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Sub-Saharan Africa harbours the majority of the burden of Lassa fever. Clinical diseases, as well as high seroprevalence, have been
documented in Nigeria, Sierra Leone, Liberia, Guinea, Ivory Coast, Ghana, Senegal, Upper Volta, Gambia, and Mali. Deaths from
Lassa fever occur all year round but naturally peak during the dry season. Annually, the number of people infected is estimated at
100,000 to 300,000, with approximately 5,000 deaths. )ere have been some work done on the dynamics of Lassa fever disease
transmission, but to the best of our knowledge, none has been able to capture the seasonal variation of Mastomys rodent
population and its impact on the transmission dynamics. In this work, a periodically forced seasonal nonautonomous system of a
nonlinear ordinary differential equation is developed that captures the dynamics of Lassa fever transmission and seasonal
variation in the birth ofMastomys rodents where time was measured in days to capture seasonality. It was shown that the model is
epidemiologically meaningful and mathematically well posed by using the results from the qualitative properties of the solution of
the model. A time-dependent basic reproduction number RL(t) is obtained such that its yearly average is written as 􏽥RL < 1, when
the disease does not invade the population (means that the number of infected humans always decreases in the seasons of
transmission), and 􏽥RL > 1, when the disease remains constantly and is invading the population, and it was detected that 􏽥RL ≠RL.
We also performed some evaluation of the Lassa fever disease intervention strategies using the elasticity of the equilibrial
prevalence in order to predict the optimal intervention strategies that can be useful in guiding the local national control program
on Lassa fever disease to make a proper decision on the intervention packages. Numerical simulations were carried out to illustrate
the analytical results, and we found that the numerical simulations of the model showed that possible combined intervention
strategies would reduce the spread of the disease. It was established that, to eliminate Lassa fever disease, treatments with ribavirin
must be provided early to reduce mortality and other preventive measures like an educational campaign, community hygiene,
isolation of infected humans, and culling/destruction of rodents must be applied to also reduce the morbidity of the disease.
Finally, the obtained results gave a primary framework for planning and designing cost-effective strategies for good interventions
in eliminating Lassa fever.

1. Introduction

Lassa fever (LF) is an acute viral hemorrhagic illness that is
common in West Africa. LF is caused by Lassa virus, a
single-stranded RNA virus belonging to the family Arena-
viridae. First discovered in 1969 when twomissionary nurses
died and named after the Lassa town in Borno State, Nigeria,

where the first cases occurred, the disease is now endemic in
many parts of West African countries including Nigeria,
Sierra Leone, Liberia, and Guinea. Infections with Lassa
virus are generally estimated to range from 100,000 to
300,000, with approximately 5,000 deaths each year [1]. )e
“multimammate rat” (Mastomys natalensis) is regarded as
the major reservoir host for the virus inWest Africa. )is rat
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species which is widely distributed throughout the region
can shed the virus in its faeces or urine. Humans become
infected during direct contact with the rodent reservoir,
during consumption of food contaminated with rodent
faeces and urine, or during direct contact with bodily fluids
of infected humans. Signs and symptoms of Lassa fever
typically occur 1–3 weeks after the patient comes in contact
with the virus. For the majority of Lassa fever virus infec-
tions (approximately 80%), symptoms are mild and are
undiagnosed. Mild symptoms include a slight fever, general
weakness, and headache. In 20% of infected individuals,
however, the disease may progress to more serious symp-
toms including hemorrhage (bleeding in gums, eyes, or
nose), respiratory distress, repeated vomiting, facial swelling,
pain in the chest, back, and abdomen, and shock, and the
neurological problem has also been described including
hearing loss and tremors [2–6]. Lassa fever is generally
treated with the antiviral drug ribavirin, which has been very
effective when given early in the course of the disease [7–9].

In Nigeria, sporadic outbreaks of Lassa fever have been
documented since 1969. )e infection is endemic in several
states including Edo, Ebonyi, Onitsha, Jos, Taraba, Nasar-
awa, Yobe, Rivers, and Ondo states. In 2012, for example,
623 suspected cases (108 laboratory confirmed), including 70
deaths, were recorded from 19 states in Nigeria [10, 11]. A
total of 11 confirmed cases of Lassa were recorded in Nigeria
with high prevalence in Oyo State in 2014. Between January
1 and March 8, 2015, the Nigeria Centre for Disease Control
[12] reported 21 cases of Lassa fever (4 lab confirmed) and 1
death due to Lassa [8, 13]. Between August 2015 and January
2016, there were 239 suspected cases of LF (44 lab con-
firmed), including 82 deaths, across 19 states including
Anambra, Bauchi, Nasarawa, Niger, Delta, Ekiti, Ondo,
Kogi, Ebonyi, Lagos, Osun, FCT, Taraba, Kano, Rivers, Edo,
Plateau, Gombe, and Oyo states [12, 14]. Similarly, the years
2016, 2017, 2018, and 2019 were not spared from Lassa fever
in Nigeria with outbreaks across several states (statistics can
be viewed on the Nigeria Centre for Disease Control
(NCDC) website).

)e outbreak of Lassa fever is highest in humans during
the dry season, following multimammate rodent reservoir
breeding during the rainy season.

