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In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been
proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling
type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in
addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is
investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor
theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect of
varying the parameters. It is observed that the system has a chaotic dynamics.

1. Introduction

The interaction between a predator and their prey is one of
the most important interaction types in ecology as well as
applied mathematics due to its wide existence in our real life.
Although such interaction models may appear to be simple
mathematically, they are very challenging and complicated
[1]. Since the classical Lotka (1925) and Volterra (1926)
model on prey-predator interaction, which was developed
on the basis of chemical principle of mass action, many
research works have been done in literature. Later, the simple
growth and decay terms in the Lotka-Volterra model were
replaced by more complex functions such as the logistic
growth; prey-dependent functional responses such as Hol-
ling’s I, II, and III types; ratio-dependent functional response,
and predator-dependent type of functional response, see, for
example, [2–8] and the references therein. It is well known
that the two species models are very restrictive in their
dynamics and can give rise to only two basic dynamics
approaches to equilibrium or to a limit cycle, while ecological
situations demonstrate very complex dynamics in nature.
Accordingly, multispecies systems comprising of three spe-

cies or more was considered to study the complex ecological
community [9–13]. Furthermore, due to the existence of dif-
ferent important factors in the environment, such as stage
structure, refuge, cannibalism, harvesting, toxicant, and scav-
enger, different prey-predator models incorporating such
factors have been proposed and studied in literature, see,
for example, [14–17].

On the other hand, the spread of diseases between the
individuals of species is an important subject for study,
which is known as an epidemiology, due to the existence of
a variety of diseases in the environment. It is well known
that after the SIR epidemic model of Kermack–Mckendrick
[18], the field of epidemiology has received a lot of attention
from the researchers, see [19] and the references therein.
Recently, Zhou and Yao [20] proposed and studied a
host-vector epidemic model with a stage structure for the
vector. Further articles have been done also in the field of
epidemiology. In fact, recently, there is increasing interest
from the scientists by combining ecology and epidemiology
in one field that is called ecoepidemiology, which has become
a major field of study, see, for example, [21–24] and the refer-
ences therein. Recently, Wang et al. [25] proposed and studied
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a generalized ecoepidemiological system with prey refuge. The
saturation incidence kinetics and a generalized functional
response are used to describe the contact process and the
predation process, respectively. They show that the prey
refuge can control the spread of disease by the relative level
of prey refuge.

Keeping the above studies in view, an ecoepidemiologi-
cal model is proposed consisting of prey-predator incorpo-
rating a prey refuge, infectious disease of SI type in prey
species only, and the predator preys upon the prey (suscep-
tible and infected) according to the modified Holling type-
II functional responses. It is assumed further that there is a
harvesting process on the predator species due to external
resources.

2. Model Formulation

In this section, a prey-predator system incorporating disease
in a prey is formulated mathematically. It is assumed that
there is a refuge for prey to protect themselves against preda-
tion and the harvesting process on predator. The following
hypotheses are adopted in constricting the mathematical
model that describes the dynamics of the above real-world
ecoepidemiological system.

(1) In the presence of infectious disease, the prey popula-
tion is divided into two compartments, namely, sus-
ceptible prey that is denoted to their density at time
t by SðTÞ and infected prey, which is denoted to their
density at time T by IðTÞ. Therefore, at time T , the
total prey population density is XðTÞ = SðTÞ + IðTÞ

(2) It is assumed that in the absence of predator that is
denoted to their density at time T by YðTÞ, the sus-
ceptible prey grows logistically with carrying a capac-
ity K > 0 and an intrinsic growth rate r > 0, while the
infected prey cannot reproduce and rather than that,
it competes for food and space

(3) The availability of refuge for the prey in the environ-
ment keeps m ∈ ð0, 1Þ portion of them safe from pre-
dation and left ð1 −mÞ from the total density of the
prey facing predator

(4) The disease transfers from infected to susceptible
individuals by contact with an infected rate given by
β > 0

(5) There is a harvesting process on the predator, due to
an external force, represented by a rate ðl1EÞ/ðl2E +
l3YÞ, where E > 0 is the effort applied to harvest the
prey; l1 > 0 is the catchability coefficient while l2 > 0
and l3 > 0 are suitable constants

(6) The predator consumed the prey according to the
modified Holling type-II with attack rates a1 > 0
and a2 > 0 for susceptible prey and infected prey,
respectively, half saturation constant b > 0, and
infected prey’s preference rate c > 0, while the con-
version rate is given by e > 0

(7) Finally, there is a disease death rate given by d1 > 0
and the natural death rate for predator d2 > 0

According to the above hypotheses, the dynamics of the
above described ecoepidemiological real-world system can
be represented by the following set of differential equations.

dS
dT

= rS 1 − S + I
K

� �
− βSI −

a1 1 −mð ÞSI
b + 1 −mð ÞS + c 1 −mð ÞI ,

dI
dT

= βSI −
a2 1 −mð ÞIY

b + 1 −mð ÞS + c 1 −mð ÞI − d1I,

dY
dT

= e a1S − a2Ið Þ 1 −mð ÞY
b + 1 −mð ÞS + c 1 −mð ÞI + d2Y −

l1EY
l2E + l3Y

,

ð1Þ

with initial data Sð0Þ ≥ 0, Ið0Þ ≥ 0, and Yð0Þ ≥ 0. Clearly, the
interaction functions in system (1) are continuously differen-
tial functions on the positive octant.

Hence, they are Lipschitzian. Therefore, the solution of
system (1) exits and is unique. Now, for further simplifying
the above system, the following dimensionless variables and
constants are used.

rT = t,
S
K

= x,

I
K

= y,

a1Y
rK

= z,

w1 =
βK
r

,

w2 =
b
K
,

w3 =
a2
a1

w4 =
d1
r
,

w5 =
ea1
r

,

w6 =
d
r
,

w7 =
l1a1E
l3r2K

,

w8 =
l2Ea1
l3rK

ð2Þ

Thus, system (1) can be turned into the following dimen-
sionless form:
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dx
dt

= x 1 − x − y −w1y −
1 −mð Þz

w2 + 1 −mð Þx + c 1 −mð Þy
� �

= xf1 x, y, zð Þ,

dy
dt

= y w1x −
w3 1 −mð Þz

w2 + 1 −mð Þx + c 1 −mð Þy −w4

� �
= yf2 x, y, zð Þ,

dz
dt

= z
w5 1 −mð Þ x +w3yð Þ

w2 + 1 −mð Þx + c 1 −mð Þy −w6 −
w7

w8 + z

� �
= zf3 x, y, zð Þ,

ð3Þ

with initial data ðxð0Þ, yð0Þ, zð0ÞÞ belonging to ℝ3
+ = fðx,

y, zÞ ∈ℝ3 : xðtÞ > 0, yðtÞ > 0, zðtÞ > 0g. Clearly, according to
the biological meaning of the parameters, we have always
that w5 < 1. Moreover, all solutions of system (3) initiated
in ℝ3

+ are uniformly bounded as shown in the following
theorem.

Theorem 1. All the solutions of system (3), which initiate in
ℝ3

+, are uniformly bounded.

Proof. According to the first equation of system (3) with
the help of the Gronwall lemma, we have xðtÞ < 1. Let ðxðtÞ,
yðtÞ, zðtÞÞ be any solution of system (3) initiated in ℝ3

+, and
let W be a function defined by WðtÞ = xðtÞ + yðtÞ + zðtÞ.
Then, by differentiating this function with respect to time,
it gives

dW
dt

= dx
dt

+ dy
dt

+ dz
dt

≤ 2 − μ1W, ð4Þ

where μ1 = min f1,w4,w6g. Therefore, it obtained

dW
dt

+ μ1W ≤ 2: ð5Þ

Again, using the Gronwall lemma gives that as t⟶∞,
WðtÞ ≤ ð2Þ/ðμ1Þ. Thus, all the solutions of system (1) are uni-
formly bounded.

