called locally variational (or the E-L type) if, and only if, there
exists a local real function L constrainted by the condition q
≤ r. For the ODEs of S , q = 2 and Lðy′, y, xÞ is a local
Lagrangian. Such local Lagrangians are not unique as other
Lagrangians may also exist and they would give the same
original equations when substituted into the E-L equations.
Now, if Lagrangians are not known, then the problem of
finding them is the inverse (or Helmholtz) variational prob-
lem [31, 32, 40]. One of the main goals of this paper is to
solve this problem for all ODEs of S .

3.1. Standard Lagrangians. In the previous work [6, 7],
special forms of standard Lagrangians Ls½y′ðxÞ, yðxÞ, x� were
derived for D̂yðxÞ = 0. These results are generalized in
Proposition 1 by allowing the Lagrangians to depend on
smooth and ordinary functions that are to be determined.

Proposition 1. Let Ls½y′ðxÞ, yðxÞ, x� be the standard Lagrang-
ian given by

Ls y′ xð Þ, y xð Þ, x
h i
= 1
2

f1 xð Þ y′ xð Þ
� �2

+ f2 xð Þy′ xð Þy xð Þ + f3 xð Þy2 xð Þ
� 	

,

ð5Þ

and let f1ðxÞ, f2ðxÞ and f3ðxÞ be smooth and ordinary func-
tions to be determined. The Lagrangian Ls½y′ðxÞ, yðxÞ, x� can
be used to obtain the original equation D̂yðxÞ = 0, if and
only if, f1ðxÞ > 0, f 1′ðxÞ = BðxÞf1ðxÞ and f 2′ðxÞ/2 − f3ðxÞ =
CðxÞf1ðxÞ.

Proof. Substitution of Ls½y′ðxÞ, yðxÞ, x� into the E-L equation
gives

f1 xð Þy′′ xð Þ + f 1′ xð Þy′ xð Þ + f 2′ xð Þ/2 − f3 xð Þ
h i

y xð Þ = 0, ð6Þ

or

y′′ + f 1′
f11

xð Þy′ xð Þ + 1
f1 xð Þ f 2′ xð Þ/2 − f3 xð Þ

h i
y xð Þ = 0, ð7Þ

if f1ðxÞ > 0. This E-L equation can be converted into the orig-
inal equation y′′ + BðxÞy′ðxÞ + CðxÞyðxÞ = 0 if f 1′ðxÞ = BðxÞ

Table 1: Bessel and Euler equations.

Known and derived equations α β

Regular Bessel 1 1

Modified Bessel 1 -1

Spherical Bessel 2 1

Modified spherical Bessel 2 -1

Semispherical Bessel∗ 3/2 1

Modified semispherical Bessel∗ 3/2 -1

Regular Euler 1 0

Spherical Euler∗ 2 0

Semispherical Euler∗ 3/2 0
∗Novel equations derived by using the binary operation of S.

Table 2: Derivation of novel Bessel and Euler equations.

Derived equations Addition of Bessel equations

Semispherical Bessel Regular and spherical

Modified semispherical Bessel Modified and modified spherical

Regular Euler Regular and modified

Spherical Euler Spherical and modified spherical

Semispherical Euler Regular and modified spherical

Semispherical Euler Modified and spherical
∗Novel equations derived by using the binary operation of S.
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f1ðxÞ and f 2′ðxÞ/2 − f3ðxÞ = CðxÞf1ðxÞ, which concludes the
proof.

Other implications of the results of Proposition 1 are now
presented by the following corollaries.

Corollary 2. The function f1ðxÞ is given as f1ðxÞ = a1EsðxÞ,
where a1 is an integration constant and EsðxÞ = exp ½Ð Bð~xÞ
d~x�.

Corollary 3. The Euler-Lagrange equations do not supply
enough constraints to determine both f2ðxÞ and f3ðxÞ, thus,
one of these functions must be specified. Different choices of
f2ðxÞ or f3ðxÞ lead to different standard Lagrangians.

For a given physical problem with specified intitial condi-
tions, more constraints on the functions f2ðxÞ and f3ðxÞ can
be imposed. However, in this paper, we keep our analysis
general and do not consider any specific physical problem
with given initial conditions.

We may use the result of Corollary 3 to define three
Lagrangians that play special roles in this paper. In general,
many different Lagrangians can be obtained but considering
all of them is out of the scope of this paper. Let us begin with
the choice of f2ðxÞ = 0, which sets f3ðxÞ = −CðxÞ. The result is
a Lagrangian that is called here the minimal Lagrangian
Ls,min½y′ðxÞ, yðxÞ, x�, and it is defined as

Ls,min y′ xð Þ, y xð Þ, x
h i

= a1
2 y′ xð Þ

� �2
− C xð Þy2 xð Þ

� 	
Es xð Þ:

ð8Þ

It is easy to verify that this Lagrangian is the simplest
standard Lagrangian that allows obtaining the original equa-
tion D̂yðxÞ = 0 directly from the E-L equations (6). Let us also
point out that the same Lagrangian is obtained when f2ðxÞy
′ðxÞ + f 2′ðxÞyðxÞ/2 = 0, which requires that f2ðxÞ depends on
yðxÞ and that their relationship is f2ðxÞ = ½�a1/y2ðxÞ�2, where
�a1 is another integration constant.

We may also choose f2ðxÞ = a2 = const, which gives f3ðxÞ
= −CðxÞ and the so-called middle Lagrangian Ls,mid½y′ðxÞ,
yðxÞ, x� is obtained

Ls,mid y′ xð Þ, y xð Þ, x
h i

= Ls,min y′ xð Þ, y xð Þ, x
h i

+ Lo,mid y′ xð Þ, y xð Þ, x
h i

,
ð9Þ

where Lo,mid½y′ðxÞ, yðxÞ, x� = ða2/2Þy′ðxÞyðxÞ is a null
Lagrangian [10]. The middle Lagrangian is a new standard
Lagrangian.

