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We consider functional data analysis when the observations at each location are functional rather than scalar. When the dynamic
of underlying functional-valued process at each location is of interest, it is desirable to recover partial derivatives of a sample
function, especially from sparse and noise-contaminated measures. We propose a novel approach based on estimating derivatives
of eigenfunctions of marginal kernels to obtain a representation for functional-valued process and its partial derivatives in a
unified framework in which the number of locations and number of observations at each location for each individual can be any
rate relative to the sample size. We derive almost sure rates of convergence for the procedures and further establish consistency
results for recovered partial derivatives.

1. Introduction

With the rapid advance in computational and analytical
technology, many time-dynamic processes are monitored
and recoded continuously during a time interval or in-
termittently at several discrete time points. Functional data
analysis (FDA) is a powerful tool to deal with the analysis
and theory of data that are in the form of functions, images
and shapes, or more general objects. Traditional functional
data typically consist of a random sample of independent
real-valued functions, which can be viewed as the reali-
zation of a one-dimensional stochastic process. In this field
of research, a general introduction of the available methods
can be found in Ramsay and Silverman [1] and Wang et al.
[2].

Many recent developments in FDA concern multivariate
functional data and spatially indexed functional data. Chen
and Müller [3] introduced a methodology for repeatedly
observed and thus dependent functional data, covering the
case where the recordings of the curves are scheduled on a
regular and dense grid with often sparse and random re-
cording times.

We consider special situations where the observations at
each location are functional rather than scalar. For S ⊂ Rp1

and T ⊂ Rp2 , we consider the stochastic process
X: T⟶ L2(S) and denote its value at time t ∈ T by
X(·, t), which is a square integrable random function with
argument s ∈ S. Chen et al. [4] proposed marginal FPCA
and product FPCA models for X(s, t) and developed esti-
mating methods and theoretical results under designs that
are dense and regular in s. In practice, we may deal with
functional data which are dense and random at the s di-
rection. Under these cases, a presmoothing of individual
curve at each location is necessary. However, in practice, it is
possible that we are faced with sparse and random designs in
s. Moreover, it is also possible that curves at some locations
are densely observed, while curves at other locations are
sparsely observed. In this paper, we aim to recover X(s,t) by
estimating the multivariate mean function, the marginal
covariance function, and then the FPCA in a unified frame-
work. )is unified framework allows the number of locations
and the number of observations at each location for each
individual to be any rate relative to the sample size. )us, the
proposed procedure avoids a challenging issue of classifying
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which scenario we are faced with and hence deciding which
methodology to use when dealing with real data.

On the other hand, it is often of interest to recover
derivatives of a sample of random functions, especially when
the dynamics of underlying processes is of interest. Since
currently available statistical methods for estimating de-
rivatives require densely observed data, it is quiet chal-
lenging to recover derivatives from sparse functional data
with noise-contaminated measurements. Liu and Müller [5]
proposed an approach based on estimating derivatives of
eigenfunctions to obtain a representation for derivatives of a
sample of sparsely observed one-dimensional functions. Our
further work in this paper is aimed at recovering partial
derivatives of underlying functional-valued process at each
location, that is the dth partial derivatives of X(s, t) with
respect to s, which is denoted as X(d,0)(s, t) �

(zd/zsd)X(s, t). )e whole procedure is also in a unified
framework in which multiple functional data can be either
densely or sparsely observed.

)e article is organized as follows. In Section 2, we
introduce the model and all estimation procedures for re-
covering both functional-valued process and its partial
derivatives. We establish the uniformly almost sure con-
vergence rates of the procedures in Section 3, where we also
discuss the rates corresponding to some special scenarios.
Some relative issues to our proposed procedures are dis-
cussed in Section 4. In Section 5, simulation studies are
conducted to evaluate the performance of our procedures.
All technique lemmas and all proofs are included in
Appendix.

2. Models and Estimation

2.1. Representations. Consider process X(s, t) with mean
μ(s, t) � E[X(s, t)] for all s ∈ S ⊂ Rp1 and t ∈ T ⊂ Rp2 and
covariance function

C (s, t), (u, v){ } � E[X(s, t)X(u, v)] − μ(s, t)μ(u, v)

� E X
c
(s, t)X

c
(u, v)􏼂 􏼃.

(1)

Chen et al. [4] proposed a representation as

X(s, t) � μ(s, t) + 􏽘
∞

j�1
ξj(t)ψj(s) � μ(s, t)

+ 􏽘
∞

j�1
􏽘

∞

k�1
ζ ijkϕjk(t)ψj(s),

(2)

where ψ: j≥ 1􏼈 􏼉 are the eigenfunctions of the operator in
L2(S) with kernel

GS(s, u) � 􏽚
T

C (s, t), (u, t){ }dt, (3)

and ξj(t): j≥ 1􏽮 􏽯 are the random coefficients of the ex-
pansion of the centred processes Xc(·, t) in ψj(s) and

ξj(t) � 􏽘
∞

k�1
ζ ijkϕjk(t), (4)

is the Karhunen–Loeve expansion of the random functions
ξj(t) in L2(T). Here, for each j≥ 1, ϕjk, k≥ 1􏽮 􏽯 are the
eigenfunctions of the operator with kernel

ΓT(t, v) � E ξj(t)ξj(v)􏽨 􏽩, (5)

and ζ ijk, k≥ 1􏽮 􏽯 are the FPC scores of ξj(t).
Based on the representation of X(s, t) shown as (2), we

can write X(d,0)(s, t) as

X
(d,0)

(s, t) � μ(d,0)
(s, t) + 􏽘

∞

j�1
􏽘

∞

k�1
ζ ijkϕjk(t)ψ(d)

j (s), (6)

where μ(d,0)(s, t) is the dth partial derivative of μ(s, t) with
respect to s and ψ(d)

j (·) is the dth derivative of ψj(·) on S.
Denote λ1 ≥ λ2 ≥ · · · ≥ 0 are eigenvalues of G(u, s), and

then the eigenfunctions ψj are the solutions of the eige-
nequations 􏽒

S
GS(u, s)ψj(u)ds � λjψj(s), under side con-

ditions of norm 1 and orthogonality on all previous
eigenfunctions. Upon taking the dth derivative with respect
to s from both side of these eigenequations,

zd

zsd
􏽚
S

GS(s, u)ψj(u)ds � λjψ
(d)
j (s). (7)

If (zd/zsd)GS(s, u)ψj(u) exists for all u, s ∈ S, and

zd

zsd
GS(s, u)ψj(u)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (8)

is bounded and integrable for all s, u ∈ S, interchanging
integrations and differentiation leads to

ψ(d)
j (s) �

1
λj

􏽚
S

zd

zsd
GS(s, u)ψj(u)ds. (9)

One can then estimate derivatives by approximating
X(d,0)(s, t) with a truncated representation

􏽥X
(d,0)

(s, t) � μ(d,0)
(s, t) + 􏽘

J

j�1
􏽘

Kj

k�1
ζ ijkϕjk(t)ψ(d)

j (s), (10)

with finite Kj ≥ 1, j � 1, 2, · · · , J, and J≥ 1.

2.2. Estimation. Time-indexed functional data consist of a
sample of n independent subjects or units. For the ith
subject, suppose we observe

Yiml � X Siml, Tim( 􏼁 + εiml,

i � 1, . . . , n, m � 1, . . . , Mi, l � 1, . . . , Lim,
(11)

which means that, on each time point Tim,∞, Xi(·, Tim) is
recorded at a grid of functional points Siml, l � 1, . . . , Lim.
Here, εiml are additional measurement errors, assumed to be
iid with mean zero and finite variance σ2. We also assume
that εiml are independent of all Xi, Tim, and Siml.

Our approach is based on the local-polynomial smoother
[6].
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Step 1. Estimation of the mean function and the partial
derivatives of mean functions.

For fixed (s, t) ∈ S × T and some bandwidths h1 and h2,

μ Siml, Tim( 􏼁 ≈ μ(s, t) + h1μ
(1,0)

(s, t)
Siml − s

h1
􏼠 􏼡 + · · ·

+
hd+1
1

(d + 1)!
μ(d+1,0)

(s, t)
Siml − s

h1
􏼠 􏼡

d+1

+ h2μ
(0,1)

(s, t)
Tim − t

h2
􏼠 􏼡 ≡ 􏽘

d+1

k�0
θk0

Siml − s

h1
􏼠 􏼡

k

+ θ01
Tim − t

h2
􏼠 􏼡.

(12)
Let θ � (θ00, θ10, . . . , θ(d+1)0, θ01)

T, where θl0 � hl
1μ

(l,0)

(s, t)/l!, l � 0, 1, . . . , d + 1 and θ01 � μ(0,1)(s, t). )en, we
obtain a smoothing estimator 􏽢θ � (􏽢θ00, 􏽢θ10, . . . , 􏽢θ(d+1)0,

􏽢θ01)
T

as

􏽢θ � argmin
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
Lim

􏽘

Lim

l�1
Kh1

Siml − s( 􏼁Kh2
Tim − t( 􏼁

· Yiml − 􏽘
k�0

d+1

θk0
Siml − s

h1
􏼠 􏼡

k

− θ01
Tim − t

h2
􏼠 􏼡⎡⎣ ⎤⎦

2

,

(13)

where K(·) is a symmetric probability density function on
[0, 1] and Kh(·) � (1/h)K(·/h). Here, the kernel function
K(·) can be different at different occasions. )en, local
estimators of μ(s, t) and μ(d,0)(s, t) are given by

􏽢μ(s, t) � 􏽢θ00,

􏽢μ(d,0)
(s, t) � d!h

− d
1

􏽢θd0,
(14)

respectively.

Step 2. Estimation of GS(s, u), G
(d,0)
S (s, u), and σ2.