3. Stability and Persistence

In this section, the stability analysis of all possible equilib-
rium points of system (3) is investigated. The persistence
conditions of system (3) are established. Now, straightfor-
ward computation shows that the system (1) has at most five
nonnegative equilibrium points. The existence conditions for
each of them can be summarized as follows: The trivial equi-
librium point (TEP), say E0 = ð0, 0, 0Þ always exists. The
disease-predator-free equilibrium point (DPFEP), namely,
E1 = ðx′, 0, 0Þ = ð1, 0, 0Þ always exists. The predator-free

equilibrium point (PFEP), namely, E2 = ð�x, �y, 0Þ = ðððw4Þ/
ðw1ÞÞ, ððw1 −w4Þ/ðw1ð1 +w1ÞÞÞ, 0Þ exists in the xy-plane
provided that

w4 <w1: ð6Þ

The disease-free equilibrium point (DFEP) is denoted
by E3 = ðx̂, 0, ẑÞ where

ẑ = 1 − x̂ð Þ w2 + 1 −mð Þx̂ð Þ
1 −mð Þ , ð7Þ

while x̂ is a positive root of the following third-order
equation:

α1x̂
3 + α2x̂

2 + α3x̂ + α4 = 0, ð8Þ

with

α1 =N2 w6 −w5ð Þ,
α2 =N2 w5 −w6ð Þ +w2N 2w6 −w5ð Þ,
α3 =w8N

2 w5 −w6ð Þ +w2N w5 − 2w6ð Þ +w2
2w6 −N2w7,

α4 = −w2N w6w8 +w7ð Þ −w2
2 w6 < 0:

ð9Þ

Hence, E3 exists uniquely in the positive quadrant of
xz-plane if one of the following sets of conditions holds.

α1 > 0 and α2 > 0
α1 > 0 and α3 < 0

ð10Þ

The coexistence equilibrium point (CEP) is denoted by
E4 = ðx∗, y∗, z∗Þ, where

y∗ = w3 +w4 − w1 +w3ð Þx∗
w3 1 +w1ð Þ ,

z∗ = w1x
∗ −w4ð Þ w2 +Nx∗ + cNy∗ð Þ

Nw3
,

ð11Þ

while x∗ is a positive root of the following third-order
equation.

σ1 x∗ð Þ3 + σ2 x∗ð Þ2 + σ3x
∗ + σ4 = 0: ð12Þ

Here,
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σ1 = γ1 θ1 − θ3w6ð Þ,
σ2 = θ1γ2 + θ2γ1 − θ3γ2w6 − θ4γ1w6,
σ3 = θ1θ6 + θ2γ2 − θ3θ6w6 − θ4γ2w6 − θ5θ3,
σ4 = θ2θ6 − θ4θ6w6 − θ3θ4,

ð13Þ

with

θ1 =w3w5N 1 −w3ð Þ,
θ2 =w3w5N w3 +w4ð Þ,
θ3 =N w3 1 +w1ð Þ − c w1 +w3ð Þð Þ,
θ4 =w2w3 1 +w1ð Þ + cN w3 +w4ð Þ,
θ5 =w7w

2
3N 1 +w1ð Þ,

θ6 = θ3 +w8Nw2
3 1 +w1ð Þ,

γ1 =w1N w3 1 +w3ð Þ − c w1 +w3ð Þ½ �,
γ2 =w3 1 +w1ð Þ w1w2 −w4Nð Þ

+ cNw1 w3 +w4ð Þ + cNw4 w1 +w3ð Þ:

ð14Þ

Clearly, the CEP that is denoted by E4 exists uniquely
in the interior of the positive octant provided that the fol-
lowing condition holds.

w4
w1

< x∗ < w3 +w4
w1 +w3

, ð15Þ

with one set of the following sets of conditions

σ1 > 0, σ4 < 0, σ2 > 0
σ1 > 0, σ4 < 0, σ3 < 0
σ1 < 0, σ4 > 0, σ2 < 0
σ1 < 0, σ4 > 0, σ3 > 0

9>>>>=
>>>>;

ð16Þ

In the following, the local stability analysis of the above
equilibrium points is carried out. The Jacobian matrix of sys-
tem (1) at point ðx, y, zÞ can be written as

J x, y, zð Þ = uij
� �

3×3 ð17Þ

Here,

u11 = −x + 1 −mð Þ2xz
w2 + 1 −mð Þx + c 1 −mð Þy½ �2 + f1 x, y, zð Þ,

u12 = −x −w1x +
c 1 −mð Þ2xz

w2 + 1 −mð Þx + c 1 −mð Þy½ �2 ,

u13 =
− 1 −mð Þx

w2 + 1 −mð Þx + c 1 −mð Þy½ � ,

u21 =w1y +
w3 1 −mð Þ2yz

w2 + 1 −mð Þx + c 1 −mð Þy½ �2 ,

u22 =
w3 1 −mð Þ2yz

w2 + 1 −mð Þx + c 1 −mð Þy½ �2 + f2 x, y, zð Þ,

u23 =
−w3 1 −mð Þy

w2 + 1 −mð Þx + c 1 −mð Þy½ � ,

u31 =
w2w5 1 −mð Þz +w5 c −w3ð Þ 1 −mð Þ2yz

w2 + 1 −mð Þx + c 1 −mð Þy½ �2 ,

u32 =
w2w3w5 1 −mð Þz +w5 w3 − cð Þ 1 −mð Þ2xz

w2 + 1 −mð Þx + c 1 −mð Þy½ �2 ,

u33 =
w7z

w8 + z½ �2 + f3 x, y, zð Þ:

ð18Þ
Therefore, the eigenvalues of the Jacobian matrix at E0 are

λ0x = 1 > 0,
λ0y = −w4 < 0,

λ0z = −w6 −
w7
w8

< 0:
ð19Þ

Hence, the TEP is a saddle point with unstable manifold in
x-direction and stable manifold in the yz-plane.

The Jacobian matrix of system (3) at the DPFEP that is
represented by E1 = ð1, 0, 0Þ is given by

J E1ð Þ =

−1 −1 −w1 −
1 −mð Þ

w2 + 1 −mð Þ
0 w1 −w4 0

0 0 w5 1 −mð Þ
w2 + 1 −mð Þ −w6 −

w7
w8

0
BBBBBB@

1
CCCCCCA

ð20Þ
Therefore, the eigenvalues are written as

λ1x = −1 < 0,
λ1y =w1 −w4,

λ1z =
w5 1 −mð Þ
w2 + 1 −mð Þ −w6 −

w7
w8

:

ð21Þ

It is clear that all the eigenvalues are negative and then,
the DPFEP is locally asymptotically stable provided that the
following conditions are hold.

w1 <w4, ð22aÞ

w5 1 −mð Þ
w2 + 1 −mð Þ <w6 +

w7
w8

, ð22bÞ

The Jacobian matrix of system (3) at the PFEP is denoted
by E2 = ð�x, �y, 0Þ.
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Clearly, the characteristic equation of JðE2Þ can be writ-
ten as

λ2
2 + �xλ2 +w1 1 +w1ð Þ�x�y� 	
� w5 1 −mð Þ �x +w3�yð Þ

w2 + 1 −mð Þ�x + c 1 −mð Þ�y −w6 −
w7
w8

− λ2

� �
= 0:

ð24Þ

Accordingly, all the eigenvalues of JðE2Þ have negative
real parts and then, the PFEP is locally asymptotically stable
provided that the following condition holds

w5 1 −mð Þ �x +w3�yð Þ
w2 + 1 −mð Þ�x + c 1 −mð Þ�y <w6 +

w7
w8

: ð25Þ

The Jacobian matrix of system (3) at the DFEP that is
given by E3 can be written as

J E3ð Þ = bij
� �

3×3, ð26Þ

where

b11 = −1 + 1 −mð Þ2ẑ
w2 + 1 −mð Þx̂ð Þ2

" #
x̂,

b12 = −1 −w1 +
1 −mð Þ2ẑ

w2 + 1 −mð Þx̂ð Þ2
" #

x̂,

b13 = −
1 −mð Þx̂

w2 + 1 −mð Þx̂ ,

b21 = b23 = 0,

b22 =w1x̂ −
w3 1 −mð Þẑ

w2 + 1 −mð Þx̂ −w4,

b31 =
w2w5 1 −mð Þẑ
w2 + 1 −mð Þx̂ð Þ2 ,

b32 =
w2w3w5 1 −mð Þ +w5 1 −mð Þ2 w3 − cð Þx̂

w2 + 1 −mð Þx̂ð Þ2
" #

ẑ,

b33 =
w7ẑ

w8 + ẑð Þ2 :

ð27Þ

Hence, the characteristic equation of JðE3Þ can be
written as

λ3
2 − b11 + b33ð Þλ3 + b11b33 − b13b31ð Þ� 	

b22 − λ3½ � = 0: ð28Þ

Straightforward computations show that all the roots
(eigenvalues) of the characteristic equation (28) have neg-
ative real parts, and then, the DFEP is locally asymptoti-
cally stable provided that the following conditions hold.