Finally, we take f2ðxÞ = f 1′ðxÞ = a1BðxÞEsðxÞ, which gives
f3ðxÞ = f 2′ðxÞ/2 − CðxÞf1ðxÞ = ða1/2Þ½B′ðxÞ + B2ðxÞ − 2CðxÞ�
EsðxÞ, and the maximal Lagrangian Ls,max½y′ðxÞ, yðxÞ, x� can
be written as

Ls,max y′ xð Þ, y xð Þ, x
h i

= Ls,min y′ xð Þ, y xð Þ, x
h i

+ Lo,max y′ xð Þ, y xð Þ, x
h i

,
ð10Þ

where Lo,max½y′ðxÞ, yðxÞ, x� = ða1/2Þ½BðxÞy′ðxÞ + ðB′ðxÞ + B2

ðxÞÞyðxÞ/2�yðxÞEsðxÞ is another null Lagrangian. The
Lagrangian Ls,max½y′ðxÞ, yðxÞ, x� was also previously found
[7], and it was demonstrated that this Lagrangian gives the
original equation upon substitution into the E-L equation.
It is easy to verify that even if the obtained Lagrangians are
different they lead to the same original equation D̂yðxÞ = 0.

3.2. Null Lagrangians. A well-known result is that the dif-
ference between two Lagrangians that give the same equa-
tion can be written as the total derivative of scalar function
Φðy, xÞ [20]. This means that we may write

Ls,mid y′ xð Þ, y xð Þ, x
h i

− Ls,min y′ xð Þ, y xð Þ, x
h i

= Lo,mid y′ xð Þ, y xð Þ, x
h i

= dΦ1dx

Ls,max y′ xð Þ, y xð Þ, x
h i

− Ls,min y′ xð Þ, y xð Þ, x
h i

= Lo,max y′ xð Þ, y xð Þ, x
h i

= dΦ2dx

Lo,max y′ xð Þ, y xð Þ, x
h i

− Lo,mid y′ xð Þ, y xð Þ, x
h i

= dΦ3dx,

ð11Þ

where the functions Φ1ðy, xÞ, Φ2ðy, xÞ, and Φ3ðy, xÞ exist
on the configuration manifold M (see Section 2); however,
it may not always be possible to find a single-value func-
tion on the entire M [20]. Since the null Lagrangians can
be added to any Lagrangian without modifying the result-
ing original equations, we may call them “gauge transfor-
mations” in reference to the gauge transformation of
electromagnetism. Moreover, the above results demon-
strate that the functions Φ1ðy, xÞ, Φ2ðy, xÞ, and Φ3ðy, xÞ
are the gauge functions and that they exist [20].

It is easy to find Φ1ðyÞ = a2y
2/4 + a3, where a3 is an inte-

gration constant; however, the other two functions require
BðxÞ to be specified, which will not be done here to keep
our approach as general as possible. Important consequences
of the fact that the null Lagrangians allow finding the gauge
functions are now summarized in the following corollaries.

Corollary 4. The null Lagrangians Lo,mid½y′ðxÞ, yðxÞ, x� and
Lo,max½y′ðxÞ, yðxÞ, x� are the solutions that satisfy the E-L
equations but cannot be used to derive D̂yðxÞ = 0:

Corollary 5. The null Lagrangians Lo,mid½y′ðxÞ, yðxÞ, x� and
Lo,max½y′ðxÞ, yðxÞ, x� can be added to any known Lagrangian
without making any changes in the resulting original
equation.
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Finally, let us point out that both Lo,mid½y′ðxÞ, yðxÞ, x� and
Lo,max½y′ðxÞ, yðxÞ, x� depend on BðxÞ and yðxÞ but are
independent of CðxÞ. Since the first-derivative term with its
BðxÞ coefficient can be removed from D̂yðxÞ = 0 by using
the integral transformation given by Proposition 10 (see
Section 3.2), the null Lagrangians for such transformed
ODEs would be zero. Our results show that with Lo,mid½y′ðxÞ,
yðxÞ, x� = 0 and Lo,mid½y′ðxÞ, yðxÞ, x� = 0, the minimal
Lagrangian is the simplest and most fundamental standard
Lagrangian for all ODEs of S .

3.3. Nonstandard Lagrangians. We consider nonstandard
Lagrangians to be given in the following general form [9, 10].

Lns y′ xð Þ, y xð Þ, x
h i

= 1
g1 xð Þy′ xð Þ + g2 xð Þy xð Þ + g3 xð Þ

ð12Þ

where g1ðxÞ, g2ðxÞ and g3ðxÞ are smooth functions to
be determined. Comparing Lns½y′ðxÞ, yðxÞ, x� to Ls½y′ðxÞ,
yðxÞ, x� given by Eq. (5), it is seen that both Lagrangians
have three arbitrary functions; however, the forms of
these Lagrangians are significantly different.

Studies of the Lagrangian Lns½y′ðxÞ, yðxÞ, x� previously
performed [8] were limited to only a few special cases that
allowed uniquely determine the functions g1ðxÞ, g2ðxÞ,
and g3ðxÞ. These functions were determined by substituting
Lns½y′ðxÞ, yðxÞ, x� into the E-L equations. First, it was shown
that g3ðxÞ separates from the other two functions, and as a
result, it can be evaluated independently. Second, the eval-
uation of g1ðxÞ and g2ðxÞ is connected, and they can only
be obtained if a Riccati equation is solved but neither [7]
nor [8] gives the required solutions. Therefore, here, we
solve the resulting Riccati equation (9) in the following
proposition.

Proposition 6. Let

u′ + 1
3
u2 −

1
3
uB xð Þ − 2

3
B2 xð Þ + 2B′ xð Þ − 3C xð Þ

� 	
= 0, ð13Þ

be the Riccati equation, and let uðxÞ = g1′ðxÞ/g1ðxÞ, where g1
ðxÞ is an arbitrary function of the nonstandard Lagrangian
given by Eq. (12). The solution of this Riccati equation is

u xð Þ = 3
�v′ xð Þ
�v xð Þ + 2B xð Þ, ð14Þ

if, and only if, the function �vðxÞ satisfies D̂�vðxÞ = 0.