Note that

GS(s, u) � 􏽚
T

C (s, t), (u, t){ }dt

� 􏽚
T

D(s, u, t) − μ(s, t)μ(u, t)􏼈 􏼉dt,

(15)

where D(s, u, t) � E[X(s, t)X(u, t)]. On the contrary, if
(zd/zsd)C (s, t), (u, t){ } exists for all (s, u, t) ∈ S2 × T and
|(zd/zsd)C (s, t), (u, t){ }| is bounded and integrable for all
(s, u, t) ∈ S2 × T, then

G
(d,0)
S (s, u) � 􏽚

T

zd

zsd
C (s, t), (u, t){ }dt

� 􏽚
T

D
(d,0,0)

(s, u, t) − μ(d,0)
(s, t)μ(u, t)􏽮 􏽯dt,

(16)

where D(d,0,0)(s, u, t) � (zd/zsd)D(s, u, t). )us, in order to
estimate GS(s, u) and G

(d,0)
S (s, u), we estimate D(s, u, t) and

D(d,0,0)(s, u, t) first.
To this end, we estimate D(s, u, t) and D(d,0,0)(s, u, t)

based on the following procedures. For fixed (s, u, t) ∈ S2 ×

T and some bandwidths h3, h4, and h5 (for d� 0, we choose
h3 � h4),

D Siml, Siml′ , Tim( 􏼁 ≈ D(s, u, t) + h3D
(1,0,0)

(s, u, t)
Siml − s

h3
􏼠 􏼡

+ · · · +
hd+1
3

(d + 1)!
D

(d+1,0,0)
(s, u, t)

·
Siml − s

h3
􏼠 􏼡

d+1

+ h4D
(0,1,0)

(s, u, t)

·
Siml′ − u

h4
􏼠 􏼡 + h5D

(0,0,1)
(s, u, t)

·
Tim − t

h5
􏼠 􏼡 ≡ 􏽘

d+1

k�0
θ∗k00

Siml − s

h3
􏼠 􏼡

k

+ θ∗010
Siml′ − u

h4
􏼠 􏼡 + θ∗001

Tim − t

h5
􏼠 􏼡.

(17)

Let θ∗ � (θ∗000, θ
∗
100, . . . , θ∗(d+1)00, θ

∗
010, θ
∗
001)

T, where
θ∗l00 � hl

3D
(l,0,0)(s, u, t)/l!, l � 1, . . . , d + 1, θ∗010 � D(0,1,0)

(s, u, t), and θ∗001 � D(0,0,1)(s, u, t). )en, we obtain an es-
timator 􏽢θ

∗
� (􏽢θ
∗
000,

􏽢θ
∗
100, . . . , 􏽢θ

∗
(d+1)00,

􏽢θ
∗
010,

􏽢θ
∗
001)

T as

􏽢θ
∗

� argmin
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
L∗im

􏽘

Lim

l≠l′
Kh3

Siml − s( 􏼁Kh4

· Siml′ − u( 􏼁Kh5
Tim − t( 􏼁􏼢YimlYiml′ − 􏽘

d+1

k�0
θ∗k00

Siml − s

h3
􏼠 􏼡

k

− θ∗010
Siml′ − u

h4
􏼠 􏼡 − θ∗001

Tim − t

h5
􏼠 􏼡􏼣

2

,

(18)

where L∗im � (Lim − 1)Lim. )en, smoothing estimators of
D(s, u, t) and D(d,0,0)(s, u, t) are given by

􏽢D(s, u, t) � 􏽢θ
∗
000,

􏽢D
(d,0,0)

(s, u, t) � d!h
− d
3

􏽢θ
∗
d00,

(19)

respectively. We then can obtain that
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􏽢GS(s, u) � 􏽚
T

􏽢D(s, u, t) − 􏽢μ(s, t)􏽢μ(u, t)􏽮 􏽯dt,

􏽢G
(d,0)

S (s, u) � 􏽚
T

􏽢D
(d,0,0)

(s, u, t) − 􏽢μ(d,0)
(s, t)􏽢μ(u, t)􏼚 􏼛dt.

(20)

To estimate σ2, we first estimate V(s, t) � D(s, s, t) + σ2
by 􏽢V(s, t) � 􏽢a0, where

􏽢a0, 􏽢a1, 􏽢a2( 􏼁 � argmin
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
Lim

􏽘

Lim

l�1
Khv1

· Siml − s( 􏼁Khv2
Tim − t( 􏼁

· Y
2
iml − a0 − a1 Siml − u( 􏼁 − a2 Tim − t( 􏼁􏽨 􏽩

2
,

(21)

with some bandwidths hv1 and hv2. D(s, s, t) is estimated in
the same way as estimating D(s, u, t), but with d � 0 and
h3 � h4, we then estimate σ2 by

􏽢σ2 �
1

|S||T|
􏽚
T

􏽚
S

􏽢V(s, t) − 􏽢D(s, s, t)􏽮 􏽯ds dt, (22)

where |S| and |T| are Lebesgue measures of S and T,
respectively.

Remark 1. In practice, the empirical estimator of GS(s, u)

[4] can be used and remains at convergence rate (log n/n)1/2

for dense and regular designs in s; that is, all Xi(·, t)s
are observed at sl􏼈 􏼉

l

l�1 and max(sl − sl− 1) � O(n− 1). On the
contrary, by presmoothing for individual curves, the em-
pirical estimator of GS(s, u) is also applicable for dense and
random designs for s, and as designs get denser, the overall
convergence rate (log n/n)1/2 remains under appropriate
regularity conditions. Under these circumstances, a further
smoothing estimator of G(d,0)(s, u) can also be obtained
based on empirical estimators of GS(s, u). Similar results
hold for the estimation of σ2.

However, in practice, it is possible that some sample
curves are densely observed, while others are sparsely ob-
served at the s direction. Moreover, in dealing with real data,
it may even be difficult to classify which scenario we are
faced with and hence to decide which methodology to use.

Step 3. Estimation of eigenfunctions ψj(s) and ψ(d)
j (s) and

eigenvalues λj of the operator in L2(S) with kernel GS(s, u),
as well as estimation of FPC functions ξij(t) �

􏽒
S
Xc

i (s, t)ψj(s)ds.
)e estimated eigenfunctions 􏽢ψj(s) and estimated ei-

genvalues 􏽢λj can be obtained by standard methods of
computing the eigenvalues and eigenfunctions of an integral
operator with a symmetric kernel. )en, we have

􏽢ψ(d)
j (s) � 􏽢λ

− 1
j 􏽚

S

􏽢G
(d,0)

S (s, u)􏽢ψj(u)du. (23)

For designs that are dense in s, one can obtain 􏽢ξij(t) by
interpolating numerical approximations of the integrals:

􏽢ξij Tim( 􏼁 � 􏽚 Xi s, Tim( 􏼁 − 􏽢μ s, Tim( 􏼁􏼂 􏼃􏽢ψj(s)ds. (24)

On the contrary, for designs that are sparse in s, one can
estimate ξij(t) by the PACE approach [7].

Step 4. Estimation of eigenfunctions ϕjk(t) of the operator
with kernel ΓT(t, v) and FPCs ζ ijk � 􏽒

T
ξij(t)ϕjk(t)dt.

)is is a standard FPCA of one-dimensional processes
􏽢ξij(t), j≥ 1􏽮 􏽯. For each fixed j, one obtains estimates for the
FPCs ζ ijk and eigenfunctions ϕjk(t) for designs that are
dense in t [1] and for designs that are sparse in t [7]. One can
also adapt the approach of Li and Hsing [8], which is suitable
for both sparse and dense functional data, to one-dimen-
sional processes 􏽢ξij(t), j≥ 1􏽮 􏽯.

In this step, for each j, we are able to approximate 􏽢ξij(t)

by 􏽐
Kj

k�1
􏽢ζ ijk

􏽢ϕjk(t).

After selecting appropriate numbers of included com-
ponents J and Kj, j � 1, . . . , J, we obtain the overall
representation:

􏽢X(s, t) � 􏽢μ(s, t) + 􏽘

J

j�1
􏽘

Kj

k�1

􏽢ζ ijk
􏽢ϕjk(t)􏽢ψj(s), (25)

􏽢X
(d,0)

(s, t) � 􏽢μ(d,0)
(s, t) + 􏽘

J

j�1
􏽘

Kj

k�1

􏽢ζ ijk
􏽢ϕjk(t)􏽢ψ(d)

j (s). (26)

)e included number of components J and Kj,
j � 1, . . . , J, can be selected via a variety of methods, in-
cluding fraction of variance explained (FVE) criterion [8],
leave-one-curve-out cross-validation [9], pseudo-AIC [10],
or pseudo-BIC [7, 11]. We will illustrate these procedures in
Section 4.

3. Asymptotic Theory

We first define the notations and conditions to be used.
Assume that Mi and Lim may depend on n as well, namely,
Mi � Min and Lim � Limn. However, for simplicity, we
continue to use the notation Mi and Lim. Define

cnkl �
1
n

􏽘

n

i�1

1
Mk

i

􏽘

Mi

m�1

1
Ll

im

, k � 1, 2, l � 0, 1, 2. (27)

For any bandwidths h1, h2, and h3, we also define
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δn1 h1, h2( 􏼁 �

���������������������������������������

nh1h2( 􏼁
− 1

cn21 + 2cn20h1 + 2cn11h2 + 4h1h2( 􏼁log n

􏽱

,

δn2 h1, h2, h3( 􏼁 �

���������������������������������������������

nh1h2h3( 􏼁
− 1

cn22 + 4cn20h1h2 + 2cn12h3 + 8h1h2h3( 􏼁log n

􏽱

.

(28)

From now on, without loss of generality, we assume that
the domain S × T of the process is [0, a] × [0, b]. Some
assumptions needed for the asymptotic theory are as follows.
We use 0<C<∞ as a generic constant that can take dif-
ferent values at different places.