1 −mð Þ2x̂ẑ
w2 + 1 −mð Þx̂ð Þ2 + w7ẑ

w8 + ẑð Þ2 < x̂, ð29aÞ

w7
w8 + ẑð Þ2 <

w7 1 −mð Þ2ẑ
w8 + ẑð Þ2 w2 + 1 −mð Þx̂ð Þ2

+ w2w5 1 −mð Þ2
w2 + 1 −mð Þx̂ð Þ3 ,

ð29bÞ

w1x̂ <
w3 1 −mð Þẑ

w2 + 1 −mð Þx̂ +w4: ð29cÞ

Now, the local stability conditions for the CEP are
established in the following theorem.

Theorem 2. Suppose that the CEP exists; then, it is locally
asymptotically stable in the ℝ3

+ if the following sufficient con-
ditions hold.

1 −mð Þ2x∗z∗ +w3 1 −mð Þ2y∗z∗
w2 + 1 −mð Þx∗ + c 1 −mð Þy∗½ �2 + w7z

∗

w8 + z∗½ �2 < x∗, ð30aÞ

c 1 −mð Þ2z∗
w2 + 1 −mð Þx∗ + c 1 −mð Þy∗½ �2 < 1 +w1, ð30bÞ

w3 ≤ c < w2w3 +w3 1 −mð Þx∗
1 −mð Þx∗

or

w3 1 −mð Þy∗ −w2

1 −mð Þy∗ < c ≤w3

9>>>>>=
>>>>>;
, ð30cÞ

a13a31
a33

< a11 <min a12a21
a22

, a12a31
a32


 �
, ð30dÞ

a22 <
a21a32
a31

, ð30eÞ

M1 >M2, ð30fÞ
where all symbols are clearly described in the proof.

J E2ð Þ =

−�x − 1 +w1ð Þ�x −
1 −mð Þ�x

w2 + 1 −mð Þ�x + c 1 −mð Þ�y

w1�y 0 −
w3 1 −mð Þ�y

w2 + 1 −mð Þ�x + c 1 −mð Þ�y

0 0 w5 1 −mð Þ �x +w3�yð Þ
w2 + 1 −mð Þ�x + c 1 −mð Þ�y −w6 −

w7
w8

0
BBBBBBBB@

1
CCCCCCCCA

ð23Þ
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Proof. According to Equation (17), the Jacobian matrix at E4
is given by

J E4ð Þ = aij
� �

3×3, ð31Þ

with aij = uijðx∗, y∗, z∗Þ for all i, j = 1, 2, 3. Therefore, the
characteristic equation of JðE4Þ can be written as

λ4
3 +D1λ4

2 +D2λ4 +D3 = 0, ð32Þ

where

D1 = − a11 + a22 + a33½ �,
D2 = a11a22 − a12a21 + a11a33

− a13a31 + a22a33 − a23a32,

D3 = − a33 a11a22 − a12a21ð Þ + a23 a12a31 − a11a32ð Þ½
+a13 a21a32 − a22a31ð Þ�:

ð33Þ

Moreover, it is easy to verify that

D1D2 −D3 = − a11 + a22ð Þ a11a22 − a12a21ð Þ
− a11 + a33ð Þ a11a33 − a13a31ð Þ
− a22 + a33ð Þ a22a33 − a23a32ð Þ
− 2a11a22a33 + a12a23a31 + a13a21a32

=M1 −M2,

ð34Þ

where

M1 = − a11 + a33ð Þ a11a33 − a13a31ð Þ
− 2a11a22a33 + a12a23a31 > 0,

M2 = a11 + a22ð Þ a11a22 − a12a21ð Þ
+ a22 + a33ð Þ a22a33 − a23a32ð Þ − a13a21a32 > 0:

ð35Þ

Recall that according to Routh-Hurwitz criterion, Equa-
tion (32) has roots (eigenvalues) with negative real parts if
and only if D1 > 0,D3 > 0 and D1D2 −D3 > 0. Now, straight-
forward computation shows that all the requirements of the
Routh-Hurwitz criterion are satisfied provided that the condi-
tions (30a), (30b), (30c), (30e), and (30f) hold. Hence, the CEP
is locally asymptotically stable and the proof is complete.

It is well known that the persistence of an ecological sys-
tem is an important subject for both environment and ecol-
ogists. The coexistence of all the species along the entire
time life is known as persistence. Mathematically, this is
equivalent to unapproachable of the trajectory to any of
the boundary planes of axis. It is well known that system
(3) has two subsystems. The first subsystem exists in the x
y-plane, in case in the absence of the predator, and can be
represented in system (36). However, the second subsystem

exists in the xz-plane, in the absence of disease, and can be
represented in system (37).

dx
dt

= x 1 − x − y −w1y½ � = g1 x, yð Þ,
dy
dt

= y w1x −w4½ � = g2 x, yð Þ,
ð36Þ

dx
dt

= x 1 − x −
1 −mð Þz

w2 + 1 −mð Þx
� �

= g3 x, zð Þ,

dz
dt

= z
w5 1 −mð Þx
w2 + 1 −mð Þx −w6 −

w7
w8 + z

� �
= g4 x, zð Þ:

ð37Þ

Recall that according to Bendixson-Dulac Criteria [26],
the planar system X ′ =GðXÞ, where X = ðx1, x2ÞT and G =
ðg, f ÞT has no periodic dynamics provided that there is a
C1 function φðx1, x2Þ (known as Dulac function) so that
the expression ð∂ðφgÞÞ/ð∂xÞ + ð∂ðφf ÞÞ/ð∂yÞ has the same
sign and does not equal zero almost everywhere in a simply
connected region of the plane.

Consequently, by choosing the Dulac function ð1Þ/ðxyÞ,
it is easy to verify that system (36) has no periodic dynamics
in the interior of xy-plane, while with the Dulac function
ð1Þ/ðxzÞ, system (37) has no periodic dynamics fall in the
interior of xz-plane provided that the following condition
holds.

1 −mð Þ2
w2 + 1 −mð Þx½ �2 + w7

x w8 + z½ �2 ≠
1
z
: ð38Þ

Now, in order to established the persistence conditions
for system (3), the average Lyapunov function will be used
as shown in the following theorem.

Theorem 3. Assuming that there is no periodic dynamics in
the boundary planes; then, system (3) is persistent provided
that the following conditions hold.

w1 >w4, ð39aÞ

w5 1 −mð Þ
w2 + 1 −mð Þ >w6 +

w7

w8
, ð39bÞ

w5 1 −mð Þ �x +w3�yð Þ
w2 + 1 −mð Þ�x + c 1 −mð Þ�y >w6 +

w7

w8
, ð39cÞ

w1x̂ >
w3 1 −mð Þẑ

w2 + 1 −mð Þx̂ +w4: ð39dÞ

Proof. Consider the following function Pðx, y, zÞ = xq1yq2zq3 ,
where qi, ∀i = 1, 2, 3 are positive constants to be determined.
Then, we obtain
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Λ = P′
P

= q1 1 − x − y −w1y −
1 −mð Þz

w2 + 1 −mð Þx + c 1 −mð Þy
� �

+ q2 w1x −
w3 1 −mð Þz

w2 + 1 −mð Þx + c 1 −mð Þy −w4

� �

+ q3
w5 1 −mð Þ x +w3yð Þ

w2 + 1 −mð Þx + c 1 −mð Þy −w6 −
w7

w8 + z

� �
:

ð40Þ

Now, according to the average Lyapunov function, the
proof is done if we could prove that this functionΛ is positive
at each boundary equilibrium point. Note that at E0, it
obtains

Λ E0ð Þ = q1 −w4q2 − w6 +
w7
w8

� �
q3: ð41Þ

So, for any positive constants qi, ∀i = 1, 2, 3 with q1 suffi-
ciently large compared with q2 and q3, we get ΛðE0Þ > 0. At
the DPFEP that is represented by E1 = ð1, 0, 0Þ, we have

Λ E1ð Þ = w1 −w4ð Þq2 +
w5 1 −mð Þ
w2 + 1 −mð Þ − w6 +

w7
w8

� �� �
q3:

ð42Þ

Clearly, ΛðE1Þ > 0 under the conditions (39a) and (39b).
Now, at the PFEP that is denoted by E2 = ð�x, �y, 0Þ, it obtains

Λ E2ð Þ = q3
w5 1 −mð Þ �x +w3�yð Þ

w2 + 1 −mð Þ�x + c 1 −mð Þ�y − w6 +
w7
w8

� �� �
:

ð43Þ

Here, ΛðE2Þ > 0 under condition (39c). Finally, at the
DFEP that is given by E3 = ðx̂, 0, ẑÞ, we have

Λ E3ð Þ = q2 w1x̂ −
w3 1 −mð Þẑ

w2 + 1 −mð Þx̂ −w4

� �
: ð44Þ

Clearly, condition (39d) guarantees that ΛðE3Þ > 0.
Hence, the system has no omega limit sets on the boundary
planes and thus, the system is persists.