Proof. We transform the Riccati equation by introducing a
new variable vðxÞ, which is related to uðxÞ by uðxÞ = 3v′ðxÞ
/vðxÞ with vðxÞ ≠ 0, and obtain

v′′ + B xð Þv′ + C xð Þv = F v′, v, x
� �

, ð15Þ

where Fðv′, v, xÞ = 2 ½2BðxÞv′ + B′ðxÞv + B2ðxÞv/3�/3.

Now, we transform Eq. (15) by using

v xð Þ = �v xð Þ exp
ð
χ ~xð Þd~x

� 	
, ð16Þ

which gives χðxÞ = −2BðxÞ/3 [10], and the solution is

u xð Þ = 3�v
′ xð Þ
�v xð Þ + 2B xð Þ, ð17Þ

where �vðxÞ must satisfy D̂�v = 0. This concludes the proof.

Having obtained the solution of the Riccati equation, we
may use it to calculate the functions g1ðxÞ and g2ðxÞ and find
the following nonstandard Lagrangian

Lns y′ xð Þ, y xð Þ, x
h i

= Ens xð Þ
y′ xð Þ�v xð Þ − y xð Þ�v′ xð Þ
h i

�v2 xð Þ
, ð18Þ

where EnsðxÞ = exp ½−2 Ð Bð~xÞd~x�. It is seen that the derived
Lagrangian depends explicitly on �vðxÞ, which is a solution
to D̂�vðxÞ = 0 that becomes an auxiliary condition for the
developed Lagrangian formalism based on non-standard
Lagrangians.

The obtained nonstandard Lagrangians were previously
derived but only for some ODEs whose solutions are special
functions of mathematical physics [6, 8, 10]. Those previous
results are here generalized to all ODEs of S . Both standard
and nonstandard Lagrangians allow obtaining the original
equations; however, the nonstandard Lagrangians lead to a
new phenomenon in calculus of variations, which is the
requirement of the auxiliary condition in order to obtain
D̂yðxÞ = 0:

3.4. Applications to Bessel and Euler Equations. We now
derive Lagrangians for the general Bessel equation given by
Eq. (3). More specifically, we find the minimal, middle, and
maximal standard Lagrangians using Eqs. (8), (9), and (10),
respectively, as well as the nonstandard Lagrangian given
by Eq. (18).

The minimal (basic) standard Lagrangian is given by

Ls,min y′ xð Þ, y xð Þ, x
h i

= 1
2 y′ xð Þ

� �2
− β −

μ2

x2

� �
y2 xð Þ

� 	
xα,

ð19Þ

where a1 = 1 in Eq. (8).
The middle Lagrangian can be written as

Ls,mid y′ xð Þ, y xð Þ, x
h i

= Ls,min y′ xð Þ, y xð Þ, x
h i

+ Lo,mid y′ xð Þ, y xð Þ, x
h i

,
ð20Þ
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where

Lo,mid y′ xð Þ, y xð Þ, x
h i

= 1
2 y

′ xð Þy xð Þ, ð21Þ

with a2 = 1 and Lo,mid½y′ðxÞ, yðxÞ, x� being a null Lagrangian
that does not depend on either α or β.

The maximal Lagrangian is

Ls,max y′ xð Þ, y xð Þ, x
h i

= Ls,min y′ xð Þ, y xð Þ, x
h i

+ Lo,max y′ xð Þ, y xð Þ, x
h i

,
ð22Þ

where

Lo,max y′ xð Þ, y xð Þ, x
h i

= α

2x y′ xð Þ + 1
2x α − 1ð Þy xð Þ

� 	
xαy xð Þ,

ð23Þ

is another null Lagrangian that depends on α but is indepen-
dent of β, which is only present in the basic Lagrangian.

According to Eq. (18), the nonstandard Lagrangian
becomes

Lns y′ xð Þ, y xð Þ, x
h i

= x−2α

y′ xð Þ�v xð Þ − y xð Þ�v′ xð Þ
h i

�v2 xð Þ
, ð24Þ

with the auxiliary condition D̂�vðxÞ = 0. It is seen that
Lns½y′ðxÞ, yðxÞ, x� depends on α but does not depend
explicitly on β; the β-dependence is only through the solu-
tion for �vðxÞ.

The obtained Lagrangians are expressed in terms of two
parameters α and β that uniquely determine whether the
considered equation is the Bessel or Euler equation (see
Table 1). In other words, the standard and nonstandard
Lagrangians for each equation can be obtained from Eqs.
(19) through (24) by using the values of α and β given in
Table 1.

3.5. Helmholtz Conditions. Our results show that the
Lagrangian formalism may be established for all ODEs of S
by using either the standard or nonstandard Lagrangians.
The existence of the obtained Lagrangians must be validated
by the Helmholtz conditions [32]. There are three original
Helmholtz conditions and two of them are trivially satisfied.
The third condition requires a lot of caution, because its
original version shows that no Lagrangian can be constructed
for the general form of the ODEs used in this paper, namely,
D̂yðxÞ = 0. It is easy to demonstrate that D̂yðxÞ = 0 is incon-
sistent with the third Helmholtz condition [19].

To fix the problem of validity of the third Helmholtz con-
dition, we substitute either the minimal, middle, or maximal
Lagrangian into the E-L equation, and as expected, all three
Lagrangians give the same original equation. The resulting
ODE is ½D̂yðxÞ�EsðxÞ = 0, and this equation is consistent with
the third Helmholtz condition. The problem arises when one
more step is performed, namely, dividing the equation by

EsðxÞ, which gives the original ODE, but the resulting ODE
violates the third Helmholtz condition; note that in principle,
the division can be performed because in general EsðxÞ ≠ 0. In
other words, the third Helmholtz condition tells us that
Lagrangian exists for ½D̂yðxÞ�EsðxÞ = 0, but it does not exist
for D̂yðxÞ = 0; however, it is the latter that we want to derive
as it is our original equation. Thus, the origin of the inconsis-
tency is clearly demonstrated.