Now, we state the assumptions:

Assumption 1. All second-order partial derivatives of μ(s, t)

are uniformly continuous and bounded on [0, a] × [0, b].
Furthermore, μ(d+2,0)(s, t) exists and is uniformly continu-
ous and bounded on [0, a] × [0, b].

Assumption 2. All second-order partial derivatives of
D(s, u, t) are uniformly continuous and bounded on
[0, a]2 × [0, b]. Furthermore, D(d+2,0,0)(s, u, t) exists and is
uniformly continuous and bounded on [0, a]2 × [0, b].

Assumption 3. Let fS(·) and fT(·) be the density distri-
bution functions of S and T, respectively. Assume both of
fS(·) and fT(·) are lower bounded away from 0 and
sup[0,a]fS(·)≤MS and sup[0,b]fT(·)≤MT for some positive
constants MS and MT.

Assumption 4. Let f(·, ·) be the joint density distribution
function of (S, T) and f2(·, ·, ·) be the joint density distri-
bution function of (S1, S2, T). Both f(·, ·) and f2(·, ·, ·) are
upper bounded and lower bounded away from 0. Fur-
thermore, assume that both f(·, ·) and f2(·, ·, ·) have con-
tinuous and bounded second-order derivatives uniformly on
their domains.

Assumption 5. E(|εiml|
λ1)<∞ and E(sup|X(s, t)|λ1)<∞

for some λ1 ∈ (2,∞). h1, h2⟶ 0 as n⟶∞, and
h− 1
1 h− 1

2 (cn21 + 2cn20h1 + 2cn11h2 + 4h1h2)
− 1(log n/n)1− 2/λ1 �

o(1).

Assumption 6. E(|εiml|
2λ2)<∞ and E(sup|X(s, t)|2λ2)<∞

for some λ2 ∈ (2,∞). h3, h4, h5⟶ 0 as n⟶∞
and h− 1

3 h− 1
4 h− 1

5 (cn22 + 4cn20h3h4 + 2cn12h5 + 8h3h4h5)
− 1

(log n/n)1− 2/λ2 � o(1).

Assumption 7. E(|εiml|
2λ3)<∞ and E(sup|X(s, t)|2λ3)<∞

for some λ3 ∈ (2,∞). hv1, hv2⟶ 0 as n⟶∞
and h− 1

v1h− 1
v2(cn21 + 2cn20hv1 + 2cn11hv2 + 4hv1hv2)

− 1(log n/
n)1− 2/λ3 � o(1).

Assumption 8. Assume the autocovariance operator ΔS

generated by GS(s, u) is positive definite, such that

sup
s

􏽚 G
(d,0)
S (s, u)ψj(u)du<∞,

􏽚 􏽚 G
(d,0)
S (s, u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds du <∞.

(29)

and with eigenfunctions satisfying sups∈[0,a]|ψj(s)| � O(1).

Assumption 9. Let K(·) be a symmetric probability density
function on [0, 1], ]k � 􏽒 ukK(u)du. Let

Γ �

1 ]1 · · · ](d+1)

]1 ]2 · · · ](d+2)

⋮

](d+1) ](d+2) · · · ](2d+2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (30)

Assume that Γ is a nonsingular matrix.
Assumptions (1) and (2) are regular smoothness con-

ditions on the mean function µ and the covariance function
D. Since we do not impose any parametric structure on the
distribution of X, assumptions (3) and (4) are required for
the derivation of uniform convergence. )e moment con-
ditions in (5)–(7) are similar to that in (C.5)–(C.7) of Li and
Hsing [8] and hold rather generally. Assumptions (8) is
similar to condition (B4) in Liu andMüller [5] and is needed
for )eorem 4. When d � 1, the standard normal distri-
bution function is an example for a kernel satisfying (13).

3.1. Uniform Convergence Rates of 􏽢μ(s, t) and 􏽢μ(d,0)(s, t).
We establish the uniform convergence rates of 􏽢μ(s, t) and
􏽢μ(d,0)(s, t). First, we give some definitions and notations. For
p � 0, 1, . . . , 2d + 2, and q � 0, 1, 2, let

Snpq(s, t) �
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
Lim

􏽘

Lim

l�1
Kh1

Siml − s( 􏼁Kh2
Tim − t( 􏼁

·
Siml − s

h1
􏼠 􏼡

p
Tim − t

h2
􏼠 􏼡

q

,

􏽥Snpq(s, t) �
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
Lim

􏽘

Lim

l�1
YimlKh1

Siml − s( 􏼁Kh2

· Tim − t( 􏼁
Siml − s

h1
􏼠 􏼡

p
Tim − t

h2
􏼠 􏼡

q

.

(31)

By some simple algebra, we can obtain that 􏽢θ satisfies

􏽥Sn(s, t) � Sn(s, t)􏽢θ, (32)

where 􏽥Sn(s, t) � (􏽥Sn00(s, t), 􏽥Sn10(s, t), . . . , 􏽥Sn(d+1)0(s, t),
􏽥Sn01(s, t))T and
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Sn(s, t) �

Sn00 Sn10 · · · Sn(d+1)0 Sn01

Sn10 Sn20 · · · Sn(d+2)0 Sn11

⋮ ⋮ ⋱ ⋮ ⋮

Sn(d+1)0 Sn(d+2)0 · · · Sn(2 d+2)0 Sn(d+1)1

Sn01 Sn11 · · · Sn(d+1)1 Sn02

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(s, t).

(33)

It then follows that 􏽢θ � S− 1
n (s, t)􏽥Sn(s, t) and

􏽢θ − θ � S− 1
n (s, t)[􏽥Sn(s, t) − Sn(s, t)θ].

Theorem 1. Under assumptions (1), (3)–(5), and (9), let
c1d(h1, h2) � h

(d+2)
1 + h1h2 + h2

2, then

sup
s∈S,t∈T

|􏽢μ(s, t) − μ(s, t)| � Oa.s δn1 h1, h2( 􏼁(

+ c1d h1, h2( 􏼁􏼁,

sup
s∈S,t∈T

􏽢μ(d,0)
(s, t) − μ(d,0)

(s, t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � Oa.s h
− d
1 δn1 h1, h2( 􏼁􏼐

+ h
− d
1 c1d h1, h2( 􏼁􏼑.

(34)

Remark 2. We discuss special cases of )eorem 1 under
dense or sparse designs.

(1) For the designs that are sparse in both s and t: if both
max1≤i≤nMi and max1≤i≤n,1≤m≤Mi

Lim are bounded,
then cnkl � O(1) for all k � 1, 2 and l � 0, 1, 2. )us,
)eorem 1 implies that

sup
s∈S,t∈T

|􏽢μ(s, t) − μ(s, t)| � Oa.s

������������

nh1h2( 􏼁
− 1log n

􏽱

􏼒

+ c1d h1, h2( 􏼁􏼁,

sup
s∈S,t∈T

􏽢μ(d,0)
(s, t) − μ(d,0)

(s, t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � Oa.s h
− d
1

������������

nh1h2( 􏼁
− 1log n

􏽱

􏼒

+ h
− d
1 c1d h1, h2( 􏼁􏼑.

(35)

By choosing h1 and h2 satisfying that
c1d(h1, h2) � O(h1h2) � O((log n/n)1/3), sups∈S,t∈T
|􏽢μ(s, t) − μ(s, t)| can achieve its optimal convergence
rate as O((log n/n)1/3). Moreover, sups∈S,t∈T

|􏽢μ(d,0)(s, t) − μ(d,0)(s, t)| can also achieve its optimal
convergence rate as Oa.s.((log n/n)2/(3d+6)) by further
choosing h2 � O(hd+1

1 ), that is h2 � O(hd+1
1 ) �

O((log n/n)(d+1)/(3d+6)).
(2) For the designs that are dense in both s and t: if

min1≤i≤nMi � Mn and min1≤i≤n,1≤m≤Mi
Lim � Ln, sat-

isfying M− 1
n ≲ h2 and L− 1

n ≲ h1, then for all k � 1, 2

and l � 0, 1, 2, cnkl ≍M1− k
n L− l

n and δn1(h1, h2)≍������
log n/n

􏽰
. )us, )eorem 1 yields that

sup
s∈S,t∈T

|􏽢μ(s, t) − μ(s, t)| � Oa.s

������

log n/n
􏽱

􏼒

+ c1d h1, h2( 􏼁􏼁,

sup
s∈S,t∈T

􏽢μ(d,0)
(s, t) − μ(d,0)

(s, t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � Oa.s h
− d
1

������

log n/n
􏽱

􏼒

+ h
− d
1 c1d h1, h2( 􏼁􏼑.

(36)

Moreover, if the Assumption (5) is replaced by a strong
version, in which we assume that sups,t|X(s, t)| and εiml

are bounded, then if h1 and h2 satisfying
h1h2 � O(log n/n)1/2 and h2 � O(hd+1

1 ), )eorem 1
implies that

sup
s∈S,t∈T

|􏽢μ(s, t) − μ(s, t)| � Oa.s􏼒

������

log n/n
􏽱

􏼓,

sup
s∈S,t∈T

􏽢μ(d,0)
(s, t) − μ(d,0)

(s, t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � Oa.s (log n/n)
1/(d+2)

􏼐 􏼑.

(37)

(3) For the designs that are sparse in s and dense in t: if
max1≤i≤n,1≤m≤Mi

Lim is bounded and min1≤i≤nMi �

Mn, where M− 1
n ≲ h2, then δn1(h1, h2)≍

��������
log n/nh1

􏽰
,

that is

sup
s∈S,t∈T

|􏽢μ(s, t) − μ(s, t)| � Oa.s

��������

log n/nh1

􏽱

􏼒

+ c1d h1, h2( 􏼁􏼁,

sup
s∈S,t∈T

􏽢μ(d,0)
(s, t) − μ(d,0)

(s, t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � Oa.s h
− d
1

��������

log n/nh1

􏽱

􏼒

+ h
− d
1 c1d h1, h2( 􏼁􏼑.