Studies have shown that seasonal timing of reproduction
can affect the dynamics of host-pathogen systems [15–18].
Seasonality has to do with the systematic peaks of diseases at a
certain time of the year, and one of its drivers is the birth rate
pulses which will be considered in this work. Understanding
how seasonally varying parameters act as a forcing mecha-
nism and investigating their dynamical consequences are part
of our interest in this work. In this case, we are interested in
understanding how such periodically forcedmodels permit us
to better capture the observed pattern of recurrent epidemics
different from the unforced models which predict damped
oscillation toward the endemic equilibrium [19].

Several mathematical models have been used to capture
the dynamics of physical, chemical, biological, economical,
and many other complex systems. Various works have been
done so far with the use of the mathematical model applied
to epidemiology which include but are not limited to the

following: [20–22]. Little attention has been paid to this
disease in the past, leading to scanty information about its
transmission dynamics. Despite this, few studies have
attempted to study Lassa virus dynamics using the mathe-
matical modelling approach. James et al. [23] studied the
dynamics transmission of Lassa fever using the susceptible,
infected, and removed (SIR) model. )e authors obtained
the disease-free equilibrium and endemic equilibrium states
of the system of the differential equation describing the
dynamics of the disease. From the stability analyses of the
two equilibrium states, they were able to ascertain that if the
death rate of the human reservoir is greater than the re-
spective birth rate, then the disease could be control and
eradicated. )ey further specified, from their analysis, when
it is practically impossible to control the disease. From this,
one may ask what happens to the spread if either of the
conditions for disease eradication becomes the case. Ogabi
et al. [24] proposed an SIR model for controlling Lassa fever
in the northern part of the Edo State by considering two
senatorial districts of the state with about twomillion people.
Using the numerical approach, they analysed the relation-
ship between the susceptible, infected, and removed classes
with three health policies. )ese health policies which
consist of three sets of parameters representing the birth
rate, the natural death rate, the transmission rate, and the
rate of recovery were employed by the authors to simulate
their results. )ey were able to show that the reproduction
number is affected by these parameters, which indirectly tells
that “the health policies” can control the disease, given the
role of the reproduction number in disease dynamics. )ey
were able to show also that the disease can be controlled if
the transmission rate becomes less than the recovery rate.

Bawa et al. [25] also did a study of Lassa fever dynamics
by subdividing the rodent population into infant and adult
classes. From their analyses of the disease-free and endemic
equilibria, they established a global stability condition for the
control of the disease, which is dependent on the repro-
duction number as obtained in their work. Mohammed et al.
[26] in their work developed a transmission dynamic model
for Lassa fever with human immigration. Model analysis was
carried out to calculate the reproduction number, and
sensitivity analysis of the model was also performed. )eir
results showed that the human immigration rate is the most
sensitive parameter and then the human recovery rate is the
second most sensitive parameter followed by the person-to-
person contact rate. It was suggested that control strategies
should target human immigration, effective drugs for
treatment, and education to reduce person-to-person con-
tact. Andrei et al. [27], in their paper, suggested that seasonal
migratory dynamics of rodents played a key role in regu-
lating the cyclic pattern of Lassa fever epidemics, but they
had no explicit model. Joachim et al. [29] also suggested in
their work that the use of continuous control or rodent
vaccination is the strategy that can lead to Lassa fever
elimination. Having gone through several works on Lassa
fever disease and its transmission dynamics, we observed
that none investigated the effect of the periodically forced
per capita birth rate of Mastomys rodents on the trans-
mission dynamics of Lassa fever. So, in this work, our aim is
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to investigate the effect of predictable variability in time-
dependent per capita birth rate ofMastomys rats/rodents on
the transmission dynamics of Lassa fever and to explore
factors that contribute to continuous outbreak and how
those factors can be curtailed in the presence of one or many
intervention strategies that we will evaluate.

)e rest of this paper is organized as follows: Model
formulation and description are presented in Section 2. In
Section 3, we displayed the nonautonomous periodically
forced Lassa fever model. In Section 4, qualitative analysis of
the periodically forced Lassa fever model is discussed. In
Section 5, we present the existence of the endemic equi-
librium point for the periodically forced Lassa fever model.
In Section 6, we present the evaluation of the Lassa fever
intervention strategies using the elasticity of the static
quantity, while in Section 7, numerical results are shown.
Conclusions and recommendations of this work are pre-
sented in Section 8.

2. Model Formulation and Analysis

We propose a Lassa fever model with SHEHAHIHRH + SRIR

compartmental design with standard incidence and variable
total human andMastomys rat/rodent population. SH stands
for the number of susceptible humans in the population, EH

is referred to as the number of exposed humans in the
population, AH represents the number of asymptomatic
humans in the population, IH is the number of infected and
infectious humans, and RH is the number of recovered
humans. )e total human population at time t is given by
NH(t), and it is grouped into susceptible humans (SH(t)),
exposed humans (EH(t)), asymptomatic humans (AH(t)),
infected humans (IH(t)), and temporary immune/recov-
ered humans (RH(t)). )erefore,

NH(t) � SH(t) + EH(t) + AH(t) + IH(t) + RH(t). (1)

)e totalMastomys natalensis rat population at time t is
given by NR(t), and it is subdivided into susceptible Mas-
tomys natalensis rats (SR(t)) and infected and infectious
Mastomys natalensis rats (IR(t)). Hence,

NR(t) � SR(t) + IR(t). (2)

)e population of susceptible humans is produced by the
human per capita birth rateΛH followed by the rate at which
humans lose their immunity σ. It is reduced by infection
following contacts with the infectedMastomys natalensis rat
at a rate βH; by infection following contacts with asymp-
tomatic humans at a rate β1; and by infection following
contacts with symptomatic infected humans at a rate β2. It is
further reduced by the natural death rate of the human
population μH.