The problem with the nonstandard Lagrangians is more
profound because they do allow obtaining the original equa-
tion, but the resulting ODE does not obey the third Helm-
holtz condition. There are a few special cases that may lead
to a result that is consistent with this condition. However,
for the original equation D̂yðxÞ = 0, which is derived from
the nonstandard Lagrangians, the results remain inconsistent
with the third Helmholtz condition. This violation of the
third Helmholtz condition is a known phenomenon in the
calculus of variations [10].

4. Lie Group Approach

4.1. Special Function Equations. Linear second-order ODEs
whose solutions are special functions (SFs) of mathematical
physics are called here the special function equations (SFEs).
All SFEs are elements of S and they form a subsemigroup
denoted S sf , with Ssf ∈ S . There are many applications of
SFEs and SFs in applied mathematics, physics, and engineer-
ing [2, 34]. The Lie group approach provides a unifying per-
spective of all SFs and their SFEs. Therefore, it is surprising
that the approach is not commonly known and that its
descriptions can only be found in a very few advanced text-
books of mathematical methods (e.g., [34]) or monographs
[35, 36] and reviews [37] devoted to this topic.

Using the previously obtained results [21–24], we find
that Bessel and spherical Bessel functions are obtained,
respectively, from the Euclidean groups Eð2Þ and Eð3Þ, also
known as the ISO(2) and ISO(3) groups. In addition, it was
shown that Legendre polynomials and functions are derived,
respectively, from unitary groups SUð2Þ and unimodular
quasi-unitary groups QUð2Þ. As long as Hermite polyno-
mials and functions are concerned, they can be obtained
from Heisenberg H3 and H4 groups, respectively.

Let us now demonstrate how the procedure of finding
special functions works by selecting the Eð2Þ group, which
consists a subgroup of all translations Tð2Þ inR2, and a sub-
group of all rotations Rð2Þ inR2; thus, the group structure is
Eð2Þ = Rð2Þ ⊗ sTð2Þ, where Tð2Þ is an invariant subgroup.
The procedure requires finding a function that transform as
one of irreps of a given group; in the previous work [41], such
function was found for the Galilean group of the metric;
however, here, it is obtained for the Euclidean group Eð2Þ
in the following proposition and corollary.

Proposition 7. Let T̂ a! be a translation operator of Tð2Þ ∈ E
ð2Þ and let ϕð r!Þ be a smooth and ordinary function. The
function ϕð r!Þ transforms as the irreps of Tð2Þ if, and only
if, ϕð r!Þ satisfies the eigenvalue equations
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i∇ϕ r!
� �

= k
!
ϕ r!
� �

, ð25Þ

where k
!
labels the irreps.

Proof. The action of T̂ a! on ϕð r!Þ is given by

T̂ a!ϕ r!
� �

= ϕ r! + a!
� �

= exp i k
!
· a!

� 	
ϕ r!
� �

, ð26Þ

where a! is a translation and r! = ðx, yÞ. Making the Taylor
series expansion of ϕð r! + a!Þ, we find

ϕ r! + a!
� �

= exp i −ia! · ∇
� �h i

ϕ r!
� �

: ð27Þ

Comparing Eq. (27) to Eq. (26), we obtain the following
eigenvalue equations

i∇ϕ r!
� �

= k
!
ϕ r!
� �

, ð28Þ

which represent the necessary conditions that ϕð r!Þ trans-
forms as the irreps of Tð2Þ [40]. This concludes the proof.

Corollary 8. The solutions to the eigenvalue equations of

Proposition 9 are the plane waves ϕð r!Þ = ϕ0e
ik
!
· r!, where ϕ0

is an integration constant.

By performing the Fourier-sine and Fourier-cosine
expansions of the plane waves of Corollary 8, one finds that
each expansion has only two nonzero coefficients, and that
one of these coefficients is proportional to JμðxÞ, and the
other to J−μðxÞ, with μ being the label of the coefficients
and the resulting SFs being Bessel functions [2, 34]. More-
over, the Lie algebra of the Eð2Þ group allows finding the
raising Â+ðx, μÞJμðxÞ = ½d/dx − ðμ − 1/2Þ/x�JμðxÞ = Jμ+1ðxÞ
and lowering Â−ðx, μÞJμðxÞ = ½−d/dx − ðμ − 1/2Þ/x�JμðxÞ =
Jμ−1ðxÞ operators. Using these operators, the power series
expansions for JμðxÞ and J−μðxÞ, their recurrence relation-
ships, generating functions, and other properties may be
obtained, without making any reference to the Bessel equa-
tion [35–37]. To derive the Bessel equation, Â+Â− JμðxÞ =
Â−Â+ JμðxÞ = JμðxÞ may be used; however, it must be noted
that the resulting ODE is the Bessel equation written in its
second canonical form (see Proposition 9).

As described above, the remarkable relationships
between Lie groups and the SFs of the ODEs of S sf have been
found. The relationships are important as they unified the
well-known and commonly used SFs with simple Lie groups
used in physics and applied mathematics. To the best of our
knowledge, the Lie group approach has only been applied to
the ODEs of S sf , and Lie groups for these equations have
been identified. However, the semigroup S contains also
many other ODEs, which we denote here as Sre, with the
subscript standing for the remaining ODEs. In general, the

solutions of Sre are either known, but not given in terms of
the SFs, or unknown. In the following, we determine whether
the Lie group approach can also be applied to all ODEs of
Sre, or not.