(38)

Furthermore, if h1 � O((log n/n)1/(2d+5)) and
h2 � O(hd+1

1 ), then )eorem 1 shows that

sup
s∈S,t∈T

|􏽢μ(s, t) − μ(s, t)| � Oa.s (log n/n)
(d+2)/(2d+5)

􏼐 􏼑,

sup
s∈S,t∈T

􏽢μ(d,0)
(s, t) − μ(d,0)

(s, t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � Oa.s (log n/n)
2/(2d+5)

􏼐 􏼑.

(39)

(4) For the designs that are dense in s and sparse in t: if
max1≤i≤nMi is bounded and min1≤i≤n,1≤m≤Mi

Lim � Ln,
where L− 1

n ≲ h1, then δn1(h1, h2)≍
��������
log n/nh2

􏽰
, that is

6 Journal of Applied Mathematics



sup
s∈S,t∈T

|􏽢μ(s, t) − μ(s, t)| � Oa.s

��������

log n/nh2

􏽱

􏼒

+ c1d h1, h2( 􏼁􏼁,

sup
s∈S,t∈T

􏽢μ(d,0)
(s, t) − μ(d,0)

(s, t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � Oa.s h
− d
1

��������

log n/nh2

􏽱

􏼒

+ h
− d
1 c1d h1, h2( 􏼁􏼑.

(40)

Furthermore, if h1 � O((log n/n)1/(3d+5)) and
h2 � O(hd+1

1 ), then )eorem 1 shows that

sup
s∈S,t∈T

|􏽢μ(s, t) − μ(s, t)| � Oa.s (log n/n)
(d+2)/(3d+5)

􏼐 􏼑,

sup
s∈S,t∈T

􏽢μ(d,0)
(s, t) − μ(d,0)

(s, t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � Oa.s (log n/n)
2/(3d+5)

􏼐 􏼑.

(41)

3.2. Uniform Convergence Rates of 􏽢G(s, u), 􏽢G
(d,0)

(s, u), and
􏽢σ2. We next establish the convergence rates of 􏽢G(s, u),
􏽢G

(d,0)
(s, u), and 􏽢σ2. Since 􏽢G(s, u) � 􏽒

T
􏼈 􏽢D(s, u, t) −

􏽢μ(s, t)􏽢μ(u, t)􏼉dt, integrating 􏽢D(s, u, t) and 􏽢μ(s, t)􏽢μ(u, t) over
t results in extrasmoothing, which leads to a faster con-
vergence rate δn1(h1, 1) and δn2(h3, h4, 1) than δn1(h1, 1) and
δn2(h3, h4, 1), respectively. )e similar conclusion holds for
􏽢G

(d,0)
(s, u).

For p � 0, 1, . . . , 2d + 2, q � 0, 1, 2, and r � 0, 1, 2, let

Rnpqr(s, u, t) �
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
L∗im

􏽘

Lim

l≠l′
Kh3

Siml − s( 􏼁

· Kh4
Siml′ − u( 􏼁Kh5

Tim − t( 􏼁
Siml − s

h3
􏼠 􏼡

p

·
Siml′ − u

h4
􏼠 􏼡

q
Tim − t

h5
􏼠 􏼡

r

,

􏽥Rnpqr(s, u, t) �
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
L∗im

􏽘

Lim

l≠l′
YimlYiml′Kh3

Siml − s( 􏼁

· Kh4
Siml′ − u( 􏼁Kh5

Tim − t( 􏼁
Siml − s

h3
􏼠 􏼡

p

·
Siml′ − u

h4
􏼠 􏼡

q
Tim − t

h5
􏼠 􏼡

r

,

(42)

then we can obtain that
􏽢θ
∗

� R
− 1
n (s, u, t)􏽥Rn(s, u, t), (43)

with 􏽥Rn(s, u, t) � (Rn000(s, u, t), Rn100(s, u, t), . . . , Rn(d+1)00

(s, u, t), Rn010(s, u, t), Rn001(s, u, t))T and

Rn(s, u, t) �

Rn000 Rn100 · · · Rn(d+1)00 Rn010 Rn001

Rn100 Rn200 · · · Rn(d+2)00 Rn110 Rn101

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

Rn(d+1)00 Rn(d+2)00 · · · Rn(2d+2)00 Rn(d+1)10 Rn(d+1)01

Rn010 Rn110 · · · Rn(d+1)10 Rn020 Rn011

Rn001 Rn100 · · · Rn(d+1)01 Rn011 Rn002

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(s, u, t). (44)

Theorem 2. Under assumptions (1)–(6) and (9), let
c2d(h3, h4, h5) � hd+2

3 + h2
4 + h2

5 + h3h4 + h3h5, then

sup
s,u∈S

|􏽢G(s, u) − G(s, u)| � Oa.s. δn2 h3, h4, 1( 􏼁(

+ c2d h3, h4, h5( 􏼁 + δn1 h1, 1( 􏼁

+ c1d h1, h2( 􏼁􏼁,

(45)

sup
s,u∈S

􏽢G
(d,0)

(s, u) − G
(d,0)

(s, u)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 � Oa.s h
− d
3 δn2 h3, h4, 1( 􏼁􏼂􏼐

+ c2d h3, h4, h5( 􏼁

+ δn1 h1, 1( 􏼁 + c1d h1, h2( 􏼁􏼃􏼁.

(46)

Remark 3. We discuss special cases of )eorem 2. Actually,
whether the design is dense or sparse in t, the convergence
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rate in )eorem 2 is not affected. Hence, we only discuss
different designs with respect to s.

(1) For the designs that are sparse in s: if
max1≤i≤n,1≤m≤Mi

Lim is bounded, then

δn1 h1, 1( 􏼁≍
��������

log n/nh1

􏽱

,

δn2 h3, h4, 1( 􏼁≍
����������

log n/nh3h4

􏽱

.

(47)

On the contrary, since

δn2 h3, h4, 1( 􏼁≍ δn1 h3, h4( 􏼁,

c2d h3, h4, h5( 􏼁≍ c1d h3, h4( 􏼁 + c1d h3, h5( 􏼁,
(48)

we choosing h3 � O((log n/n)1/(3d+6)) and h4 ≍ h5 �

O(hd+1
3 ). Either h1 or h2 is chosen as in Remark 2(1) or

Remark 2(3), )eorem 2 implies that

sup
s,u∈S

|􏽢G(s, u) − G(s, u)| � Oa.s. (log n/n)
1/3

􏼐 􏼑,

sup
s,u∈S

􏽢G
(d,0)

(s, u) − G
(d,0)

(s, u)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 � Oa.s (log n/n)
2/(3d+6)

􏼐 􏼑.

(49)

(2) For the designs that are dense in s: if
min1≤i≤n,1≤m≤Mi

Lim � Ln, then

δn1 h1, 1( 􏼁≍
����������������

L− 1
n + h1( 􏼁log n/nh1

􏽱

,

δn2 h3, h4, 1( 􏼁≍
��������������������

L− 2
n + h3h4( 􏼁log n/nh3h4

􏽱

.

(50)

Assume that L− 1
n � o(h1) and L− 2

n � o(h3h4), where
h1 ≍ h3 � O((log n/n)1/(2d+4)) and h4 ≍ h5 ≍ h2 �

O(hd+1
1 ). If the Assumption (5) is replaced by a strong

version, in which we assume that sups,t|X(s, t)| and εiml

are bounded, then )eorem 2 implies that

sup
s,u∈S

|􏽢G(s, u) − G(s, u)| � Oa.s.􏼒

������

log n/n
􏽱

􏼓,

sup
s,u∈S

􏽢G
(d,0)

(s, u) − G
(d,0)

(s, u)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 � Oa.s (log n/n)
1/(d+2)

􏼐 􏼑.

(51)

Theorem 3. Under assumptions (1)–(7) and (9),

􏽢σ2 − σ2 � Oa.s. δn2 h3, 1, 1( 􏼁 + h
2
3 + h

2
5 + h

2
v1 + h

2
v2􏼐 􏼑. (52)

Remark 4. Same as Remark 3, we discuss the convergence
rate of 􏽢σ2 under special cases.

(1) For the designs that are sparse in s: if
max1≤i≤n,1≤m≤Mi

Lim is bounded, then

δn2 h3, 1, 1( 􏼁≍
��������

log n/nh3

􏽱

, (53)

which results in

􏽢σ2 − σ2 � Oa.s.

��������

log n/nh3

􏽱

+ h
2
3 + h

2
5 + h

2
v1 + h

2
v2􏼒 􏼓. (54)

(2) For the designs that are dense in s: if
min1≤i≤n,1≤m≤Mi

Lim � Ln, satisfying that L− 1
n ≲ h1/2

3 ,
then

δn2 h3, 1, 1( 􏼁≍
������

log n/n
􏽱

. (55)

If h3, h5, hv1, hv2 ≲ (log n/n)1/4, then

􏽢σ2 − σ2 � Oa.s.􏼒

������

log n/n
􏽱

􏼓. (56)

3.3. Uniform Convergence Rates in FPCA. We next establish
the convergence rates in FPCA. Let J be a fixed positive
constant.

Theorem 4. Under assumptions (1)–(9), for j≤ J,

(1) ‖􏽢ψj − ψj‖ � Oa.s.(δn2(h4, 1, 1) + δ2n2(h3, h4, 1) + c2d

(h3, h4, h5) + δn1(h1, 1) + c1d(h1, h2))

(2) 􏽢λj − λj � Oa.s.((log n/n)1/2 + δ2n2(h4, 1, 1) + c2d (h3,

h4, h5) + δ2n1(h1, 1) + c1d(h1, h2))

(3) sup
s∈[0,a]

|􏽢ψj(s) − ψj(s)| � Oa.s.(log n/n)1/2 + δn2(h4,

1, 1) + δ2n2(h3, h4, 1) + c2d(h3, h4, h5) + δn1(h1, 1) +

c1d(h1, h2)

(4) sup
s∈[0,a]

‖􏽢ψ(d)
j (s) − ψ(d)

j (s)‖ � Oa.s.((log n/n)1/2 + δ2n2

(h4, 1, 1) + δ2n1(h1, 1) + h− d
3 (δn2(h4, 1, 1) + c2d(h3,

h4, h5) + δn1(h1, 1) + c1d(h1, h2)))

(5) For each 1≤ i≤ n,

max
1≤m≤Mi

􏽢ξij Tim( 􏼁 − ξij Tim( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⟶
a.s.