)us, the rate of change of the population of susceptible
humans is given by
dSH

dt
� ΛH −

βHSHIR

NH

−
β1AHSH

NH

−
β2IHSH

NH

+ σRH − μHSH.

(3)

And the rate of change of the population of exposed
humans is given by

dEH

dt
�
βHSHIR

NH

+
β1AHSH

NH

+
β2IHSH

NH

− θ + μH( 􏼁EH, (4)

where θ is the rate of progression from exposed humans to
asymptomatic humans and to infected humans and μH is the
natural death rate.

)e population of asymptomatic humans is generated
following the rate at which exposed humans progress to the
asymptomatic compartment, with the probability of an
exposed individual becoming an asymptomatic case upon
infection (1 − υ)θ, which reduces by the transmission rate
from an infected rat to asymptomatic humans β3 and de-
creases by recovery at a rate c1; it also decreases by Lassa
fever-induced death at a rate ω1 and natural death rate μH.

)erefore, the rate of change of the population of
asymptomatic humans is given by

dAH

dt
� (1 − υ)θEH −

β3AHIR

NH

− ω1 + c1 + μH( 􏼁AH. (5)

)e infected human population is defined as
dIH

dt
� υθEH +

β3AHIR

NH

− ω2 + c2 + μH( 􏼁IH, (6)

where θυ is the probability of an exposed individual be-
coming asymptomatic upon infection, which decreases by
the transmission rate from an infected rat to asymptomatic
humans at a rate β3; ω2 is the Lassa fever-induced death rate
in the infectious and asymptomatic classes, while c2 is the
recovery rate of the infected class; and μH is the natural death
rate.

)e population of recovery/temporary immune is gen-
erated by the recovery rate c1 of the asymptomatic humans
and the recovery rate of the infected and asymptomatic
humans. It is reduced by the loss of immunity at a rate σ and
natural death at a rate μH.

)erefore, the rate of change of the recovered population
is given by

dRH

dt
� c1AH + c2IH − σ + μH( 􏼁RH. (7)

)e population of susceptible mastomys natalensis rat is
generated by the time-dependent per capita birth rate of
mastomys natalensis rat, ΛR(t)ΛR(t) � Λ0(1 + Λ1cos
((2π/365.25)(t + ϕ))). It is reduced by infection, following
number of contacts with an infectedmastomys natalensis rat
at a rate βR. It is further reduced by the natural death rate of
the susceptible mastomys natalensis rat population at a rate
μR.

)erefore, the rate of change of the population of sus-
ceptible mastomys natalensis rat/rodent is given by

dSR

dt
� ΛR(t)NR 1 −

NRIR

M
􏼒 􏼓 − βRSRIR − μRSR. (8)

Hence, the rate of change of the population of infected
mastomys natalensis rat is given by
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dIR

dt
� βRSRIR − μRIR, (9)

where μR is the natural death rate ofmastomys natalensis rat.
)e model schematic diagram is given in Figure 1 below:
)e associated model variables and parameters are de-

scribed in Tables 1 and 2, respectively.

3. The Lassa-Fever Nonautonomous
Periodically Forced Model

)e following is obtained from the model descriptions:
dSH

dt
� ΛH −

βHSHIR

NH

−
β1AHSH

NH

−
β2IHSH

NH

+ σRH − μHSH,

dEH

dt
�
βHSHIR

NH

+
β1AHSH

NH

+
β2IHSH

NH

− θ + μH( 􏼁EH,

dAH

dt
� (1 − υ)θEH −

β3AHIR

NH

− ω1 + c1 + μH( 􏼁AH,

dIH

dt
� υθEH +

β3AHIR

NH

− ω2 + c2 + μH( 􏼁IH,

dRH

dt
� c1AH + c2IH − σ + μH( 􏼁RH,

dSR

dt
� ΛR(t)NR 1 −

NR

M
􏼒 􏼓 − βRSRIR − μRSR,

dIR

dt
� βRSRIR − μRIR,

dNH

dt
�ΛH − μHNH − ω1AH − ω2IH􏼁,

dNR

dt
� ΛR(t)NR 1 −

NR

M
􏼒 􏼓 − μRNR,

(10)

where

ΛR(t) � Λ0 1 + Λ1cos
2π

365.25
(t + ϕ)􏼒 􏼓􏼒 􏼓, (11)

subject to the initial conditions

SH(0) � SH,0,

EH(0) � EH,0,

AH(0) � AH,0,

IH(0) � IH,0,

RH(0) � RH,0,

SR(0) � SR,0,

IR(0) � IR,0.