4.2. Remaining Equations. Now, if a Lie group for a given
ODE is not known, then one may factorize the ODE, obtain
the eigenvalue equations and the raising and lowering opera-
tors [20] that are related to a Lie algebra of infinitesimal
group generators from which the corresponding Lie group
can be determined [35–37]. Using the obtained Lie algebra,
the SFs naturally appear as the basis functions of differential
operator representations of the algebra. Moreover, once the
Lie group is known, its irreps can be found, and if Γ is the
matrix of such irreps, then their matrix element γijðgÞ, where
g is a group element, becomes proportional to one of the SFs,
or to a product of SFs. This shows that the Lie group
approach is established only for those ODEs that are factor-
ized. There are many factorization methods (e.g., [38] and
references therein); however, only the Infeld and Hull (IH)
factorization [39] shows clear relationships to Lie algebra
[35–37]; therefore, only the IH method will be used in this
paper.

We now want to determine whether there are any ODEs
of Sre that cannot be factorized by using the IH method. Our
main results are presented in the following proposition.

Proposition 9. Not all ODEs of Sre can be factorized by using
the Infeld and Hull factorization method [39].

Proof. The semigroup Sre contains the ODEs of the form D̂
yðxÞ = ½d2/dx2 + BðxÞd/dx + CðxÞ�yðxÞ = 0. However, in gen-
eral, the functions BðxÞ, CðxÞ, and yðxÞ may depend on a
parameter m that can be either integer or real; thus, we may
write the above ODEs as D̂myðx,mÞ = ½d2/dx2 + BmðxÞd/dx
+ CmðxÞ�yðx,mÞ = 0. Let λ be an eigenvalue of the operator
D̂m, so that the corresponding eigenvalue equation becomes
D̂myðx,mÞ = λyðx,mÞ, or in its explicit form is

y′′ x,mð Þ + Bm xð Þy′ x,mð Þ + Cm xð Þy x,mð Þ + λy x,mð Þ = 0:
ð29Þ

Following the IH factorization method [39], Eq. (29) is
converted into a Sturm-Liouville equation and then cast into
its first canonical form, which can be written as

d
dx

Es,m xð Þy′ x,mð Þ
h i

+ Cm xð ÞEs,m xð Þy x,mð Þ
+ λEs,m xð Þy x,mð Þ = 0,

ð30Þ

where the Sturm-Liouville functions pmðxÞ =wmðxÞ =
Es,mðxÞ = exp ½Ð Bmð~xÞd~x� and qmðxÞ = CmðxÞEs,mðxÞ, with
∀ x ∈ ða, bÞ: pmðxÞ =wmðxÞ = Es,mðxÞ > 0, and with a and b
being constants given by the boundary conditions.

The procedure of converting the first canonical form into
the second canonical form involves two transformations
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[39]. Then, the second canonical form of Eq. (30) becomes

D̂
λ
mz x,mð Þ = z′′ x,mð Þ + λ + r x,mð Þ½ �z x,mð Þ = 0 , ð31Þ

where zðx,mÞ is the transformed dependent variable yðx,mÞ,
rðx,mÞ is given in terms of pmðxÞ, qmðxÞ, andwmðxÞ (see [42]
for details). Expressing pmðxÞ and wmðxÞ by Es,mðxÞ and qm
ðxÞ in terms of CmðxÞ and Es,mðxÞ, we get

r x,mð Þ = Cm xð Þ − 1
2 Bm′ xð Þ + 1

2B
2
m xð Þ

� 	
: ð32Þ

Having obtained rðx,mÞ, it is shown that Eq. (31) can be
factorized if it can be replaced by each of the following equa-
tions [42]

Â+ x,m + 1ð ÞÂ− x,m + 1ð Þz λ,mð Þ = λ − χ m + 1ð Þ½ �z λ,mð Þ,
ð33Þ

and

Â− x,mð ÞÂ+ x,mð Þz λ,mð Þ = λ − χ mð Þ½ �z λ,mð Þ, ð34Þ

where χðmÞ is a function to be determined from rðx,mÞ [42],
and

Â± x,mð Þ = ± d
dx

+ k x,mð Þ, ð35Þ

are the raising, Â+, and lowering, Â−, operators that give

z λ,m + 1ð Þ = Â− x,m + 1ð Þz λ,mð Þ, ð36Þ

and

z λ,m − 1ð Þ = Â+ x,m − 1ð Þz λ,mð Þ, ð37Þ

if zðλ,mÞ is a solution of Eq. (31).
According to IH [39], there are six types of factorization

denoted as A, B, C, D, E, and F. For each type, the functions
rðx,mÞ, kðx,mÞ, and χðmÞ are given in Table 17 of [39],
which shows that the x-dependence of the functions rðx,mÞ
and kðx,mÞ is different for each type of factorization; never-
theless, it remains fixed within the same type. Similarly for
χðmÞ whose m-dependence is also fixed. However, all three
functions depend on some parameters that may change their
values from one ODE to another. There are examples of
ODEs in Table 17 of [39] that correspond to many known
ODEs of Ssf and also other examples of ODEs that we would
classify as elements of Sre.

Now, using Eq. (32), the function rðx,mÞ can be obtained
for any ODEs of Sre. However, since BmðxÞ and CmðxÞ are
arbitrary functions of x, the function rðx,mÞ may have
in principle any form, not necessary one of the forms of
rðx,mÞ established by IH for their factorization types
[39]; note that rðx,mÞ for each factorization type has its
x-dependence fixed. This shows that there are some ODEs

of Sre that cannot be factorized by the IH method. This
concludes the proof.

The detailed calculations of casting the ODEs in their first
and second canonical forms are lengthly and involve trans-
formations that lead to a complicated form of rðx,mÞ [42].
We show in the following proposition how these calculations
can be significantly simplified.