0. (57)

)e consistency of 􏽢ξij(t) guarantees the appropriacy of
estimation procedures in Step 4. )e proof of the theorems
will be given in the Appendix.

4. Relative Issues

In this section, we discussed a few issues that are related to
the implementation of our proposed methods.
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4.1. Selection of Bandwidths. )e performance of the esti-
mators depends on the choice of bandwidths for μ(·, ·) and
D(·, ·, ·), and the best bandwidths vary with Ms and Ls. )e
bandwidth selection problem turns out to be very challenging
and hence an important problem for future research. For lack
of a better approach, we suggest picking the bandwidths by
minimizing the integrated mean square error (IMSE). )at is,
for each function above, one calculated the IMSE over a range
of h and selected the one that minimizes the IMSE.

4.2. Selection of Ks and J in the Overall Representations (25)
and (26). In practice, the choice of the numbers of com-
ponents J and Kjs to be included in (25) can be based on the
leave-one-curve-out cross-validation method [9] or by the
fraction of variance explained (FVE) by the first J compo-
nents [4]. One can also adopt AIC [10] or BIC [11] type of
criteria, see Yao et al. [7] for one-dimensional function data.

For bivariate functional data, a pseudo-Gaussian log-
likelihood is given by

􏽢L(J) � 􏽘
n

i�1
−

Ni

2
log(2π) −

Ni

2
log 􏽢σ2 −

1
2􏽢σ2

􏽘

Mi

m�1
􏽘

Lim

l�1
Yiml − 􏽢μ Siml, Tim( 􏼁 − 􏽘

J

j�1

􏽢ξj Tim( 􏼁􏽢ψj Siml( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦

2⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (58)

where Ni � 􏽐
Mi

m�1Lim. One can choose J through minimizing
aic(J) � − 􏽢L(J) + J (resp., bic(J) � − 􏽢L(J) + J log n) with
respect to J.

For each 1≤ j≤ J, define

􏽢Lj Kj􏼐 􏼑 � 􏽘
n

i�1
−

Mi

2
log(2π) −

Mi

2
log 􏽢σ2 −

1
2􏽢σ2

􏽘

Mi

m�1

􏽢ξij Tim( 􏼁 − 􏽘

Kj

k�1

􏽢ζ ijk
􏽢ϕjk Tim( 􏼁⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (59)

)e number of components Kj is selected by minimizing
aic(Kj) � − 􏽢Lj(Kj) + Kj (resp., bic(Kj) � − 􏽢Lj(Kj) +

Kjlog n) with respect to Kj.

Appendix

)is is a five-part appendix organized as follows. Ap-
pendix A states some technical lemmas are needed for our
main results. )e proofs of these lemmas are not included
here as they are lengthy and tedious. We provide them in
an online supplementary material available online. Ap-
pendices B–E provide the proofs of )eorems 1–4,
respectively.

A. Technical Lemmas

Some technical lemmas needed for our main results are
shown as follows.

Lemma A.1. Let Ziml � Xi(Siml, Tim) or εiml for i � 1, . . . , n,
m � 1, . . . , Mi, and l � 1, . . . , Lim. Suppose for some
λ ∈ (2,∞) that

E sup
s∈S,t∈T

Xi Siml, Tim( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
λ

􏼠 􏼡<∞,

E|ε|λ <∞.

(A.1)

Define

Dn s1, s2( 􏼁, t1, t2( 􏼁( 􏼁 �
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
Lim

􏽘

Lim

l�1
ZimlI

· Siml ∈ s1 ∧ s2, s1 ∨ s2􏼂 􏼃( 􏼁I

· Tim ∈ t1 ∧ t2, t1 ∨ t2􏼂 􏼃(( 􏼁,

(A.2)

and D((s1, s2), (t1, t2)) � E[Dn((s, s + u), (t, t + v))]. Let cn

and cn
′ be any positive sequences tending to 0 and

βn � cncn
′(cn21 + cn20cn + cn11cn

′ + cncn
′), then if β− 1

n

(log n/n)1− 2/λ � o(1), we have
sup

s∈[0,a]

t∈[0,b]

sup
|u|≤cn

|v|≤ cn
′

Dn((s, s + u), (t, t + v)) − D((s, s + u), (t, t + v))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� Oa.s. n
− 1/2 βnlog n( 􏼁

1/2
􏼐 􏼑.

(A.3)

)e proof of Lemma A.1 is provided in the supple-
mentary material for saving space.

Lemma A.2. Let Ziml be as in Lemma A.1 and assume that
(A.1) holds. For bandwidths h1 and h2 and nonnegative in-
tegers p and q, let

Dnpq(s, t) �
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
Lim

􏽘

Lim

l�1
ZimlKh1

· Siml − s( 􏼁Kh2
Tim − t( 􏼁

Siml − s

h1
􏼠 􏼡

p
Tim − t

h2
􏼠 􏼡

q

.

(A.4)
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Let βn � h1h2(cn21 + 2cn20h1 + 2cn11h2 + 4h1h2), assume
that h1⟶ 0, h2⟶ 0, and β− 1

n (log n/n)1− 2/λ � o(1), then
we have

�������������

nh2
1h

2
2/ βnlog n( 􏼁

􏽱

sup
s∈[0,a]

t∈[0,b]

Dnpq(s, t) − E Dnpq(s, t)􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � Oa.s.(1).

(A.5)
)e proof of Lemma A.2 is provided in the supple-

mentary material for saving space.

Lemma A.3. Let Zimll′ � Xi(Siml, Tim)Xi(Siml′ , Tim),
Xi(Siml, Tim)εiml′ , or εimlεiml′ for i � 1, . . . , n, m � 1, . . . , Mi,
and l, l′ � 1, . . . , Lim. Suppose for some λ ∈ (2,∞) that

E sup
s∈S,t∈T

Xi Siml, Tim( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2λ

􏼠 􏼡<∞,

E|ε|2λ <∞.

(A.6)

Define

Qn s1, s2( 􏼁, u1, u2( 􏼁, t1, t2( 􏼁( 􏼁 �
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
L∗im

􏽘

Lim

l≠l′
Zimll′I

· Siml ∈ s1 ∧ s2, s1 ∨ s2􏼂 􏼃( 􏼁I

· Siml′ ∈ u1 ∧ u2, u1 ∨ u2􏼂 􏼃( 􏼁I

· Tim ∈ t1 ∧ t2, t1 ∨ t2􏼂 􏼃( 􏼁,

(A.7)

and Q((s1, s2), (u1, u2), (t1, t2)) � E[Qn((s1, s2), (u1, u2),

(t1, t2))]. Let cn, cn
′, and c″n be any positive sequences tending

to 0 and βn � cncn
′c″n(cn22 + cn20cncn

′ + cn12c
″
n + cncn
′c″n), then

if β− 1
n (log n/n)1− 2/λ � o(1), we have

sup
s,u∈[0,a]

t∈[0,b]

sup
v1 ≤ cn| |
v2 ≤ cn
′| |

Qn s, s + v1( 􏼁, u, u + v2( 􏼁, t, t + v3( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

− Q s, s + v1( 􏼁, u, u + v2( 􏼁, t, t + v3( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

� Oa.s. n
− 1/2 βnlog n( 􏼁

1/2
􏼐 􏼑.

(A.8)
)e proof of Lemma A.3 is provided in the supple-

mentary material for saving space.

Lemma A.4. Let Zimll′ be as in Lemma A.3 and assume that
(A.6) holds. For bandwidths h3, h4, and h5 and nonnegative
integers p, q, and r, let

Qnpqr(s, u, t) �
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
L∗im

􏽘

Lim

l≠l′
Zimll′Kh3 ,p Siml − s( 􏼁

· Kh4 ,q Siml′ − u( 􏼁Kh5 ,r Tim − t( 􏼁,

(A.9)

where Kh,p(·) � (·/h)pKh(·). Let βn � h3h4h5(cn22 +

4cn20h3h4 + 2cn12h5 + 8h3h4h5); assume that h3⟶ 0,

h4⟶ 0, h5⟶ 0, and β− 1
n (log n/n)1− 2/λ � o(1), then we

have
���������������

nh2
3h

2
4h

2
5/ βnlog n( 􏼁

􏽱

sup
s,u∈[0,a]

t∈[0,b]

Qnpqr(s, u, t) − E Qnpqr(s, u, t)􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� Oa.s.(1).

(A.10)

)e proof of Lemma A.4 is provided in the supple-
mentary material for saving space.

Lemma A.5. Let Ziml be as in Lemma A.1 and assume that
(A.1) holds. For bandwidths h1 and nonnegative integers p, let

Dn �
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
Lim

􏽘

Lim

l�1
Ziml,

􏽥Dnp(s) �
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
Lim

􏽘

Lim

l�1
ZimlKh1

Siml − s( 􏼁
Siml − s

h1
􏼠 􏼡

p

.

(A.11)

Ken, we have
��������

n/(log n)

􏽱

Dn − EDn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � Oa.s.(1). (A.12)

Let βn � h1(cn21 + 2cn20 + 2cn11h2 + 4h2), assume that
h1⟶ 0 and β− 1

n (log n/n)1− 2/λ � o(1), then we have
�����������

nh2
1/ βnlog n( 􏼁

􏽱

sup
s∈[0,a]

􏽥Dnp(s) − E 􏽥Dnp(s)􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � Oa.s.(1).

(A.13)

)e proof of Lemma A.5 is provided in the supple-
mentary material for saving space.

Lemma A.6. Let Zimll′ be as in Lemma A.3 and assume that
(A.6) holds. For bandwidths h3 and h4 and nonnegative
integers p and q, let

􏽥Qnpq(s, u) �
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
L∗im

􏽘

Lim

l≠l′
Zimll′Kh3 ,p

· Siml − s( 􏼁Kh4 ,q Siml′ − u( 􏼁,

�Qnp(s) �
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
L∗im

􏽘

Lim

l≠l′
Zimll′Kh3 ,p Siml − s( 􏼁,

Qn �
1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
L∗im

􏽘

Lim

l≠l′
Zimll′Kh3

Siml − Siml′ + uh3( 􏼁,

(A.14)

where Kh,p(·) � (·/h)pKh(·).
Let βn � h3h4(cn22 + 4cn20h3h4 + 2cn12 + 8h3h4), assume

that h3⟶ 0, h4⟶ 0, and β− 1
n (log n/n)1− 2/λ � o(1), then

we have
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�������������

nh2
3h

2
4/ βnlog n( 􏼁

􏽱

sup
s,u∈[0,a]

􏽥Qnpq(s, u) − E 􏽥Qnpq(s, u)􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � Oa.s.(1).

(A.15)

Let 􏽥βn � h3(cn22 + 4cn20h3 + 2cn12 + 8h3), assume that
h3⟶ 0 and 􏽥β

− 1
n (log n/n)1− 2/λ � o(1), then we have

�����������

nh2
3/ 􏽥βnlog n􏼐 􏼑

􏽱

sup
s,u∈[0,a]

�Qnp(s) − E 􏽥Qnp(s)􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � Oa.s.(1),

(A.16)
�����������

nh2
3/ 􏽥βnlog n􏼐 􏼑

􏽱

Qn − EQn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � Oa.s.(1).

(A.17)

)e proof of Lemma A.6 is provided in the supple-
mentary material for saving space.

B. Proof of Theorem 1

Recall that 􏽢θ � S− 1
n (s, t)􏽥Sn(s, t) and 􏽢θ − θ � S− 1

n (s, t)

[􏽥Sn(s, t) − Sn(s, t)θ]. Note that we can write
􏽥Sn(s, t) − Sn(s, t)θ � S

∗
n00(s, t), S

∗
n10(s, t), . . . , S

∗
n(d+1)0(s, t), S

∗
n01(s, t)􏼐 􏼑

T
,

(B.1)

where for p � 0, 1, . . . , (d + 1), q � 0, 1,

S
∗
npq(s, t) �

1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
Lim

􏽘

Lim

l�1
Kh1 ,p Siml − s( 􏼁Kh2 ,q Tim − t( 􏼁􏼨εiml + Xi Siml, Tim( 􏼁 − μ Siml, Tim( 􏼁􏼂 􏼃

+ μ Siml, Tim( 􏼁 − μ(s, t) − 􏽘
d+1

k�1

1
k!
μ(k,0)

(s, t) Siml − s( 􏼁
k

− μ(0,1)
(s, t) Tim − t( 􏼁⎡⎣ ⎤⎦

⎫⎬

⎭.

(B.2)

By Taylor’s expansion and Lemma A.2, uniformly in
(s, t) ∈ [0, a] × [0, b],

S
∗
npq(s, t) �

1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
Lim

􏽘

Lim

l�1
Kh1 ,p Siml − s( 􏼁Kh2,q Tim − t( 􏼁

εiml + Xi Siml, Tim( 􏼁 − μ Siml, Tim( 􏼁􏼂 􏼃􏼉􏼈

+ O h
(d+2)
1 + h1h2 + h

2
2􏼐 􏼑

� Oa.s. n
− 1/2

h
− 1
1 h

− 1
2 βnlog n( 􏼁

1/2
+ h

(d+2)
1 + h1h2 + h

2
2􏼐 􏼑,

(B.3)

where βn � h1h2(cn21 + 2cn20h1 + 2cn11h2 + 4h1h2), from
which we conclude that, uniformly in (s, t) ∈ [0, a] × [0, b],
􏽥Sn(s, t) − Sn(s, t)θ � Oa.s. δn1 h1, h2( 􏼁 + h

(d+2)
1 + h1h2 + h

2
2􏼐 􏼑.

(B.4)

We next consider S− 1
n (s, t). For any interior point

(s, t) ∈ [h1, a − h1] × [h2, b − h2],

E Snpq(s, t)􏽨 􏽩 � 􏽚 􏽚 K(u)K(v)u
p
v

q
f s + h1u, t + h2v( 􏼁du dv

� f(s, t)]p]q + O h1( 􏼁]p+1]q + O h2( 􏼁]p]q+1

+ O h
2
1􏼐 􏼑]p+2]q + O h

2
2􏼐 􏼑]p]q+2

+ O h1h2( 􏼁]p+1]q+1,

(B.5)

where f(·, ·) is the joint density of (S, T) and
]p � 􏽒 upK(u)du. Since K(·) is symmetric, we can further
obtain that

E Snpq(s, t)􏽨 􏽩 �

f(s, t)]p]q + O h2
1 + h2

2􏼐 􏼑, if bothp and q are even numbers,

O h1h2( 􏼁]p+1]q+1, if bothp and q are odd numbers,

O h2( 􏼁]p]q+1, if p is even and q is odd numbers,

O h1( 􏼁]p+1]q, if p is odd and q is even numbers,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(B.6)
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and hence, uniformly for (s, t) ∈ [h1, a − h1] × [h2, b − h2],

E Sn(s, t)􏼂 􏼃 � f(s, t)diag Γ, ]2( 􏼁 + O h1 + h2( 􏼁

≡ f(s, t)Ω− 1
1 + O h1 + h2( 􏼁.

(B.7)

)us, uniformly for (s, t) ∈ [h1, a − h1] × [h2, b − h2],
􏽢θ − θ � Oa.s.(δn1(h1, h2) + h

(d+2)
1 + h1h2 + h2

2). )e same rate
can be achieved for boundary points. Note that

μ(s, t) � θ00 and μ
(d,0)

(s, t) � h
− d
1 d!θ10, (B.8)

and thus )eorem 1 holds.

C. Proof of Theorem 2

Recall that

􏽢GS(s, u) � 􏽚
T

􏽢D(s, u, t) − 􏽢μ(s, t)􏽢μ(u, t)􏽮 􏽯dt,

􏽢G
(d,0)

S (s, u) � 􏽚
T

􏽢D
(d,0,0)

(s, u, t) − 􏽢μ(d,0)
(s, t)􏽢μ(u, t)􏼚 􏼛dt.

(C.1)

To bound sup(s,u)∈[0,a]2 |
􏽢GS(s, u) − GS(s, u)| and

sup(s,u)∈[0,a]2 |
􏽢G

(d,0)

S (s, u) − G
(d,0)
S (s, u)|, we consider 􏽢D(s, u,

t) − D(s, u, t) and 􏽢D
(d,0,0)

(s, u, t) − D(d,0,0)(s, u, t) first.
Note that

􏽢θ
∗

� R
− 1
n (s, u, t)􏽥Rn(s, u, t),

􏽢θ
∗

− θ∗ � R
− 1
n (s, u, t) 􏽥Rn(s, u, t) − Rn(s, u, t)θ∗􏼂 􏼃.

(C.2)

Now write

R
∗
n (s, u, t) � 􏽥Rn(s, u, t) − Rn(s, u, t)θ∗ � R

∗
n000(s, u, t), . . . , R

∗
n(d+1)00(s, u, t), R

∗
n010(s, u, t), R

∗
n001(s, u, t)􏼐 􏼑

T
, (C.3)

where for p � 0, 1, . . . , (d + 1), q � 0, 1 and r � 0, 1.

R
∗
npqr(s, u, t) �

1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
L∗im

􏽘

Lim

l≠l′
Kh3 ,p Siml − s( 􏼁Kh4,q Siml′ − u( 􏼁Kh5,r Tim − t( 􏼁 YimlYiml′ − D Siml, Siml′ , Tim( 􏼁 + D Siml, Siml′ , Tim( 􏼁􏼈

− D(s, u, t) − 􏽘
d+1

k�1

1
k!

D
(k,0,0)

(s, u, t) Siml − s( 􏼁
k

− D
(0,1,0)

(s, u, t) Siml′ − u( 􏼁 − D
(0,0,1)

(s, u, t) Tim − t( 􏼁
⎫⎬

⎭.