(12)

We discuss in details the basic properties of the peri-
odically forced Lassa-fever model (10) which entails its basic
mathematical analysis in the next section.

Suppose ΛR(t) denotes the average, given that

ΛR(t) �
1
Q

􏽚
t+Q

t0

ΛR(s)ds, (13)

t≥ 0 and we assume ΛR(t)> 0. )e basic properties of the
Lassa-fever model (10) which entails its basic mathematical
analysis are presented in the next section.

4. Qualitative Analysis of the Periodically
Forced Lassa Fever Model

4.1. Positivity of Solutions. We found it pertinent to prove
that all the state variables of the periodically forced Lassa
fever transmission dynamicmodel (10) are nonnegative at all
time (10) for the model to be epidemiologically meaningful
and mathematically well-posed.

Theorem 1. Given that the initial data SH ≥ 0, EH ≥ 0,
AH ≥ 0, IH ≥ 0, RH ≥ 0, SR ≥ 0, IR ≥ 0, then the solutions
(SH, EH, AH, IH, RH, SR, IR) of the periodically forced Lassa
fever model (10) are non-negative for all t> 0.

Hence,

lim sup
t⟶∞

NH(t)≤
ΛH

μH

,

lim sup
t⟶∞

NR(t)≤
M ΛR(t) − μR( 􏼁

ΛR(t)
.

(14)

Such that

NH � SH + EH + AH + IH,

NR � SR + IR.
(15)

Proof. Suppose ΩL � sup t> 0: SH(t)> 0, EH(t)> 0, AH (t)

> 0, IH(t)> 0, RH(t)> 0, SR(t)> 0, IR(t)> 0. Since SH(t)

> 0, EH(t)> 0, AH(t)> 0, IH(t)> 0, RH(t)> 0, SR(t)> 0,
IR(t)> 0, then ΩL > 0. If ΩL >∞, then SH, EH,

AH, IH, RH, SR, IR equals zero at ΩL.

It follows from the first equation of the system (10) that

dSH

dt
� ΛH −

βHSHIR

NH

−
β1AHSH

NH

−
β2IHSH

NH

+ σRH − μHSH.

(16)

Hence,

d
dt

SH(t)exp βHIR + β1AH + β2IH + μH( 􏼁t􏼂 􏼃 � 􏽚
ΩL

0
ΛH(

+ σRH􏼁exp βHIR + β1AH + β2IH + μH( 􏼁q􏼂 􏼃dq.

(17)

Such that
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(1 − θ)υ γ2

γ1

θυ
σ

µR

µH µH µH + ω1 µH + ω2 µH

SH EH AH IH RH

µR

SR IR
βR

βH
β1

β2

β3

ΛR (t)

ΛH

Figure 1: Flowchart for the Lassa fever model.

Table 1: Description of the state variables in the Lassa-fever model.

Variable Description
SH(t) Number of susceptible, naive, and nonimmune humans host at time, t
EH(t) Number of exposed humans host at time, t
AH(t) Number of infectious, asymptomatic humans host at time, t
IH(t) Number of infected, infectious, clinically ill, and symptomatic humans host at time, t
RH(t) Number of recovered/temporary immune humans host at time, t
SR(t) Number of susceptible Mastomys natalensis rat (rodent) at time, t
IR(t) Number of infected Mastomys natalensis rat (rodent) at time, t

Table 2: Table showing parameters of the Lassa fever model.

Parameter Description
ΛH Recruitment rate of humans. humans × Time− 1

ΛR(t) Time-dependent per capita birth rate of mastomys natalensis rat. Time− 1

Λ0 )e baseline per capita birth rate of mastomys natalensis rat. Time− 1

Λ1 Amplitude or degree of seasonality. Time− 1

ϕ Phase angle (month of peak in seasonal forcing). Time− 1

βH Infection rate from mastomys natalensis rat-to-susceptible humans. Time− 1

β1 Infection rate from infected humans-to-susceptible humans. Time− 1

β2 Infection rate from asymptomatic humans-to-susceptible humans. Time− 1

β3 Transmission rate from infected rat to asymptomatic humans. Time− 1

βR Infection rate from infected mastomys natalensis rat-to-susceptible mastomys natalensis rat. Time− 1

σ Rate at which temporary immune humans looses their immunity. Time− 1

c1 Recovery rate of infected humans. Time− 1

c2 Recovery rate of asymptomatic humans. Time− 1

ω1 Lassa fever-induced death rate of symptomatic. Time− 1

ω2 Lassa fever-induced death rate of asymptomatic infected humans. Time− 1

θυ Probability of an exposed individual becoming symptomatic upon infection. Time− 1

(1 − θ)υ Probability of an exposed individual becoming asymptomatic case upon infection. Time− 1

M Carrying capacity of the mastomys natalensis rat population. Time− 1

μH Natural death rate of humans. Time− 1

μR Natural death rate of mastomys natalensis rat. Time− 1
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SH ΩL( 􏼁 � SH(0)exp − βHIR + β1AH + β2IH + μH( 􏼁ΩL􏼂 􏼃 + exp − βHIR + β1AH + β2IH + μH( 􏼁ΩL􏼂 􏼃

× 􏽚
ΩL

0
ΛH + σRH( 􏼁exp βHIR + β1AH + β2IH + μH( 􏼁q􏼂 􏼃dq,

AH ΩL( 􏼁 � AH(0)exp −
βHIR

NH

+ ω + c1 + μH( 􏼁ΩL + exp
βHIR

NH

+ ω + c1 + μH􏼠 􏼡ΩL􏼢 􏼣􏼠 􏼡q􏼢 􏼣dq> 0.