Now, the global dynamics of system (3) is investigated
using suitable Lyapunov functions as shown in the following
theorem.

Theorem 4. Assuming that the DPFEP which is given by E1
= ð1, 0, 0Þ is locally asymptotically stable, then, it is a globally
asymptotically stable provided that

1 +w1 <w4, ð45aÞ

1 −m
w2

<w6: ð45bÞ

Proof. Consider the positive definite function

L1 = x − 1 − ln xð Þ + y + z: ð46Þ

It is clear that L1 : ℝ
3
+ ⟶ℝ and L1ð1, 0, 0Þ = 0 with

L1ðx, y, zÞ > 0, for all ðx, y, zÞ ≠ ð1, 0, 0Þ. Now the derivative
of L1 with respect to time can be written, after some algebraic
computation, as

dL1
dt

< − x − 1ð Þ2 − w4 − 1 +w1ð Þ½ �y − w6 −
1 −mð Þ
w2

� �
z:

ð47Þ

Therefore, by using conditions (45a) and (45b), it obtains
ðdL1Þ/ðdtÞ which is negatively defined in ℝ3

+. Thus, accord-
ing to Lyapunov’s second theorem, E1 is globally asymptoti-
cally stable.

Theorem 5. Assuming that the PFEP that is given by is locally
asymptotically stable, then, it is globally asymptotically stable
in ℝ3

+ provided that

1 +w1

w1

� �
w3 1 −mð Þ�y

w2
+ 1 −mð Þ�x

w2
< w6

w5
: ð48Þ

Proof. Consider the positive definite function

L2 = C1 x − �x − �x ln x
�x

� h i
+ C2 y − �y − �y ln y

�y

� �� �
+ C2z:

ð49Þ

It is clear that L2 : ℝ
3
+ ⟶ℝ and L2ð�x, �y, 0Þ = 0 with L2

ðx, y, zÞ > 0, for all ðx, y, zÞ ≠ ð�x, �y, 0Þ = ðððw4Þ/ðw1ÞÞ, ððw1 −
w4Þ/ðw1ð1 +w1ÞÞÞ, 0Þ. Then, the derivative of L2 with respect
to time can be written, after some algebraic steps as

dL2
dt

= −C1 x − �xð Þ2 − C1 1 +w1ð Þ − C2w1½ � x − �xð Þ y − �yð Þ

− C1 − C2w5½ � 1 −mð Þxz
w2 + 1 −mð Þx + c 1 −mð Þy

− C2 − C3w5½ � w3 1 −mð Þyz
w2 + 1 −mð Þx + c 1 −mð Þy

− C3w6 − C2
w3 1 −mð Þ�y

w2
− C1

1 −mð Þ�x
w2

� �
z

− C3
w7z
w8 + z

:

ð50Þ

So by choosing the positive constants as C1 = 1, C2 =
ðð1 +w1Þ/ðw1ÞÞ, and C3 = ð1/w5Þ, the following is obtained
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dL2
dt

= − x − �xð Þ2 − 1
w1

� �
w3 1 −mð Þyz

w2 + 1 −mð Þx + c 1 −mð Þy
−

w6
w5

−
1 +w1
w1

� �
w3 1 −mð Þ�y

w2
−

1 −mð Þ�x
w2

� �
z

−
1
w5

� �
w7z
w8 + z

,

dL2
dt

= − x − �xð Þ2 − 1
w1

� �
w3 1 −mð Þyz

w2 + 1 −mð Þx + c 1 −mð Þy :

ð51Þ

Clearly, under the condition (48), ðdL2/dtÞ is negatively
semidefinite, because ðdL2/dtÞ = 0 if and only if x = �x and
z = 0 with any value of y. Therefore, according to Lyapunov’s
second theorem, E2 is a stable point.

Now, form the first equation of system (3), we have
ðdx/dtÞ = �x½1 − �x − ð1 +w1Þy�, which is equal to zero if and
only if y = �y. Hence, the set fE2g is the largest invariant set
for which ðdL2/dtÞ = 0. Accordingly, the global asymptotic
stability of the PFEP follows from LaSalle’s invariance princi-
ple. This completes the proof.

Theorem 6. Assuming that the DFEP that is given by E3
= ðx̂, 0, ẑÞ is locally asymptotically stable, then, it is globally
asymptotically stable in ℝ3

+ provided that the following suf-
ficient conditions hold

1 −mð Þ2ẑ
w2N̂1

< 1, ð52aÞ

c 1 −mð Þ2w4ẑ + 1 +w1ð Þw2
2N̂1x̂

< 1 +w1ð Þw2w4N̂1,
ð52bÞ

p13
2 < 4p11p33, ð52cÞ

2p33 z − ẑð Þ2 < ffiffiffiffiffiffi
p11

p
x − x̂ð Þ + ffiffiffiffiffiffi

p33
p

z − ẑð Þ½ �2, ð52dÞ

where all symbols are given in the proof.

Proof. Consider the positive definite function

L3 = ρ1 x − x̂ − x̂ ln x
x̂

� h i
+ ρ2y + ρ3 z − ẑ − ẑ ln z

ẑ

� h i
:

ð53Þ

It is clear that L3 : ℝ
3
+ ⟶ℝ and L3ðx̂, 0, ẑÞ = 0 with

L3ðx, y, zÞ > 0, for all ðx, y, zÞ ≠ ðx̂, 0, ẑÞ. Then, the derivative
of L3 with respect to time can be written, after some algebraic
steps as

dL3
dt

≤ −ρ1 1 − 1 −mð Þ2ẑ
w2N̂1

" #
x − x̂ð Þ2 − 1 −m

N1N̂1

� ρ1N̂1 − ρ3w2w5
� 	

x − x̂ð Þ z − ẑð Þ + ρ3
w7

w8N̂2
z − ẑð Þ2

− ρ1
1 +w1ð Þw2N̂1 − c 1 −mð Þ2ẑ

w2N̂1

 !
− ρ2w2

" #
xy

− ρ2w4 − ρ1 1 +w1ð Þx̂½ �y − 1 −mð Þ2
N1N̂1

ρ1c − ρ3w5½ �x̂yẑ

−
1 −m
N1

ρ2w3 + ρ3
w5 1 −mð Þx̂

N̂1

� �
yz:

ð54Þ

where N1 =w2 + ð1 −mÞx + cð1 −mÞy, N̂1 =w2 + ð1 −mÞx̂,
N2 =w8 + z, and N̂2 =w8 + ẑ. So, by choosing the positive
constants as ρ1 = 1, ρ2 = ððð1 +w1Þw2N̂1 − cð1 −mÞ2ẑÞ/ðw2

2

N̂1ÞÞ, which is positive under (52a), and ρ3 = ðc/w5Þ. There-
fore, we obtain

dL3
dt

< − 1 − 1 −mð Þ2ẑ
w2N̂1

" #
x − x̂ð Þ2 − 1 −m

N1N̂1
N̂1 − cw2
� 	

x − x̂ð Þ

� z − ẑð Þ − cw7
w5w8N̂2

z − ẑð Þ2 + 2 cw7
w5w8N̂2

z − ẑð Þ2

−
1 +w1ð Þw2N̂1 − c 1 −mð Þ2ẑ

w2
2N̂1

w4 − 1 +w1ð Þx̂
" #

y:

ð55Þ

Therefore, according to the sufficient conditions
(52a)–(52c), it is easy to obtain

dL3
dt

< −
ffiffiffiffiffiffi
p11

p
x − x̂ð Þ + ffiffiffiffiffiffi

p33
p

z − ẑð Þ½ �2 + 2p33 z − ẑð Þ2

−
1 +w1ð Þw2N̂1 − c 1 −mð Þ2ẑ

w2
2N̂1

w4 − 1 +w1ð Þx̂
" #

y:

ð56Þ

Here, p11 = 1 − ððð1 −mÞ2ẑÞ/ðw2N̂1ÞÞ, p13 = ðð1 −mÞ/
ðN1N̂1ÞÞ½N̂1 − cw2�, and p33 = ððcw7Þ/ðw5w8N̂2ÞÞ.