Proposition 10. Let D̂myðx,mÞ = ½d2/dx2 + BmðxÞd/dx + Cm

ðxÞ�yðx,mÞ = 0, and let λ be an eigenvalue of the operator D̂,
so that the corresponding eigenvalue equation is

y′′ x,mð Þ + Bm xð Þy′ x,mð Þ + Cm xð Þy x,mð Þ + λym xð Þ = 0:

ð38Þ

The following integral transformation

y x,mð Þ = z x,mð Þ exp −
1
2

ð
Bm ~xð Þd~x

� 	
, ð39Þ

converts Eq. (38) directly into its second canonical form

D̂
λ
mzðx,mÞ = 0 (see Eq. (31)).

Proof. Applying the transformation given by Eq. (39) to Eq.
(38), we obtain

z′′ x,mð Þ + λ + r x,mð Þ½ �z x,mð Þ = 0, ð40Þ

which is the second canonical form of Eq. (38), with

r x,mð Þ = Cm xð Þ − 1
2 Bm′ xð Þ + 1

2B
2
m xð Þ

� 	
: ð41Þ

Note that the obtained result neither requires casting
Eq. (38) into its first canonical form nor using the original
IH transformations [39]. This concludes the proof.

The results of Proposition 10 can be used to formulate the
following corollaries.

Corollary 11. All ODEs of S can be cast into their second
canonical form.

Corollary 12. If the ODEs of S are cast into their second
canonical form, then all their null Lagrangians are zero.

It must also be noted that the null Lagrangians are zero
for some ODEs of Ssf , such as Airy, Hill, Mathieu, Weber,
Wittaker, and other similar ODEs.

Let us apply the results of Proposition 10 to the Bessel
equation by takingm = μ, BμðxÞ = 1/x, CμðxÞ = −μ2/x2, λ = 1,
and either yðx,mÞ = JμðxÞ or yðx,mÞ = J−μðxÞ as the linearly
independent solutions. By performing the transformation
given by Eq. (39), the Bessel equation is cast in its second
canonical form, and we find rðx,mÞ = −ðm2 − 1/4Þ/x2, which
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gives Â±ðx, μÞ = ½±d/dx − ðμ − 1/2Þ/x�, in agreement with the
results given in Section 3.1.

We also want to point out that the IH factorization of the
considered ODEs and the Lie group approach are closely
related as shown by the following corollary.

Corollary 13. The Lie group approach can only be established
for those ODEs that can be factorized using the IH factoriza-
tion method [39]. The results of Proposition 9 show that there
are some ODEs of Sre that cannot be factorized, which means
that the Lie group approach cannot be established for these
ODEs.

Our description of the Lie group approach showed that
only ODEs of S sf can be factorized, and therefore, the Lie
group approach can be established for them. We also estab-
lished that all ODEs of Sre can be converted into their second
canonical forms, and that the general form of rðx,mÞ for
these ODEs can be obtained. Despite the fact that rðx,mÞ
can be derived, our results showed that there are some ODEs
of Sre that cannot be factorized using the IH method [39].

5. Lagrange Formalism versus Lie
Group Approach

In this paper, we have established the Lagrangian formalism
based on standard and nonstandard Lagrangians for all
ODEs of S and demonstrated that the previously formulated
Lie group approach is applicable to only some ODEs of S . Let
SLL be a subsemigroup of all ODEs for which both the
Lagrange formalism and the Lie group approach are estab-
lished, and let SL be another subsemigroup of all remaining
ODEs for which only the Lagrange formalism is established,
with S = SLL ∪ SL. The ODEs of S sf seem to be special as
they all belong to SLL, so it would be interesting to find dee-
per connections between the Lagrange formalism and the Lie
group approach for these equations. Similarly, for other
ODEs of Sre, which are also elements of SLL. Now, for the
ODEs of SL, the underlying Lie groups are not yet known,
so it would be interesting to find them.

Possible solutions to the above problems involve develop-
ing the Lagrange formalism jointly with the Lie group
approach, which would require replacing the configuration
manifold M by a manifold G associated with a given Lie
group, so that L : TG→R. The approach guarantees that
the resulting Lagrangian L is G-invariant; however, it may
require deriving “new” variational principles and “new”
Euler-Lagrange equations [43, 44]. The resulting invariance
of L is its important property that is strongly related to the
Lie group G. Actually, the problem may be reversed, and
for every known Lagrangian, its invariance with respect to
rotations, translations, and boots may indicate the presence
of the underlying Lie groups [45, 46]. In other words, the
groups may be identified by investigating the Lagrangian
invariance. Moreover, the invariance of L guarantees that
the original equation derived from this Lagrangian preserved
the same invariance [47]. It may be also interesting to explore
the relevance of the recently discovered particle-like structure

of Lie algebra [48] to both the Lagrange formalism and the
Lie group approach.

Let us now point out that the null Lagrangians that were
identified in this paper as gauge transformations allow find-
ing the gauge functions, and also likely gauge groups under-
lying these transformations. The latter is not included in our
paper as it will be a subject of future explorations. Specifi-
cally, it would be of great interest to discovered relationships
between the gauge groups and the Lie groups, whose irreps
may be used to obtain the ODEs of mathematical physics
with the special function solutions.

The above topics are of great importance in mathematical
physics, and their exploration may give new connections
between the Lagrange formalism and the gauge groups, and
the Lie groups for the ODEs of SLL. It may also help finding
Lie groups that underlie the ODEs of SL. However, these
topics are out of the scope of the present paper, but they will
be investigated in future papers.

6. Conclusions

A set of general second-order linear ordinary differential
equations with nonconstant coefficients was considered,
and an algebraic structure (binary addition) was added to this
set to form a semigroup. An interesting result is that the
operation of the semigroup can be used to produce many
new differential equations, which are still elements of the
semigroup. Among a few presented examples, novel Bessel
equations with their zero eigenvalues were obtained and
discussed.