(18)

It can also be proved that EH > 0, IH > 0, RH > 0, SR > 0,
IR > 0, ∀t> 0.

Remark 1. )e solutions (SH, EH, AH, IH, RH, SR, IR) of the
Lassa fever autonomous model with nonnegative initial data
will remain nonnegative every time as t> 0.

4.2. Boundedness of the Solution

Theorem 2. Every solution (SH, EH, AH, IH, RH, SR, IR) of
the Lassa fever non-autonomous model are bounded. 7us, if
lim supt⟶∞NH(t) ≤ (ΛH / μH) and lim supt⟶∞NR(t)

≤M. Such that

NH � SH + EH + AH + IH,

NR � SR + IR.
(19)

Proof. Suppose 0< IH(t)≤NH(t), 0<AH(t)≤NH(t), and
0< IR ≤NR(t). Hence, the sum of the first five equations of
the model (10) is given by

dNH(t)

dt
� ΛH − μNH − ω1AH − ω2IH, (20)

while the sum of the last two equations of the model (10) is
given by

dNR

dt
� ΛR(t)NR 1 −

NR

M
􏼒 􏼓 − μRNR. (21)

)erefore,

ΛH − μH + ω1 + ω2( 􏼁NH(t) ≤
dNH(t)

dt
≤ΛH − μH,

ΛR(t)NR 1 −
NR

M
􏼒 􏼓 − μRNR ≤

dNH(t)

dt

≤ΛR(t)NR 1 −
NR

M
􏼒 􏼓 − μRNR.

(22)

)erefore,
ΛH

μH + ω1 + ω2
≤ lim inf

t⟶∞
NH(t)≤ lim sup

t⟶∞
NH(t)≤

ΛH

μH

,

M ΛR(t) − μR( 􏼁

ΛR(t)
≤ lim inf

t⟶∞
NR(t)

≤ lim sup
t⟶∞

NR(t)≤
M ΛR(t) − μR( 􏼁

ΛR(t)
.

(23)

Remark 2. )is shows that the periodically forced Lassa
fever model (10) is epidemiologically meaningful and
mathematically well posed in the region J � JH ∪ JR ⊂
R5

+ × R2
+ . Hence, the total population of humans and the

mastomys natalensis rats is bounded above and below.

Theorem 3. 7e region J � JH ∪ JR ⊂ R5
+ × R2

+ is positively
invariant for the model (10) with nonnegative initial con-
dition in R7

+.

Proof. )e Lassa fever nonautonomous model (10) is ana-
lysed in a biologically feasible region as follows: the model
equation (10) is divided into human population compart-
ment NH and the Mastomys natalensis rat population NR.
Hence, we consider the feasible region:

J � JH ∪ JR ⊂ R
5
+ × R

2
+, (24)

with

JH � SH, EH, AH, IH, RH( 􏼁 ∈ R5
+: SH + EH􏼨

+ AH + IH + RH ≤
ΛH

μH

􏼩,

JR � SR, IR( 􏼁 ∈ R2
+: SR + IR ≤

M ΛR(t) − μR( 􏼁

ΛR(t)
􏼨 􏼩.

(25)

We established the positive invariance of J which means
solutions in J remains in J for every t> 0. )e rate of change
of the humans and the Mastomys natalensis rats population
is given by

dNH(t)

dt
≤ ΛH − μNH,

dNR

dt
≤

M ΛR(t) − μR( 􏼁

ΛR(t)
.

(26)

We then applied the standard comparison theorem by
Lakshmikantham et al. [30] to prove that

NH(t)≤NH(0)e
− μht

+
ΛH

μH

1 − e
− μht( )􏼒 􏼓,

NR(t)≤
M ΛR(t) − μR( 􏼁

ΛR(t)
.

(27)

In particular,
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NH(t)≤
ΛH

μH

,

NR(t)≤
M ΛR(t) − μR( 􏼁

ΛR(t)
,

(28)

whenever

NH(0)≤
ΛH

μH

,

NR(0)≤
M ΛR(t) − μR( 􏼁

ΛR(t)
.

(29)

Hence, J is the region that is positively invariant and it is
sufficient to consider the dynamics of the flow generated by
(10) in J.

Remark 3. J is the region where the model (10) is epide-
miologically meaningful and mathematically well posed.
)erefore, all solutions of the model (10) with initial con-
dition in J stay in J at all time t> 0.