Theorem 7. Assuming that the positive equilibrium point E4
= ðx∗, y∗, z∗Þ is locally asymptotically stable, then, all the
points that satisfy the following conditions belong to the basin
of attraction of E4.

1 −mð Þ2z∗
w2N1

∗ < 1, ð57aÞ

q12
2 < 2q11q22, ð57bÞ
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q13
2 < 2q11q33, ð57cÞ

q23
2 < 16q22q33, ð57dÞ

2
ffiffiffiffiffiffi
q22

p
y − y∗ð Þ + ffiffiffiffiffiffi

q33
p

z − z∗ð Þ½ �2

< 1
2

ffiffiffiffiffiffi
q11

p
x − x∗ð Þ +

ffiffiffiffiffiffiffiffi
2q22

p
y − y∗ð Þ

h i2
+ 1
2

ffiffiffiffiffiffi
q11

p
x − x∗ð Þ +

ffiffiffiffiffiffiffiffi
2q33

p
z − z∗ð Þ

h i2
:

ð57eÞ

Proof. Consider the positive definite function

L4 = x − x∗ − x∗ ln x
x∗

� h i
+ y − y∗ − y∗ ln y

y∗

� �� �

+ z − z∗ − z∗ ln z
z∗

� h i
:

ð58Þ

It is clear that L4 : ℝ
3
+ ⟶ℝ and L4ðx∗, y∗, z∗Þ = 0 with

L4ðx, y, zÞ > 0, for all ðx, y, zÞ ≠ ðx∗, y∗, z∗Þ with x > 0, y > 0
and z > 0. Then, the derivative of L4 with respect to time
can be written, after some algebraic steps as

dL4
dt

= x − x∗ð Þ
�
− x − x∗ð Þ − 1 +w1ð Þ y − y∗ð Þ

−
1 −mð Þz

w2 + 1 −mð Þx + c 1 −mð Þy
+ 1 −mð Þz∗
w2 + 1 −mð Þx∗ + c 1 −mð Þy∗

�

+ y − y∗ð Þ
�
w1 x − x∗ð Þ

−
w3 1 −mð Þz

w2 + 1 −mð Þx + c 1 −mð Þy
+ w3 1 −mð Þz∗
w2 + 1 −mð Þx∗ + c 1 −mð Þy∗

�

+ z − z∗ð Þ
�
−

w7
w8 + z

+ w7
w8 + z∗

+ w5 1 −mð Þ x +w3yð Þ
w2 + 1 −mð Þx + c 1 −mð Þy

−
w5 1 −mð Þ x∗ +w3y

∗ð Þ
w2 + 1 −mð Þx∗ + c 1 −mð Þy∗

�
:

ð59Þ

Therefore, we obtain

dL4
dt

≤ −
q11
2 x − x∗ð Þ2 − q12 x − x∗ð Þ y − y∗ð Þ − q22 y − y∗ð Þ2

−
q11
2 x − x∗ð Þ2 − q13 x − x∗ð Þ z − z∗ð Þ − q33 z − z∗ð Þ2

+ 2q22 y − y∗ð Þ2 − q23 y − y∗ð Þ z − z∗ð Þ + 2q33 z − z∗ð Þ2,
ð60Þ

where

q11 = 1 − 1 −mð Þ2z∗
w2N1

∗

" #
,

q12 = 1 − c 1 −mð Þ2z∗
w2N1

∗ −
w3 1 −mð Þ2z∗

w2N1
∗

" #
,

q13 =
1 −mð Þ
N1

�
1 − w2w5

N1
∗ −

cw5 1 −mð Þy∗
N1

∗

+ w3w5 1 −mð Þy∗
N1

∗

�
,

q23 =
1 −mð Þ
N1

�
w3 +

cw5 1 −mð Þx∗
N1

∗ −
w2w3w5
N1

∗

−
w3w5 1 −mð Þx∗

N1
∗

�
,

q22 =
cw3 1 −mð Þ2z∗

w2N1
∗ ,

q33 =
w7

w8N2
∗ ,

ð61Þ

with N1 =w2 + ð1 −mÞx + cð1 −mÞy, N1
∗ =w2 + ð1 −mÞx∗

+ cð1 −mÞy∗, and N2
∗ =w8 + z∗.

Clearly according to the condition (57a), then, q11 > 0,
while q22 and q33 are always positive. Therefore, by using
the conditions (57b)–(57d), we obtain

dL4
dt

≤ −
1
2

ffiffiffiffiffiffi
q11

p
x − x∗ð Þ +

ffiffiffiffiffiffiffiffiffi
2q22

p
y − y∗ð Þ

h i2
−
1
2

ffiffiffiffiffiffi
q11

p
x − x∗ð Þ +

ffiffiffiffiffiffiffiffiffi
2q33

p
z − z∗ð Þ

h i2
+ 2 ffiffiffiffiffiffi

q22
p

y − y∗ð Þ + ffiffiffiffiffiffi
q33

p
z − z∗ð Þ½ �2:

ð62Þ

The first tow terms are clearly negative while the third
term is clearly positive; therefore, the sufficient condition
(57e) guarantees the negative definite of the derivative.
Hence, the solution starting with any point satisfying condi-
tions (57a)–(57e) approaches asymptotically to E4. So these
points are belonging to the basin of attraction.

4. Bifurcation Analysis

Now, in order to compute the second derivative of the Jacobian
matrix, system (3) is rewritten in the vector form as follows:

dX/dt = FðXÞ, X = ðx, y, zÞT ,
F = ðF1, F2, F3ÞT = ðxf1, yf2, zf3ÞT .(50)
Therefore, according to the Jacobian matrix of system (3)

at the point ðx, y, zÞ that is given by Equation (17), we obtain

D2F x, y, zð Þ V ,Vð Þ = mij

� 	
3×1, ð63Þ

where V = ðv1, v2, v3ÞT be any vector and
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Consequently, the conditions guarantee the occurrence
of local bifurcations around the nonhyperbolic equilibrium
points that are established in the following theorems.

Theorem 8. Assume that condition (22b) holds. Letting the
parameter w1 pass through the value w1

∗ ≡w4, then, system
(3) undergoes a transcritical bifurcation but neither saddle
node nor pitchfork bifurcation can occur

Proof. Note that when the parameter w1 passes through the
positive value w1

∗ ≡w4, it is easy to verify that the equilib-
rium point E1 becomes a nonhyperbolic point and the Jaco-
bian matrix of system (3) at ðE1,w1

∗Þ can be written as

J1 = J E1,w1
∗ð Þ

=

−1 −1 −w4 −
1 −mð Þ

w2 + 1 −mð Þ
0 0 0

0 0 w5 1 −mð Þ
w2 + 1 −mð Þ −w6 −

w7
w8

0
BBBBBB@

1
CCCCCCA
:

ð65Þ

Thus, J1 has the following eigenvalues λ11
½1� = −1, λ12½1�

= 0, and λ13
½1� = ðw5ð1 −mÞ/w2 + ð1 −mÞÞ −w6 − ðw7/w8Þ.

Clearly, λ13
½1� is negative under the condition (22b).

Let V1 = ðv11, v12, v13ÞT be the eigenvector of J1 corre-
sponding to the eigenvalue λ12

½1� = 0. Then, straightforward
computation gives V1 = ðβ1v12, v12, 0ÞT , where β1 = −ð1 +
w4Þ; v12 represents any nonzero real number.

Also, let Ψ1 = ðψ11, ψ12, ψ13ÞT represent the eigenvector

of J1
T that corresponds to the eigenvalue λ12

½1� = 0. Then,
direct calculation shows that Ψ1 = ð0, ψ12, 0ÞT , where ψ12 is
any nonzero real number.