(C.4)

By Taylor’s expansion and Lemma A.4, uniformly in
(s, u, t) ∈ [0, a]2 × [0, b],

R
∗
npqr(s, u, t) �

1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
L∗im

􏽘

Lim

l≠l′
Kh3 ,p Siml − s( 􏼁Kh4 ,q Siml′ − u( 􏼁Kh5 ,r Tim − t( 􏼁 YimlYiml′ − D Siml, Siml′ , Tim( 􏼁􏼂 􏼃

+ O h
d+2
3 + h

2
4 + h

2
5 + h3h4 + h3h5􏼐 􏼑

� Oa.s. n
− 1/2

h
− 1
3 h

− 1
4 h

− 1
5 βnlog n( 􏼁

1/2
+ h

d+2
3 + h

2
4 + h

2
5 + h3h4 + h3h5􏼐 􏼑,

(C.5)

where βn � h3h4h5(cn22 + 4cn20h3h4 + 2cn12h5 + 8h3h4h5).
)us, uniformly in (s, u, t) ∈ [0, a]2 × [0, b],

􏽥Rn(s, u, t) − Rn(s, u, t)θ∗ � Oa.s. δn2 h3, h4, h5( 􏼁(

+ c2d h3, h4, h5( 􏼁􏼁.
(C.6)

We next consider R− 1
n (s, u, t). For any interior point

(s, u, t) ∈ [h3, a − h3] × [h4, a − h4] × [h5, b − h5],

E Rnpqr(s, u, t)􏽨 􏽩 � 􏽚 􏽚 􏽚 K(v)K(w)K(z)v
p
w

q
z

r
f2

· s + h3v, u + h4w, t + h5z( 􏼁 dv dw dz

� f2(s, u, t)]p]q]r + O h3 + h4 + h5( 􏼁,

(C.7)

where f2(·, ·, ·) is the joint density function of S1, S2, and T,
and is bounded away form 0. Hence, uniformly for
(s, u, t) ∈ [h3, a − h3] × [h4, a − h4] × [h5, b − h5],
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E Rn(s, u, t)􏼂 􏼃 � f2(s, u, t)diag Γ, ]2, ]2( 􏼁 + O h3 + h4 + h5( 􏼁

≡ f2(s, u, t)Ω− 1
2 + O h3 + h4 + h5( 􏼁,

(C.8)

and thus,
􏽢θ
∗

− θ∗ � Oa.s. δn2 h3, h4, h5( 􏼁 + c2d h3, h4, h5( 􏼁( 􏼁. (C.9)

)e same rate can achieve for boundary points, from
which we conclude that, uniformly for (s, u, t) ∈
[0, a]2 × [0, b],
􏽢D(s, u, t) − D(s, u, t) � Oa.s. δn2 h3, h4, h5( 􏼁 + c2d h3, h4, h5( 􏼁( 􏼁,

(C.10)

􏽢D
(d,0,0)

(s, u, t) − D
(d,0,0)

(s, u, t) � Oa.s. h
− d
3 δn2 h3, h4, h5( 􏼁􏼐

+ h
− d
3 c2d h3, h4, h5( 􏼁􏼑.

(C.11)

Now we consider 􏽢GS(s, u) and 􏽢G
(d,0)

S (s, u). Recall that

􏽢GS(s, u) � 􏽚
T

􏽢D(s, u, t) − 􏽢μ(s, t)􏽢μ(u, t)􏽮 􏽯dt,

􏽢G
(d,0)

S (s, u) � 􏽚
T

􏽢D
(d,0,0)

(s, u, t) − 􏽢μ(d,0)
(s, t)􏽢μ(u, t)􏼚 􏼛dt.

(C.12)

Since

􏽢GS(s, u) − GS(s, u) � 􏽚
T

􏽢D(s, u, t) − D(s, u, t)􏽮 􏽯dt

− 􏽚
T

􏽢μ(s, t)􏽢μ(u, t) − μ(s, t)μ(u, t)􏼈 􏼉dt,

(C.13)

we consider the first and the second terms on the right-hand
side of (C.13) separately. Now recall that 􏽢D(s, u, t)−

D(s, u, t) is the first component of R− 1
n (s, u, t)R∗n (s, u, t), and

then by (C.8) that uniformly for (s, u, t) ∈ [0, a]2 × [0, b],

􏽢D(s, u, t) − D(s, u, t) � f
− 1
2 (s, u, t) ω11, . . . ,ω1,d+3􏼐 􏼑 + Oa.s δn2 h3, h4, h5( 􏼁 + h3 + h4 + h5( 􏼁􏽮 􏽯R

∗
n (s, u, t), (C.14)

where ωjk is the (j, k)th component of Ω2. Note that

􏽚 f
− 1
2 (s, u, t)R

∗
npqr(s, u, t)dt≤ inf

s,u∈[0,a],t∈[0,b]
f2(s, u, t)􏼢 􏼣

− 1 1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
L∗im

􏽘

Lim

l≠l′
􏽚 Kh5 ,r Tim − t( 􏼁dt Kh3,p Siml − s( 􏼁Kh4,q Siml′ − u( 􏼁

⎧⎪⎨

⎪⎩

· YimlYiml′ − D Siml, Siml′ , Tim( 􏼁􏼂 􏼃􏼃 + Oa.s c2d h3, h4, h5( 􏼁( 􏼁􏼉.

(C.15)

Since by Lemma A.6, uniformly for (s, u) ∈ [0, a]2,

1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
L∗im

􏽘

Lim

l≠l′
􏽚 Kh5 ,r Tim − t( 􏼁dt Kh3 ,p Siml − s( 􏼁Kh4 ,q Siml′ − u( 􏼁 YimlYiml′ − D Siml, Siml′ , Tim( 􏼁􏼂 􏼃􏼔 􏼕

�
− ]r

n
􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
L∗im

􏽘

Lim

l≠l′
Kh3 ,p Siml − s( 􏼁Kh4 ,q Siml′ − u( 􏼁 YimlYiml′ − D Siml, Siml′ , Tim( 􏼁􏼂 􏼃

� Oa.s. δn2 h3, h4, 1( 􏼁( 􏼁,

(C.16)

it follows from (C.14) that, uniformly for (s, u) ∈ [0, a]2,

􏽚
T

􏽢D(s, u, t) − D(s, u, t)􏽮 􏽯dt � Oa.s. δn2 h3, h4, 1( 􏼁 + c2d h3, h4, h5( 􏼁( 􏼁. (C.17)
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We next look into the second term on the right-hand
side of (C.13). By Lemma A.5 and the similar derivation
leading to (C.17), uniformly for (s, u) ∈ [0, a]2,

􏽚
T

􏽢μ(s, t)􏽢μ(u, t) − μ(s, t)μ(u, t)􏼈 􏼉dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 􏽚

T
􏽢μ(s, t) 􏽢μ(u, t) − μ(u, t)􏼈 􏼉dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 􏽚

T
􏽢μ(s, t) − μ(s, t)􏼈 􏼉μ(u, t)dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤O(1) sup
(s,t)∈[0,a]×[0,b]

|􏽢μ(s, t)| 􏽚[􏽢μ(u, t) − μ(u, t)]dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ O(1) sup
(u,t)∈[0,a]×[0,b]

|μ(u, t)| 􏽚[􏽢μ(s, t) − μ(s, t)]dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� Oa.s δn1 h1, 1( 􏼁 + c1d h1, h2( 􏼁( 􏼁.

(C.18)

)us, combining (C.13), (C.17), and (C.18) leading to
(E.6), which is

sup
(s,u)∈[0,a]2

􏽢GS(s, u) − GS(s, u)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � Oa.s. δn2 h3, h4, 1( 􏼁(

+ c2d h3, h4, h5( 􏼁 + δn1 h1, 1( 􏼁

+ c1d h1, h2( 􏼁􏼁.

(C.19)

By mirroring the derivations above, we can prove (E.8),
which is

sup
(s,u)∈[0,a]2

􏽢G
(d,0)

S (s, u) − G
(d,0)
S (s, u)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 � Oa.s. h
− d
3 δn2 h3, h4, 1( 􏼁􏼂􏼐

+ c2d h3, h4, h5( 􏼁 + δn1 h1, 1( 􏼁

+ c1d h1, h2( 􏼁􏼃􏼁.

(C.20)

)eorem 2 holds.

D. Proof of Theorem 3

Let Δ be the integral operator with kernel 􏽢GS(s, u) −

GS(s, u). )e following Lemma A.7 is needed for the proof
of )eorem 3 and )eorem 4.

Lemma A.7. For any bounded measurable function ψ on
[0, a],

sup
u∈[0,a]

|(Δψ)(u)|Oa.s. δn2 h4, 1, 1( 􏼁(

+ c2d h3, h4, h5( 􏼁 + δn1 h1, 1( 􏼁

+ c1d h1, h2( 􏼁􏼁.

(D.1)

)e proof of Lemma A.7 is provided in the supple-
mentary material.

Proof of Keorem 3. Since for all (s, t) ∈ [0, a] × [0, b],
V(s, t) � D(s, s, t) + σ2,

􏽢σ2 − σ2 �
1

ab
􏽚

a

0
􏽚

b

0
􏽢V(s, t) − V(s, t)􏽮 􏽯dt ds

−
1

ab
􏽚

a

0
􏽚

b

0
􏽢D(s, s, t) − D(s, s, t)􏽮 􏽯dt ds.

(D.2)

Note that 􏽒
a

0 􏽒
b

0
􏽢D(s, s, t) − D(s, s, t)􏽮 􏽯dt ds is a special

case of Bn1 in the proof of Lemma A.7 with h3 � h4, d � 0,
and ψ(·) ≡ 1, then according to the proof of Lemma A.7, we
can obtain that 􏽒

a

0 􏽒
b

0
􏽢D(s, s, t) − D(s, s, t)􏽮 􏽯dt ds has the

same rate as 􏽒
a

0 􏽒
b

0 R∗n (s, s, t)dt ds with d � 0 and h3 � h4.
According to the expression (C.5) of R∗npqr(s, u, t), we

can obtain that

􏽚
a

0
􏽚

b

0
R
∗
npqr(s, s, t)dt ds � 􏼨

1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
L∗im

􏽘

Lim

l≠l′
􏼢 􏽚

a

0
Kh3 ,p Siml − s( 􏼁Kh3 ,q Siml′ − s( 􏼁ds 􏽚

b

0
Kh5 ,r Tim − t( 􏼁dt

· YimlYiml′ − D Siml, Siml′ , Tim( 􏼁􏼂 􏼃􏼣 + Oa.s c20 h3, h3, h5( 􏼁( 􏼁􏼩.