4.3. Equilibrium Solution and Analysis of the Lassa Fever
Nonautonomous Model. )e model equation (10) is ana-
lysed in this section so that we can obtain the equilibrium
points of the system. In order to provide an answer for the
long-term behaviour of the Lassa fever autonomous model,
we obtain the equilibrium solution of the model (10) by
setting the equations of model (10) to zero, with
dSH

dt
�
dEH

dt
�
dAH

dt
�
dIH

dt
�
dRH

dt
�
dSR

dt
�
dIR

dt
� 0. (30)

We obtain the values of the variables denoted as S∗H, E∗
H,

A∗
H, I∗H, R∗

H, S∗R, I∗R which satisfy this criteria. It shows that
there will be no trivial equilibrium and that the population
will never goes into extinction if the birth rate of humansΛH

and the birth rate ofmastomys natalensis ratΛR are nonzero.
)erefore, EH � AH � IH � RH � 0 when the Lassa fever
disease is not present in the population, the model equation
(10) has a steady state, J0, which is the disease-free equi-
librium (DFE). Hence, the DFE of the model is given by

J0 � S
∗
H �
Λ
μ

, E
∗
H � 0, A

∗
H � 0, I

∗
H � 0, R

∗
H􏼠

� 0, S
∗
R �
ΛR(t)NR(t) M − NR( 􏼁

MμR

, I
∗
R � 0􏼡.

(31)

4.4. 7e Basic Reproduction Number RL for the Lassa Fever
Autonomous Model. )e reproduction number is a very
important threshold quantity in epidemiology which mea-
sures the average number of new cases in a completely
susceptible population. We used the next-generation matrix
method to calculate the RL. )e next-generation method is
the spectral radius of the next-generation matrix [31].

Proposition 1. Suppose RL of the Lassa fever autonomous
model (10) which is computed as the largest positive eigen-
value of the next generation matrix is given by

RL �
βRθμH β1(1 − υ) + υβ2( 􏼁 − βRβ1θ(1 − υ) ω2 + c2( 􏼁 + υβ2βRθ c1 + ω1( 􏼁

μ2HμR c1 + ω1 + μH( 􏼁 θ + μH( 􏼁 ω2 + c2 + μH( 􏼁
. (32)

Proof. Generation matrix. Suppose

F �

0
β1ΛH

NHμH

β2ΛH

NHμH

β1ΛH

NHμH

0 0 0 0

0 0 0 0

0 0 0
βRΛR(t) M − NR( 􏼁

MμR

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (33)

)e rate of appearance of the disease in a compart-
ment is F while D is the transfer of individuals
and mastomys natalensis rat into one compartment.

Hence, F is a Jacobian matrix evaluated at J0
and the Jacobian matrix of V is evaluated at J0 which
yields
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V �

θ + μH( 􏼁 0 0 0

− (1 − υ)θ ω1 + c1 + μH( 􏼁 0 0

− υθ 0 ω2 + c2 + μH( 􏼁 0

0 0 0 μR

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (34)

V
− 1

�

1
θ + μH( 􏼁

0 0 0

(1 − υ)θ
θ + μH( 􏼁 ω1 + c1 + μH( 􏼁

1
ω1 + c1 + μH( 􏼁

0 0

υθ
θ + μH( 􏼁 ω2 + c2 + μH( 􏼁

0
1

ω2 + c2 + μH( 􏼁
0

0 0 0
1
μR

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35)

)e product of matrix F and V− 1 gives

FV
− 1

�

V1
β1ΛH

μHNH ω1 + c1 + μH( 􏼁

β2ΛH

μHNH ω2 + c2 + μH( 􏼁

βHΛH

μHNHμR

0 0 0 0

0 0 0 0

0 0 0
βRΛR(t) M − NR( 􏼁

Mμ2R

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

Let

V1 �
β1ΛH(1 − υ)θ

μHNH θ + μH( 􏼁 ω1 + c1 + μH( 􏼁

+
β2ΛHυθ

μHNH θ + μH( 􏼁 ω2 + c2 + μH( 􏼁
.

(37)

)erefore the eigenvalue ofFV− 1 is calculated to obtain
RL for the Lassa fever autonomous model (10) is given by

〈ΛR〉 �
1
Q

􏽚
t+Q

t0

ΛR(s)ds, (38)

t≥ 0

RL1
�
θμH β1(1 − υ) + υβ2( 􏼁 − β1θ(1 − υ) ω2 + c2( 􏼁 + υβ2θ c1 + ω1( 􏼁

NHμH c1 + ω1 + μH( 􏼁 θ + μH( 􏼁 ω2 + c2 + μH( 􏼁
,

(39)

RL2
�
〈ΛR〉 − μR( 􏼁βRM

〈ΛR〉μRNR

. (40)

)e basic reproduction number according to [31] is
given by

RL �

���������������������������������������������������������������
ΛR − μR( 􏼁βRM θμH β1(1 − υ) + υβ2( 􏼁 − β1θ(1 − υ) ω2 + c2( 􏼁 + υβ2θ c1 + ω1( 􏼁( 􏼁

ΛRμRNRNHμH c1 + ω1 + μH( 􏼁 θ + μH( 􏼁 ω2 + c2 + μH( 􏼁

􏽳

, (41)
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while the average basic reproduction number in the presence
of the periodic function is given by

􏽥RL �

�����������������������������������������������������������������
〈ΛR〉 − μR( 􏼁βRM θμH β1(1 − υ) + υβ2( 􏼁 − β1θ(1 − υ) ω2 + c2( 􏼁 + υβ2θ c1 + ω1( 􏼁( 􏼁

〈ΛR〉μRNRNHμH c1 + ω1 + μH( 􏼁 θ + μH( 􏼁 ω2 + c2 + μH( 􏼁

􏽳

. (42)

It is essential to know that 􏽥RL ≠RL

Remark 4. )is shows that persistence and/or extinction of
Lassa fever is obtained by calculating the 􏽥RL of the Lassa
fever such that if 􏽥RL < 1, the disease will extinct from the
population and if 􏽥RL > 1, the disease will persist in the
population. We discuss in the section the existence of the
disease-free equilibrium.