The Lagrangian formalism was established for all ODEs
of the semigroup. We solved the inverse variational problem
for these equations and derived standard and nonstandard
Lagrangians. Among the derived standard Lagrangians, we
obtained the minimal, middle, and maximal Lagrangians
and demonstrated that they are equivalent Lagrangians.
Moreover, we showed that the minimal Lagrangian is the
simplest and also the most fundamental, and that the other
Lagrangians differ by the so-called null Lagrangians from
the minimal one. In our analysis of the null Lagrangians,
we found out that these Lagrangians correspond to addition
of the total derivative of a scalar function, which is a well-
known result in calculus of variations [3, 20], and in this
paper, it was identified as gauge transformations. We also
used the null Lagrangians to determine the gauge functions
for all considered ODEs. As long as nonstandard Lagrangians
are concerned, our results showed that these Lagrangians
require that calculus of variations is amended by auxiliary
conditions that are different for different ODEs. This is a
novel phenomenon in calculus of variations that is responsi-
ble for violation of the third Helmholtz conditions for these
Lagrangians.

A Lie group approach was briefly described and com-
pared to the Lagrange formalism established in this paper.
The comparison shows that the Lagrange formalism is more
robust as it can be applied to all considered equations, and
that the Lie group approach is limited to the equations
whose solutions are the special functions of mathematical
physics and some other similar equations. We identified a
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subsemigroup of ODEs that cannot be obtained by the Lie
group approach. Moreover, we also suggested alternative
approaches to establish deeper connections between the
Lagrangian formalism based on the standard and nonstan-
dard Lagrangians, the gauge (still to be determined), and
the Lie group approach.

Data Availability

All results presented in our paper are easily reproducible by
any mathematician or physicist. All what it takes is to follow
the steps outlined in the paper, and it is straightforward to
derive the presented results. There is no other data in the
paper required to be shared.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

We thank two anonymous referees for their valuable com-
ments and suggestions that allow us to significantly improve
the original version of this paper. This work was supported
by the Alexander von Humboldt Foundation (Z.E.M.) and
by the LSAMP Program at the University of Texas at Arling-
ton (M.R.).

References

[1] G. M. Murphy, Ordinary Differential Equations and Their
Solutions, Dover Publication, Inc., New York, 2011.

[2] A. M. Mathai and H. J. Haubold, Special Functions for Applied
Scientists, Springer, New York, 2008.

[3] N. A. Doughty, Lagrangian Interaction, Addison-Wesley, New
York, 1990.

[4] V. I. Arnold, Mathematical Methods of Classical Mechanics,
Springer, New York, 1978.

[5] A. I. Alekseev and B. A. Arbuzov, “Classical Yang-Mills field
theory with nonstandard Lagrangians,” Theoretical and
Mathematical Physics, vol. 59, no. 1, pp. 372–378, 1984.

[6] J. L. Cieśliński and T. Nikiciuk, “A direct approach to the con-
struction of standard and non-standard Lagrangians for
dissipative-like dynamical systems with variable coefficients,”
Journal of Physics A: Mathematical and Theoretical, vol. 43,
no. 17, article 175205, 2010.

[7] Z. E. Musielak, “Standard and non-standard Lagrangians for
dissipative dynamical systems with variable coefficients,”
Journal of Physics A: Mathematical and Theoretical, vol. 41,
no. 5, article 055205, 2008.

[8] Z. E. Musielak, “General conditions for the existence of non-
standard Lagrangians for dissipative dynamical systems,”
Chaos, Solitons & Fractals, vol. 42, no. 5, pp. 2645–2652, 2009.

[9] N. Davachi and Z. E. Musielak, “Generalized Non-Standard
Lagrangians,” Journal of Undergraduate Reports in Physics,
vol. 29, no. 1, article 100004, 2019.

[10] Z. E. Musielak, N. Davachi, and M. Rosario-Franco, “Special
Functions of Mathematical Physics: A Unified Lagrangian
Formalism,” Mathematics, vol. 8, no. 3, p. 379, 2020.

[11] R. A. El-Nabusi, “Fractional field theories from multidimen-
sional fractional variational problems,” International Journal
of Geometric Methods in Modern Physics, vol. 5, p. 2614,
2008.

[12] R. A. El-Nabulsi, “Fractional Dirac operators and deformed
field theory on Clifford algebra,” Chaos, Solitons & Fractals,
vol. 42, no. 5, pp. 2614–2622, 2009.

[13] R. A. El-Nabulsi, “Fractional action-like variational approach,
perturbed Einstein’s gravity and new cosmology,” Fizika B-
Journal of Experimental and Theoretical Physics-Zagreb,
vol. 19, pp. 103–210, 2010.

[14] R. A. El-Nabulsi, “Gravitons in Fractional Action Cosmology,”
International Journal of Theoretical Physics, vol. 51, no. 12,
pp. 3978–3992, 2012.

[15] M. C. Nucci and P. G. L. Leach, “Lagrangians galore,” Journal
of Mathematical Physics, vol. 48, no. 12, article 123510, 2007.

[16] M. C. Nucci and P. G. L. Leach, “Jacobi’s last multiplier and
Lagrangians for multidimensional systems,” Journal of Mathe-
matical Physics, vol. 49, no. 7, article 073517, 2008.

[17] M. C. Nucci and P. G. L. Leach, “The Jacobi Last Multiplier
and its applications in mechanics,” Physica Scripta, vol. 78,
no. 6, article 065011, 2008.

[18] J. F. Carinena, M. F. Ranada, and M. Santander, “Lagrangian
formalism for nonlinear second-order Riccati systems: One-
dimensional integrability and two-dimensional superintegr-
ability,” Journal of Mathematical Physics, vol. 46, no. 6, article
062703, 2005.

[19] A. Saha and B. Talukdar, “Inverse Variational Problem for
Nonstandard Lagrangians,” Reports on Mathematical Physics,
vol. 73, no. 3, pp. 299–309, 2014.

[20] P. J. Olver,Applications of Lie Groups to Differential Equations,
Springer-Verlag, New York, 1993.

[21] M. Crampin and D. J. Saunders, “On null Lagrangians,” Differ-
ential Geometry and its Applications, vol. 22, no. 2, pp. 131–
146, 2005.