Since the partial derivative of vector field Fwith respect to
the parameter w1 is given by ∂F/∂w1 = Fw1

= ð−xy, xy, 0ÞT ,
hence, we obtain Fw1

ð E1,w1
∗Þ = ð0, 0, 0ÞT . Therefore,

Ψ1
T Fw1

E1,w1
∗ð Þ� 	

= 0: ð66Þ

Thus system (3) at E1 with w1 =w1
∗ does not experience

saddle-node bifurcation in view of the Sotomayor theorem
[26]. Now, we have

Ψ1
T DFw1

E1,w1
∗ð ÞV1

� 	
= v12ψ12 ≠ 0, ð67Þ

where DFw1
represents the derivative of Fw1

with respect to X.
In addition, by substituting the value of E1,w1

∗,V1, andΨ1 in
Equation (63), then we get

Ψ1
T D2F E1,w1

∗ð Þ V1,V1ð Þ� 	
= 2ψ12v12

2β1w4 ≠ 0: ð68Þ

Accordingly, by the Sotomayor theorem, system (3) near
the equilibrium point E1 with w1 =w1

∗ possesses a transcriti-
cal bifurcation, while pitchfork bifurcation cannot occur and
hence, the proof is complete.

m11 = −2 1 − 1 −mð Þ2 w2 + c 1 −mð Þy½ �z
N1

3

 !
v21 − 2 1 −mð Þ w2 + c 1 −mð Þy½ �

N1
2

� �
v1v3

− 2 1 +w1 −
cz 1 −mð Þ2 w2 − 1 −mð Þx + c 1 −mð Þy½ �

N1
3

 !
v1v2 − 2 c2 1 −mð Þ3xz

N1
3

 !
v22 + 2 c 1 −mð Þ2x

N1
2

 !
v2v3,

m21 = −2 w3 1 −mð Þ3yz
N1

3

 !
v21 + 2 w3 1 −mð Þ2y

N1
2

 !
v1v3 + 2 w1 +

w3z 1 −mð Þ2 w2 + 1 −mð Þx − c 1 −mð Þy½ �
N1

3

 !
v1v2

+ 2 cw3z 1 −mð Þ2 w2 + 1 −mð Þx½ �
N1

3

 !
v22 − 2 w3 1 −mð Þ w2 + 1 −mð Þx½ �

N1
2

� �
v2v3,

m31 = −2 w5 1 −mð Þ2z w2 + 1 −mð Þ c −w3ð Þy½ �
N1

3

 !
v21 − 2 w5 1 −mð Þ2z w2 c +w3ð Þ − c −w3ð Þ 1 −mð Þx + c c −w3ð Þ 1 −mð Þy½ �

N1
3

 !
v1v2

− 2 cw5 1 −mð Þ2z w2w3 − 1 −mð Þ c −w3ð Þx½ �
N1

3

 !
v22 + 2 w2w5 1 −mð Þ +w5 1 −mð Þ2 c −w3ð Þy

N1
2

 !
v1v3

+ 2 w2w3w5 1 −mð Þ −w5 1 −mð Þ2 c −w3ð Þx
N1

2

 !
v2v3 + 2w7w8

N2
3 v23:

ð64Þ
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Theorem 9. Assume that the parameter w6 passes through the
value w6

∗, where

w6
∗ ≡

w5 1 −mð Þ �x +w3�yð Þ
w2 + 1 −mð Þ�x + c 1 −mð Þ�y −

w7

w8
: ð69Þ

Then, system (3) near the PFEP undergoes a transcritical
bifurcation but neither saddle-node bifurcation nor pitchfork
bifurcation can occur provided that

w2 + 1 −mð Þ c −w3ð Þ�yð ÞΓ1

+ w2w3 − 1 −mð Þ c −w3ð Þ�xð ÞΓ2

+ w7
�N1

2

w5 1 −mð Þw8
2
≠ 0,

ð70Þ

where Γ1, Γ2 are given in the proof.

Proof. Note that, straightforward computation shows that as
the parameter w6 passes through the value w6

∗, the PFEP
becomes a nonhyperbolic equilibrium point and the Jacobian
matrix of system (3) at ðE2,w6

∗Þ can be written as

J2 = J E2,w6
∗ð Þ =

−�x − 1 +w1ð Þ�x −
1 −mð Þ�x
�N1

w1�y 0 −
w3 1 −mð Þ�y

�N1

0 0 0

0
BBBBBB@

1
CCCCCCA
ð71Þ

where �N1 =w2 + ð1 −mÞ�x + cð1 −mÞ�y. Hence, J2 has
three eigenvalues given by λ21

½2� = −ð�x/2Þ − ððffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 − 4w1ð1 +w1Þ�x�y

p Þ/2Þ, λ22
½2� = −ð�x/2Þ + ððffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�x2 − 4w1ð1 +w1Þ�x�y
p Þ/2Þ, and λ23

½2� = 0:

Obviously, the first two eigenvalues, λ21
½2� and λ22

½2�, have
a negative real part.

Now, let V2 = ðv21, v22, v23ÞT be the eigenvector of J2
corresponding to the eigenvalue λ23

½2� = 0. Then, straight-
forward computation gives V2 = ðΓ1v23, Γ2v23, v23ÞT , where
Γ1 = ððw3ð1 −mÞÞ/ðw1 �N1ÞÞ > 0, Γ2 = −ðððw1 +w3Þð1 −mÞÞ/
ðw1ð1 +w1Þ�N1ÞÞ < 0, and v23 represents any nonzero real
number.

Also, let Ψ2 = ðψ21, ψ22, ψ23ÞT represent the eigenvector

of J2
T that corresponds to the eigenvalue λ23

½2� = 0. Then,
direct calculation shows that Ψ2 = ð0, 0, ψ23ÞT , where ψ23 is
any nonzero real number.

Since the partial derivative of vector field F with respect
to the parameter w6 is given by ð∂F/∂w6Þ = Fw6

= ð0, 0,−zÞT ,
hence, we obtain Fw6

ðE2,w6
∗Þ = ð0, 0, 0ÞT . Therefore,

Ψ2
T Fw6

E2,w6
∗ð Þ� 	

= 0: ð72Þ

Thus, system (3) at E2 withw6 =w6
∗ does not experience

saddle-node bifurcation in view of the Sotomayor theorem.
Now, we have

Ψ2
T DFw6

E2,w6
∗ð ÞV2

� 	
= −v23ψ23 ≠ 0, ð73Þ

whereDFw6
represents the derivative of Fw6

with respect to X.
In addition, by substituting the value of E2, w6

∗, V2, and Ψ2
in Equation (63), then we get

Ψ2
T D2F E2,w6

∗ð Þ V2,V2ð Þ� 	
= 2w5 1 −mð Þψ23v23

2

�N1
2

�
w2 + 1 −mð Þ c −w3ð Þ�yð ÞΓ

+ w2w3 − 1 −mð Þ c −w3ð Þ�xð ÞΓ2 +
w7

w5 1 −mð Þw8
2
1

�
:

ð74Þ

Obviously, Ψ2
T ½D2FðE2,w6

∗ÞðV2,V2Þ� ≠ 0 under the
condition (70), and hence by the Sotomayor theorem, system
(3) near the equilibrium point E2 with w6 =w6

∗ possesses a
transcritical bifurcation, while pitchfork bifurcation cannot
occur and hence, the proof is complete.

Theorem 10. Assume that conditions (29a) and (29b) hold.
Let the parameter w4 pass through the value w4

∗ =w1x̂ −
ððw3ð1 −mÞẑÞ/ðw2 + ð1 −mÞx̂ÞÞ, then, system (3) near the
DFEP undergoes a transcritical bifurcation but neither
saddle-node bifurcation nor pitchfork bifurcation can occur
provided that

w1N̂1
2 +w3 1 −mð Þ2ẑ

� 
ω1 + cw3 1 −mð Þ2ẑ

−w3 1 −mð ÞN̂1ω2 ≠ 0,
ð75Þ

where ω1, ω2 are given in the proof.
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Figure 1: Bifurcation diagram of system (3) using data (87) with
varying c, the trajectory of z versus c in the range ð0, 0:6Þ.
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Proof. Straightforward computation shows that as the param-
eter w4 passes through the value w4

∗ then, the DFEP
becomes a nonhyperbolic equilibrium point and the Jacobian
matrix of system (3) at ðE3,w4

∗Þ can be written as

J3 = J E3,w4
∗ð Þ = b̂ij

h i
3×3

, ð76Þ

where b̂ij = bij for all i, j = 1, 2, 3 are given in Equation (28)

with b̂22ðw4
∗Þ = 0. Hence, J3 has three eigenvalues given by

λ31
3½ � = −

b11 + b33ð Þ
2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11 + b33ð Þ2 − 4 b11b33 − b13b31ð Þ

q
2 ,

λ32
3½ � = 0,

λ33
3½ � = −

b11 + b33ð Þ
2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11 + b33ð Þ2 − 4 b11b33 − b13b31ð Þ

q
2 :