4.5. Existence of the Disease Free Equilibrium (DFE) of the
Lassa Fever Nonautonomous Model. In a situation without
the Lass fever, the Lassa fever free equilibrium of the Lassa
fever autonomous model (10) becomes:

J0 � (S∗H, E∗
H, A∗

H, I∗H, R∗
H, S∗R, I∗R) such that E∗

H � A∗
H �

I∗H � R∗
H � I∗R � 0, )is yields

J0 � S
∗
H, 0, 0, 0, 0, S

∗
R, 0( 􏼁. (43)

When we subject each of the equation in the model (10)
to zero, it yields

0 � ΛH −
βHSHIR

NH

−
β1AHSH

NH

−
β2IHSH

NH

+ σRH − μHSH,

(44)

therefore,

S
∗
H �
ΛH

μH

,

ΛR(t)NR 1 −
NR

M
􏼒 􏼓 −

βRSRIR

NR

− μRSR � 0,

ΛR(t)NR 1 −
NR

M
􏼒 􏼓 − μRNR � 0,

(45)

we obtain S∗R � (M(ΛR(t) − μR))/ΛR(t).
Hence, the Lassa fever free equilibrium is given by

J0 �
ΛH

μH

, 0, 0, 0, 0,
M ΛR(t) − μR( 􏼁

ΛR(t)
, 0􏼠 􏼡. (46)

)e Mastomys Natalensis rodent compartment is sepa-
rated from the humans compartment; hence, the equation is
linear with nonconstant coefficients. It can be solved clearly
as given below:

GR � GR(0)exp􏽒
t

0
βR M/NR( ) ΛR(s)− μR( )/ΛR(s)( )− μR( )ds

. (47)

We introduce the average of a periodic function over its
period in order to define the Lassa fever reproduction

number. Obtaining the reproduction number, we recall by
definition, if j(t) is a periodic function with period Q, then
the average of j is given by

〈j〉 �
1
Q

􏽚
Q

0
j(s)ds. (48)

By perturbation analysis:

GR(t) � GR(0)exp((1/q) 􏽒
q

0
(βRM(ΛR(q)− μR/ΛR(q))− μR)dq)q≃GR

(0)exp(􏽒
q

0
(βRM(〈ΛR〉− μR/〈ΛR〉)− μR)dq)q for large sufficient q, the

expression on the RHS goes to ±∞ if and only if

βR

M

NR

〈ΛR〉 − μR

〈ΛR〉
− μR > 0, (49)

which prompts us to define the following reproduction
number:

RL2
� βRM
〈ΛR〉 − μR

〈ΛR〉
− μR. (50)

We note that ΛR(t) is periodic with period 365.25 days,
hence Q � 365.25 and we summarised the whole concept
here in the following result.

Lemma 1. 7e disease-free equilibrium (DFE) is locally
asymptotically stable whenever RL2

< 1, then
GR(t)⟶ 0 and if RL2

> 1, then | GR(t)⟶∞, and the
DFE is unstable.

Lemma 2. Suppose the Lassa fever disease (LFD) persists in
the community such that

lim
p⟶∞

1
p

􏽚
p

0
IR(t)dt> 0. (51)

If ΛR(t)> μR and 􏽥RL > 1, and the disease will extinct
(which implies that IR⟶ 0 as t⟶∞, when 􏽥RL < 1).
)erefore, this result holds for any periodically forced
birth rate ΛR(t) which satisfies the assumptions that
ΛR(t) is continuous for all t≥ 0 and that ∃ a constants
Λmin

R , Λmax
R such that 0≤Λmin

R ≤Λ
max
R ∀t≥ 0 and ∀t≥ 0 the

average (1/Q) 􏽚
t+Q

t0

ΛR(s)ds⟶ 􏽥ΛR(t)> 0 as Q⟶∞

uniformly in t, i.e., ∀Q>Q0 and all t≥ 0, ΛR(t)> μR, and
finally, all the parameters in the model are nonnegative
[32].
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Proof. We prove this theorem by asserting firstly that for
each initial condition in the positive orthant of the pop-
ulation of Mastomys natalensis rodent bounded above and
below, in consequence, we show that in our model, the
disease cannot drive the population into extinction. For each
initial condition SR(0), IR(0) ∃ some positive constants
Nmin

R and Nmax
R such that ∀t≥ 0, Nmin

R ≤NR(t)≤Nmax
R . To

prove this, we initiate the following notation which says for a
positive quantity Z(t), t≥ 0, suppose

Z � lim
Q⟶∞

􏽚
Q

0
Z(t)dt,

Z � lim
Q⟶∞

􏽚
Q

0
Z(t)dt,

􏽢Z � lim
Q⟶∞

􏽚
Q

0
Z(t)dt.

(52)

Also,

ϕ(Z) � lim
Q⟶∞

1
Q
log

Z(Q)

Z(0)
,

ϕ(Z) � lim
Q⟶∞

1
Q
log

Z(Q)

Z(0)
,

ϕ(Z) � lim
Q⟶∞

1
Q
log

Z(Q)

Z(0)
.