(D.3)
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Obviously, 􏽒
a

0 Kh3 ,p(Siml − s)Kh3 ,q(Siml′ − s)ds � O(h− 1
3 )

and 􏽒
b

0 Kh5 ,r(Tim − t)dt � − ]r, which together with Lemma
A.6 leads to that

􏽚
a

0
􏽚

b

0
R
∗
npqr(s, s, t)dt ds � 􏽚

1
n

􏽘

n

i�1

1
Mi

􏽘

Mi

m�1

1
L∗im

􏽘

Lim

l≠l′
YimlYiml′ − D Siml, Siml′ , Tim( 􏼁􏼃Kh3

Siml − Siml′ + uh3( 􏼁􏽨 􏽩

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
du

+ Oa.s c20 h3, h3, h5( 􏼁( 􏼁

� Oa.s δn3 h3, 1, 1( 􏼁 + c20 h3, h3, h5( 􏼁( 􏼁,

(D.4)

which is also the rate of 􏽒
a

0 􏽒
b

0
􏽢D(s, s, t) − D(s, s, t)􏽮 􏽯dt ds.

On the contrary, based on the definition of 􏽢V(s, t), by
applying the similar proof of Lemma A.1 and A.2, Lemma 5,
and )eorem 2 to 􏽒

a

0 􏽒
b

0
􏽢V(s, t)dt ds, it is easy to show that

􏽚
a

0
􏽚

b

0
􏽢V(s, t) − V(s, t)􏽮 􏽯dt ds � Oa.s.

������

log n/n
􏽱

+ c10 hv1
, hv2

􏼐 􏼑􏼒 􏼓.

(D.5)

Since c10(hv1
, hv2

) � h2
v1 + h2

v2 and c20(h3, h3, h5) �

h2
3 + h2

5, combing (D.2)–(D.5) leads to )eorem 3. □

E. Proof of Theorem 4

(1) By the L2 expansion [12] and Bessel’s inequality, we
have for some constant C> 0:

􏽢ψj − ψj

�����

�����≤C Δψj

�����

����� +‖Δ‖2􏼒 􏼓, (E.1)

where ‖Δ‖ � 􏽒 􏽒 [􏽢GS(s, u) − GS(s, u)]2ds du􏽮 􏽯
1/2

is the
Hilbert–Schmidt norm of Δ. )en, it follows form
)eorem 2 and Lemma A.7 that

Δψj

�����

����� � Oa.s. δn2 h4, 1, 1( 􏼁 + c2d h3, h4, h5( 􏼁(

+ δn1 h1, 1( 􏼁 + c1d h1, h2( 􏼁􏼁,
(E.2)

‖Δ‖2 � Oa.s. δ2n2 h3, h4, 1( 􏼁 + c
2
2d h3, h4, h5( 􏼁􏼐

+ δ2n1 h1, 1( 􏼁 + c
2
1d h1, h2( 􏼁􏼑,

(E.3)

and hence

􏽢ψj − ψj

�����

����� � Oa.s. δn2 h4, 1, 1( 􏼁 + δ2n2 h3, h4, 1( 􏼁􏼐

+ c2d h3, h4, h5( 􏼁 + δn1 h1, 1( 􏼁 + c1d h1, h2( 􏼁􏼁.

(E.4)

)eorem 4(1) holds.
(2) By (4.9) in Hall et al. [13],

􏽢λj − λj � 􏽚 􏽚 􏽢GS(s, u) − GS(s, u)􏽨 􏽩ψj(s)ψj(u)ds du + O Δψj

�����

�����
2

􏼒 􏼓

� 􏽚
a

0
􏽚

a

0
􏽚

b

0
[ 􏽢D(s, u, t) − D(s, u, t)]dtψ(s)dsψj(u)du

− 􏽚
a

0
􏽚

a

0
􏽚

b

0
[􏽢μ(s, t)􏽢μ(u, t) − μ(s, t)μ(u, t)]dtψ(s)dsψj(u)du + O Δψj

�����

�����
2

􏼒 􏼓

≡ 􏽥Bn1 − 􏽥Bn2 + O Δψj

�����

�����
2

􏼒 􏼓.

(E.5)

Similarly to the argument leading to the rate of Bn1 in
Lemma A.7, we can obtain that

􏽥Bn1 � Oa.s [log n/n]
1/2

+ c2d h3, h4, h5( 􏼁􏼐 􏼑. (E.6)

Next, we write

􏽥Bn2 � 􏽚
a

0
􏽚

a

0
􏽚

b

0
􏽢μ(s, t)􏽢μ(u, t) − μ(s, t)μ(u, t)􏼈 􏼉dtψ(s)dsψj(u)du

≤ 􏽚
a

0
􏽚

a

0
􏽚

b

0
􏽢μ(s, t) 􏽢μ(u, t) − μ(u, t)􏼈 􏼉dtψj(s)dsψj(u)du

+ 􏽚
a

0
􏽚

b

0
􏽢μ(s, t) − μ(s, t)􏼈 􏼉μ(u, t)dtψj(s)dsψj(u)du,

(E.7)
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and similarly, we can show that

􏽥Bn2 � Oa.s [log n/n]
1/2

+ c1d h1, h2( 􏼁􏼐 􏼑. (E.8)

By combining (E.2) and (E.5)–(E.8), )eorem 4(2) is
proved.

(3) For any u ∈ [0, a],

􏽢λj
􏽢ψj(u) − λjψj(u) � 􏽚 􏽢GS(s, u)􏽢ψj(s)ds − 􏽚 GS(s, u)ψj(s)ds

� 􏽚 􏽢GS(s, u) − GS(s, u)􏽨 􏽩ψj(s)ds

+ 􏽚 􏽢GS(s, u) 􏽢ψj(s) − ψj(s)􏽨 􏽩ds.

(E.9)

By the Cauchy–Schwarz inequality, uniformly for all
u ∈ [0, a],

􏽚 􏽢GS(s, u) 􏽢ψj(s) − ψj(s)􏽨 􏽩ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽚 􏽢G
2
S(s, u)ds􏼔 􏼕

1/2
􏽢ψj − ψj

�����

�����

≤ sup
s,u∈[0,a]

􏽢G
2
S(s, u) 􏽢ψj − ψj

�����

����� � Oa.s.
􏽢ψj − ψj

�����

�����􏼒 􏼓.

(E.10)

)us, by Lemma A.7, we have uniformly for all u ∈
[0, a]:

􏽢λj
􏽢ψj(u) − λjψj(u) � Oa.s. δn2 h4, 1, 1( 􏼁 + δ2n2 h3, h4, 1( 􏼁􏼐

+ c2d h3, h4, h5( 􏼁 + δn1 h1, 1( 􏼁

+ c1d h1, h2( 􏼁􏼁.

(E.11)

By the triangle inequality and )eorem 4(2),

sup
u∈[0,a]

λj
􏽢ψj(u) − ψj(u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ sup
u∈[0,a]

􏽢λj
􏽢ψj(u) − λjψj(u)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ 􏽢λj − λj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 sup
u∈[0,a]

􏽢ψj(u)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� Oa.s. (log n/n)
1/2

+ δn2 h4, 1, 1( 􏼁􏼐

+ δ2n2 h3, h4, 1( 􏼁 + c2d h3, h4, h5( 􏼁

+ δn1 h1, 1( 􏼁 + c1d h1, h2( 􏼁􏼁.

(E.12)

)eorem 4(3) holds.
(4) Note that for all s ∈ [0, a],

􏽢ψ(d)
j (s) − ψ(d)

j (s) � 􏽢λ
− 1
j 􏽚

S

􏽢G
(d,0)

S (s, u)􏽢ψj(u)du − λ− 1
j 􏽚

S
G

(d,0)
S (s, u)ψj(u)du

� 􏽢λ
− 1
j 􏽚

S

􏽢G
(d,0)

S (s, u)􏽢ψj(u)du − 􏽚
S

G
(d,0)
S (s, u)ψj(u)du􏼔 􏼕 + λ− 1

j − 􏽢λ
− 1
j􏼔 􏼕􏽚

S
G

(d,0)
S (s, u)ψj(u)du

� 􏽢λ
− 1
j 􏽚 􏽢G

(d,0)

S (s, u) − G
(d,0)
S (s, u)􏼔 􏼕ψj(u)du + 􏽚 􏽢G

(d,0)

S (s, u) 􏽢ψj(u) − ψj(u)􏽨 􏽩du􏼚 􏼛 + λ− 1
j − 􏽢λ

− 1
j􏼔 􏼕􏽚

S
G

(d,0)
S (s, u)ψj(u)du.

(E.13)

By the Cauchy–Schwarz inequality, uniformly for all
s ∈ [0, a],

􏽚 􏽢G
(d,0)

S (s, u) 􏽢ψj(u) − ψj(u)􏽨 􏽩du

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ sup
s,u∈[0,a]

􏽢G
(d,0)

S (s, u)􏼔 􏼕
2

􏽢ψj − ψj

�����

����� � Oa.s.
􏽢ψj − ψj

�����

�����􏼒 􏼓.

(E.14)

On the contrary, by the similar argument in the proof of
Lemma A.7, we can show that, uniformly for all
s ∈ [0, a],

􏽚 􏽢G
(d,0)

S (s, u) − G
(d,0)
S (s, u)􏼔 􏼕ψj(u)du

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� Oa.s. h

− d
3 δn2 h4, 1, 1( 􏼁 + c2d h3, h4, h5( 􏼁 + δn1 h1, 1( 􏼁 + c1d h1, h2( 􏼁( 􏼁􏼐 􏼑. (E.15)
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It then follows from )eorem 4(2) that

sup
s∈[0,a]

􏽢ψ(d)
j (s) − ψ(d)

j (s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � Oa.s. (log n/n)
1/2

+ δ2n2 h4, 1, 1( 􏼁 + δ2n1 h1, 1( 􏼁 + h
− d
3 δn2 h4, 1, 1( 􏼁 + c2d h3, h4, h5( 􏼁(􏼐

+ δn1 h1, 1( 􏼁 + c1d h1, h2( 􏼁􏼁􏼁,

(E.16)

which proves )eorem 4(4).
(5) )e uniform consistency of 􏽢ξij(t) is straightforward,

and the detailed discussions are omitted.
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