[22] J.-M. Levy-Leblond, “Group-theoretical foundations of classi-
cal mechanics: The Lagrangian gauge problem,” Communica-
tions in Mathematical Physics, vol. 12, no. 1, pp. 64–79, 1969.

[23] N. Wilson and A. H. Kara, “Equivalent Lagrangians: General-
ization, Transformation Maps, and Applications,” Journal of
Applied Mathematics, vol. 2012, Article ID 860482, 19 pages,
2012.

[24] P. J. Olver and J. Sivaloganathan, Nonlinearity, vol. 1, p. 389,
1989.

[25] D. R. Grigore, “Variational equations and symmetries in the
Lagrangian formalism,” Journal of Physics A: Mathematical
and General, vol. 28, no. 10, pp. 2921–2937, 1995.

[26] D. Krupka and J. Musilová, “Trivial lagrangians in field the-
ory,” Differential Geometry and its Applications, vol. 9, no. 3,
pp. 293–305, 1998.

[27] D. Krupka, O. Krupková, and D. Saunders, “The cartan form
and its generalizations in the calculus of variations,” Interna-
tional Journal of Geometric Methods in Modern Physics,
vol. 7, no. 4, pp. 631–654, 2011.

[28] R. Vitolo, “On different geometric formulations of Lagrangian
formalism,” Differential Geometry and its Applications, vol. 10,
no. 3, pp. 225–255, 1999.

[29] D. R. Anderson, D. E. Carlson, and E. Fried, “A Continuum-
Mechanical Theory for Nematic Elastomers,” Journal of
Elasticity, vol. 56, no. 1, pp. 33–58, 1999.

10 Journal of Applied Mathematics



[30] Z. E. Musielak and T. B. Watson, “Gauge functions and
Galilean invariance of Lagrangians,” Physics Letters A,
vol. 384, no. 26, article 126642, 2020.

[31] J. Lopuszanski, The Inverse Variational Problem in Classical
Mechanics, World Scientific, 1999.

[32] H. von Helmholtz, “Ueber die physikalische Bedeutung des
Prinicips der kleinsten Wirkung. (Fortsetzung),” Journal für
die reine und angewandte Mathematik (Crelles Journal),
vol. 1887, no. 100, pp. 213–222, 1887.

[33] J. Douglas, “Solution of the inverse problem of the calculus
of variations,” Transactions of the American Mathematical
Society, vol. 50, no. 1, p. 71, 1941.

[34] C. D. Cantrell, Modern Mathematical Methods for Physicists
and Engineers, Cambridge University Press, Cambridge, 2019.

[35] W. Miller, Lie Theory and Special Functions, Academic Press
Inc., New York, 1968.

[36] N. Vilenkin, Special Functions and the Theory of Group
Representations, American Mathematical Society, Providence,
RI, 1968.

[37] E. G. Kalnins, Revista Colombiana de Matematicas, vol. 21,
p. 1, 1997.

[38] F. Schwarz, “Decomposition of ordinary differential equa-
tions,” Bulletin of Mathematical Sciences, vol. 7, no. 3,
pp. 575–613, 2017.

[39] L. Infeld and T. E. Hull, “The Factorization Method,” Reviews
of Modern Physics, vol. 23, no. 1, pp. 21–68, 1951.

[40] P. S. Bauer, “Dissipative Dynamical Systems: I,” Proceedings of
the National Academy of Sciences of the United States of
America, vol. 17, no. 5, pp. 311–314, 1931.

[41] Z. E. Musielak and J. L. Fry, “Physical theories in Galilean
space-time and the origin of Schrödinger-like equations,”
Annals of Physics, vol. 324, no. 2, pp. 296–308, 2009.

[42] Ş. S. Bayin,Mathematical Methods in Science and Engineering:
Bayin/Mathematical, John Wiley & Sons, Hoboken, NJ, 2006.

[43] A. Lucas, “Lagrangian mechanics on Lie groups: a pedagogical
approach,” November 2011, https://arxiv.org/abs/1111
.1275v1.

[44] J. E. Marsden, S. Pekarsky, and S. Shkoller, “Symmetry reduc-
tion of discrete Lagrangian mechanics on Lie groups,” April
2000, https://arxiv.org/abs/math/0004018v1.

[45] Z. Muzsnay and G. Thompson, “Inverse problem of the calcu-
lus of variations on Lie groups,” Differential Geometry and its
Applications, vol. 23, no. 3, pp. 257–281, 2005.

[46] C. Muriel, J. L. Romero, and P. J. Olver, “Variational C∞
-symmetries and Euler-Lagrange equations,” Journal of Differ-
ential Equations, vol. 222, no. 1, pp. 164–184, 2006.

[47] G. F. Torres del Castillo and A. Moreno-Ruiz, “Symmetries of
the equations of motion that are not shared by the Lagrang-
ian,” May 2017, https://arxiv.org/abs/1705.08446v1.

[48] A. M. Vinogradov, “Particle-like structure of Lie algebras,”
Journal of Mathematical Physics, vol. 58, no. 7, article
071703, 2017.

11Journal of Applied Mathematics

https://arxiv.org/abs/1111.1275v1
https://arxiv.org/abs/1111.1275v1
https://arxiv.org/abs/math/0004018v1
https://arxiv.org/abs/1705.08446v1

	Lagrangians, Gauge Functions, and Lie Groups for Semigroup of Second-Order Differential Equations
	1. Introduction
	2. Commutative Semigroup of Differential Equations
	3. Lagrangian Formalism and Its Lagrangians
	3.1. Standard Lagrangians
	3.2. Null Lagrangians
	3.3. Nonstandard Lagrangians
	3.4. Applications to Bessel and Euler Equations
	3.5. Helmholtz Conditions

	4. Lie Group Approach
	4.1. Special Function Equations
	4.2. Remaining Equations

	5. Lagrange Formalism versus Lie Group Approach
	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