ð77Þ

Clearly, the eigenvalues λ31
½3� and λ33

½3� have negative real
parts under the conditions (29a) and (29b).
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Figure 2: Trajectory of system (3) using the data given by Equation (87). (a) Period 3 in Int:ℝ3
+ where c = 0:45. (b) Time series of attractor in

(a). (c) Period 5 in Int:ℝ3
+ where c = 0:47. (d) Time series of attractor in (c). (e) Chaotic attractor in Int:ℝ3

+ where c = 0:55. (f) Time series of
attractor in (e). (g) Asymptotic stable PFEP in the xy-plane given by E2 = ð0:2, 0:53, 0Þ where c = 0:6.
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Now, let V3 = ðv31, v32, v33ÞT be the eigenvector of J3
corresponding to the eigenvalue λ32

½3� = 0. Then, straightfor-
ward computation gives V3 = ðω1v32, v32, ω2v32ÞT , where ω1
= ððb13 b32 − b12 b33Þ/ðb11 b33 − b13 b31ÞÞ andω2 = ððb12 b31 −
b32 b11Þ/ðb11 b33 − b13 b31ÞÞ, while v32 represents any nonzero
real number.

Also, let Ψ3 = ðψ31, ψ32, ψ33ÞT represent the eigenvector

of J3
T that corresponds to the eigenvalue λ32

½3� = 0. Then,
direct calculation shows that Ψ3 = ð0, ψ32, 0ÞT , where ψ32 is
any nonzero real number.

Since the partial derivative of vector field F with respect
to the parameter w4 is given by ð∂F/∂w4Þ = Fw4

= ð0,−y, 0ÞT ,
hence, we obtain Fw4

ð E3,w4
∗Þ = ð0, 0, 0ÞT . Therefore,

Ψ3
T Fw4

E3,w4
∗ð Þ� 	

= 0: ð78Þ

Thus, system (3) at E3 withw4 =w4
∗ does not experience

saddle-node bifurcation in view of the Sotomayor theorem.
Now, we have

Ψ3
T DFw4

E3,w4
∗ð ÞV3

� 	
= −v32ψ32 ≠ 0 ð79Þ

whereDFw4
represents the derivative of Fw4

with respect to X.
In addition, by substituting the value of E3, w4

∗, V3, and Ψ3
in Equation (63), then, we get

Ψ3
T D2F E3,w4

∗ð Þ V3,V3ð Þ� 	
= 2ψ32v32

2

N̂1
2

h
w1N̂1

2 +w3 1 −mð Þ2ẑ
� 

ω1

+ cw3 1 −mð Þ2ẑ −w3 1 −mð ÞN̂1ω2
i
:

ð80Þ

Obviously, Ψ3
T ½D2Fð E3,w4

∗ÞðV3,V3Þ� ≠ 0 under the
condition (75), and hence, by the Sotomayor theorem, sys-
tem (3) near the DFEP that is given by E3 with w4 =w4

∗ pos-
sesses a transcritical bifurcation, while pitchfork bifurcation
cannot occur and hence, the proof is complete.

Theorem 11. Assume that in addition to the conditions (30a),
(30b), (30c), and (30e) the following conditions are satisfied

a12a31
a32

< a11 <
a12a21
a22

: ð81Þ

Then, as the parameter w3 passes through the value w3
∗,

system (3) near the CEP undergoes a saddle-node bifurcation,
but neither transcritical bifurcation nor pitchfork bifurcation
can occur provided that the following conditions hold

w5 − ξ4 ≠ 0, ð82aÞ

ξ3m11
4½ � + ξ4m21

4½ � +m31
4½ � ≠ 0, ð82bÞ

where all the symbols are clearly described in the proof, while

w3
∗ ≡ −

N1
∗

1 −mð Þy∗
a33 a11a22 − a12a21ð Þ + a13 a21a32 − a31a22ð Þ

a11a32 − a12a31ð Þ
� �

,

ð83Þ

with aij, ∀i, j = 1, 2, 3 are given in Equation (31) and N1
∗ =

w2 + ð1 −mÞx∗ + cð1 −mÞy∗.

Proof. Straightforward computation shows that the above
given conditions guarantee that the parameterw3

∗ is positive
and the determinant (D3) of the Jacobian matrix J4 = JðE4,
w3

∗Þ = ðaijðw3
∗ÞÞ3×3 that is given in Equation (32) is zero.

Therefore, the Jacobian matrix J4 has the following eigen-
values

λ41
4½ � = −

D1
2 + 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1

2 − 4D2

q
,

λ42
4½ � = −

D1
2 −

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1

2 − 4D2

q
,

λ43
4½ � = 0:

ð84Þ

It is easy to verify that λ41
½4� and λ42

½4� have negative real
parts under the given conditions while the third eigenvalue is
zero. So the CEP becomes a nonhyperbolic point.

Let V4 = ðv41, v42, v43ÞT be the eigenvector of J4 corre-
sponding to the zero eigenvalue λ43

½4� = 0. Then, direct com-
putation shows that V4 = ðξ1v43, ξ2v43, v43ÞT , where v43
represents any nonzero real number and ξ1 = ðða12a23 − a22
a13Þ/ða11a22 − a12a21ÞÞ < 0 while ξ2 = ðða21a13 − a23a11Þ/ða11
a22 − a12a21ÞÞ > 0.

LetΨ4 = ðψ41, ψ42, ψ43ÞT represent the eigenvector of J4
T

that is corresponding to the eigenvalue λ43
½4� = 0. Then, sim-

ple calculation shows that Ψ4 = ðξ3ψ43, ξ4ψ43, ψ43ÞT , where
ψ43 is any nonzero real number and ξ3 = ðða21a32 − a22a31Þ/
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Figure 3: Bifurcation diagram of system (3) using data (87) with
varying m, the trajectory of z versus m in the range ð0,0:15Þ.
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ða11a22 − a12a21ÞÞ < 0 while ξ4 = ðða12a31 − a11a32Þ/ða11a22 −
a12a21ÞÞ > 0.

Now, we have ð∂F/∂w3Þ = Fw3
= ð0, ðð−ð1 −mÞyzÞ/N1Þ,

ððw5ð1 −mÞyzÞ/ðN1ÞÞÞT , where N1 =w2 + ð1 −mÞx + cð1 −
mÞy; hence, we obtain Fw3

ðE4,w3
∗Þ = ð0, ðð−ð1 −mÞy∗z∗Þ/

ðN1
∗ÞÞ, ððw5ð1 −mÞy∗z∗Þ/ðN1

∗ÞÞÞT .
Therefore, by using condition (82a) we get

Ψ4
T Fw3

E4,w3
∗ð Þ� 	

= ψ43
1 −mð Þy∗z∗

N1
∗

� �
w5 − ξ4ð Þ ≠ 0:

ð85Þ

Consequently, the first condition of saddle-node bifurca-
tion in view of the Sotomayor theorem is satisfied. Now, since

Ψ4
T D2F E4,w3

∗ð Þ V4,V4ð Þ� 	
= ξ3m11

4½ � + ξ4m21
4½ � +m31

4½ �
� 

ψ43,
ð86Þ

where mi1
½4� =mi1ðE4,w3

∗Þ, ∀i = 1, 2, 3; then, according to
the condition (82b), we have Ψ4

T ½D2FðE4,w3
∗ÞðV4,V4Þ� ≠

0. Hence, the system (3) undergoes a saddle-node bifurca-
tion near the coexistence equilibrium point but neither
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Figure 4: Trajectory of system (3) using the data given by Equation (87). (a) Period 3 in Int:ℝ3
+ wherem = 0:024. (b) Time series of attractor

in (a). (c) Chaotic attractor in Int:ℝ3
+ where m = 0:026. (d) Time series of attractor in (c). (e) Chaotic attractor in Int:ℝ3

+ where m = 0:06. (f)
Time series of attractor in (e). (g) Asymptotic stable PFEP in the xy-plane given by E2 = ð0:2, 0:53, 0Þ where m = 0:15.
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Figure 5: Bifurcation diagram of system (3) using data (87) with varyingw1. (a) The trajectory of y versusw1 in the range ð0:3, 0:55Þ. (b) The
trajectory of z versus w1 in the range ð0:3, 0:55Þ.
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Figure 6: Trajectory of system (3) using the data given by Equation (87). (a) Periodic attractor in the xy-plane wherew1 = 0:3. (b) Time series
of attractor in (a). (c) Periodic attractor in Int:ℝ3

+ where w1 = 0:4. (d) Time series of attractor in (c). (e) Chaotic attractor in Int:ℝ3
+ where

w1 = 0:495. (f) Time series of attractor in (e). (g) Asymptotic stable PFEP in the xy-plane given by E2 = ð0:16, 0:52, 0Þ where w1 = 0:6.
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transcritical bifurcation nor pitchfork bifurcation can occur.
This completes the proof.

5. Numerical Simulation

In this section, system (3) is simulated numerically. The
objectives understand the dynamical behavior of the solution
of the system as the time increasing with the parameters var-
ied and confirm our obtained analytical results. A variety of
mathematical tools is used in this investigation including
the bifurcation diagrams, chaotic attractors, phase portrait,
and time series. Four steps of the predictor-corrector method
are used to solve system (3), and then, the obtained trajecto-
ries are drawn using MATLAB version 6. Now, the following
set of hypothetical parameters are used to solve system (3)
numerically.

w1 = 0:5,
m = 0:1,
w2 = 0:2,
c = 0:55,

w3 = 0:4
w4 = 0:1,
w5 = 0:8,
w6 = 0:1,
w7 = 0:4,
W8 = 0:8

ð87Þ

In order to investigate the behavior of the system (3) as a
function of c, bifurcation diagram is drawn in Figure 1.

According to the bifurcation diagram given in Figure 1,
system (3) has a complex dynamics including chaos. More-
over, the system enters to chaos through cascades of periodic
doubling and then, after a specific value (c ≥ 0:58), the system

loses the persistence, and the trajectory approaches asymp-
totically to PFEP in the xy-plane as shown in Figure 2 for typ-
ical values of c.

The dynamical behavior of system (3) as a function of ref-
uge rate m in the range ð0,0:15Þ is investigated with the help
of bifurcation diagram as presented in Figure 3.

Clearly, system (3) has chaotic dynamics where in
between there are small periodic regions; moreover, the sys-
tem approaches asymptotically to PFEP in the xy-plane as
m increases above a specific value (m ≥ 0:12), see Figure 4
for typical values of m.

The dynamics of system (3) as a function of w1 in the
range (0:3 ≤w1 ≤ 0:55) is shown in the bifurcation diagram
given in Figure 5 and the typical attractors given in Figure 6.

Further investigation for the effect of varying w2 in the
range ð0:15, 0:21Þ on the dynamical behavior of system (3) is
carried out using the bifurcation diagram and phase portraits
with their time series at typical values of w2 as shown in
Figures 7 and 8, respectively.

According to the above figures, system (3) has a range of
complex dynamics including chaos given by ð0:16, 0:21Þ,
while it approaches asymptotically to PFEP otherwise.

Other parameters have been investigated too, and the
obtained results are summarized in Table 1.

6. Discussion and Conclusion

In this paper, an ecoepidemiological model consisting of the
prey-predator system with infectious disease in prey has been
proposed and analyzed. As a defensive property against pre-
dation, it is assumed that the prey has a refuge and the pred-
ator preys upon the available prey individuals only according
to the modified Holling type-II functional response. There is
a harvesting process applied on the predator species only
with a nonlinear harvesting rate. The existence, uniqueness,
and boundedness of the solution of the system are studied.
The stability analyses around all possible equilibrium points
are investigated. The persistence conditions of the system
are derived analytically and shown numerically. The occur-
rences of local bifurcation near the nonhyperbolic equilib-
rium points are investigated. Finally, numerical simulations
are carried out to confirm our obtained analytical results
and specify the control set of parameters using biologically
feasible set of parameters given in (87). It is observed that
the system is very sensitive to variation in the parameter
set and it has a complex dynamics for a wide range of param-
eters including chaos. Different types of attracting sets and
bifurcation diagrams are drawn to present the behavior of
the system. Finally, in the following, we summarize the
obtained numerical results depending on the set of data given
by Equation (87).

(1) The system (3) is sensitive for varying in the prefer-
ence rate of predation as shown in the bifurcation
diagram represented by Figure 1, so that it has peri-
odic dynamics in the interior of the positive octant
and then periodic doubling leading to chaos, as
shown in Figure 2, for the range c < 0:58. Otherwise,
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Figure 7: Bifurcation diagram of system (3) using data (87) with
varying w2, the trajectory of z versus w2 in the range ð0:15, 0:21Þ.
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Figure 8: Trajectory of system (3) using the data given by Equation (87). (a) Asymptotic stable PFEP in the xy-plane given by E2 = ð0:2,
0:53, 0Þ where w2 = 0:15. (b) Time series of attractor in (a). (c) Chaotic attractor in Int:ℝ3

+ where w2 = 0:19. (d) Time series of attractor in (c).

Table 1: The dynamical behavior of system (3) using the data (87) with varying a specific parameter.

The parameter The range The dynamical behavior of system (3)

w3

0 <w3 < 0:39 Approaches to periodic dynamic in xy-plane

0:39 ≤w3 < 0:42 Approaches to chaotic attractor in Int:ℝ3
+

0:42 ≤w3 < 0:64 Approaches to periodic attractor in Int:ℝ3
+

0:64 ≤w3 < 1 Approaches to periodic dynamic in xz-plane

w4

0 <w4 < 0:1 Approaches to PFEP in xy-plane

0:1 ≤w4 < 0:11 Approaches to chaotic attractor in Int:ℝ3
+

0:11 ≤w4 < 0:18 Approaches to periodic attractor in Int:ℝ3
+

0:18 ≤w4 < 1 Approaches to periodic dynamic in xz-plane

w5

0 <w5 < 0:8 Approaches to PFEP in xy-plane

0:8 ≤w5 < 0:81 Approaches to chaotic attractor in Int:ℝ3
+

0:81 ≤w5 < 1 Approaches to periodic attractor in Int:ℝ3
+

w6

0 <w6 < 0:1 Approaches to periodic attractor in Int:ℝ3
+

0:1 ≤w6 < 0:11 Approaches to chaotic attractor in Int:ℝ3
+

0:11 ≤w6 < 1 Approaches to PFEP in xy-plane

w7

0 <w7 < 0:34 Approaches to periodic dynamic in xz-plane

0:34 ≤w7 < 0:4 Approaches to periodic attractor in Int:ℝ3
+

0:4 ≤w7 < 0:41 Approaches to chaotic attractor in Int:ℝ3
+

0:41 ≤w7 < 1 Approaches to PFEP in xy-plane

w8

0 <w8 < 0:79 Approaches to PFEP in xy-plane

0:79 ≤w8 < 0:81 Approaches to chaotic attractor in Int:ℝ3
+

0:81 ≤w8 < 1 Approaches to periodic attractor in Int:ℝ3
+
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the system loses the persistence and approach asymp-
totically to the PFEP in the interior of the xy-plane

(2) According to the bifurcation diagram as a function of
the refuge rate given by Figure 3 and the attracting
sets drawn in Figure 4, system (3) has a chaotic
dynamics for the range m < 0:12 in between; there
is windows of periodic dynamics too. Moreover, as
the refuge rate increases further, the system loses
their persistence and approach asymptotically to the
PFEP in the interior of the xy-plane

(3) According to the bifurcation diagram as a function
of the infected rate given by Figure 5 and the attract-
ing sets drawn in Figure 6, system (3) has a periodic
dynamics in the interior of the xz-plane for the
range w1 < 0:37 and then, it becomes persistent in
the form of periodic dynamics and periodic dou-
bling leading to chaos for the range w1 ∈ ð0:37,0:53Þ.
Otherwise, system (3) loses their persistence and
approach asymptotically to the PFEP in the interior
of the xy-plane

(4) According to the bifurcation diagram as a function of
half saturation constant given by Figure 6 and the
attracting sets drawn in Figure 7, system (3) has a cha-
otic dynamics and in between there is periodic windows
for the range w2 ∈ ð0:16, 0:21Þ. Otherwise, system (3)
loses their persistence and approach asymptotically to
the PFEP in the interior of the xy-plane

(5) According to the results given in Table 1, system (3) is
sensitive to varying in other parameters too and still
persists in the form of chaos and periodic in the interior
of the positive octant for some ranges of parameters
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