(53)

)e total population NR satisfies the differential
equation:

dNR

dt
� ΛR(t) − μR( 􏼁NR −

ΛR(t)N2
R

M
. (54)

Let

p(t) � ΛR(t) − μR,

dNR

dt
� p(t)NR −

ΛR(t)N2
R

M
� p(t) −

ΛR(t)NR

M
􏼠 􏼡NR.

(55)

Suppose Pmax � Λmax
R − μR, we have

dNR

dt
≤ 0, forNR(t)≥

PmaxM

Λmax
R

. (56)

Let

W �
ΛR(t)( 􏼁

M
, (57)

which implies that NR(t)≥Pmax/W.
)en NR(t)≤max(NR(0), Pmax/W). Hence, we say

Nmax
R � max(NR(0), Pmax/W) such that NR is bounded

above. To prove that NR(t) is bounded below, one considers
the prevalence of Lassa fever in Mastomys Natalensis rat
f � IR/NR.

)e prevalence of Lassa fever in the rat f satisfies the
differential equation:

df

dt
� βRSR − μR( 􏼁f. (58)

It is of note that 0≤f≤ 1 and SR ≤NR, so that for NR ≤ δ,
we obtain

df

dt
� βRδ − μR( 􏼁f, (59)

for δ > 0 chosen sufficiently small then the following conditions
hold (a) NR ≤ δ (b) βRδ − μR � − τ < 0 (c) βRδ − μR > 0.

It is possible to choose δ > 0 such that NR > 0, μR > 0, and
βR > 0.

Case 1. If we say that NR(t) is not bounded below then ∀0<
m< δ ∃ 0≤ t1 < t2 such that NR(t1 � δ for t1 ≤ t≤ t2).

Case 2. We show that NR(t) is bounded below. Given m> 0
for time t2 − t1 is large sufficiently for the averagep

⌣ to take over
the dynamics of the equation. Such that for any t1 ≤ t≤ t2, (df/
dt)≤ − τf holds, so that f(t)≤f(t1)e − τ(t − t1) for t1 ≤ t≤
t2 and the prevalence of Lassa fever decays exponentially.

Now, dNR(t)/dt � (P(t) − WNR)NR ≥ (Pmin − Wδ)NR

for t1 ≤ t≤ t2. Suppose Pmin − Wδ ≥ 0, we have NR(t)≥NR

(t1) � δ for t1 ≤ t≤ t2, such that NR(t2)≥ δ which is a con-
tradiction. Hence, having Pmin − Wδ � − α< 0. We have that
NR(t)≥NR(t1)e

− α(t− t1) for t1 ≤ t≤ t2 such that m � NR(t)≥
δe− α(t2− t1). We infer that t2 − t1 ≥ log(δ/m)/α. Now we say
Q0 > 0 such that Q≥Q0. We have the inequality
|(1/Q) 􏽒

t+Q

t0
(ΛR(t) − μR)dt − ((ΛR ≃ μR))|< δ, by the uniform

convergence hypothesis. Now we say m< δ, such that t2 −

t1 ≥Q0 and (t2 − t1)(p􏽥ΛR − μR − δ − Wδ)> 0, and find this to
be possible since (ΛR − 􏽥μR − δ − Wδ)> 0. We then have
(dNR/dt)≥ (p(t) − WNR)NR ≥ (p(t) − WNR)NR for

t1 ≤ t≤ t2 such that m � NR(t)≥ δe
􏽒 t1− t2(p(t)− WNR)

NRdt≥ δe(t1− t2) (􏽥ΛR − μR − δ − WNRδ)> δ which is con-
tradiction.)erefore, NR(t)≥m and NR(t) is bounded below
as asserted.

Following [33], we recall that (dNR/ dt) � ΛR(t)NR(1 −

(NR/M)) − μRNR where NR � SR + IR.
)is implies that

dNR

dt
≤ ΛR(t) − μR( 􏼁NR −

ΛR(t)N2
R

M
􏼠 􏼡. (60)

We have shown before that in this case,

lim sup
t⟶∞

NR(t)≤
M ΛR − μR( 􏼁

ΛR

. (61)

Given τ > 0 such that

RL2
(τ) �
〈ΛR〉 − μR( 􏼁βRM

〈ΛR〉μRNR

< 1, (62)

∃ t0 such that ∀t≥ 0, we obtain
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NR(t)<
M ΛR(t) − μR( 􏼁

ΛR(t)
+ τ

� M
ΛR(t) − μR

ΛR(t)
+ τ􏼠 􏼡, is true∀t≥ 0.

(63)

Consider the equation for IR, which is given by
dIR(t)

dt
≤ βRM

ΛR(t) − μR

ΛR(t)
+ τ􏼠 􏼡 − μR

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
IR(t). (64)

Solving the inequality above, we obtain

IR(t)≤ IR(0)exp􏽒
t

0
βRM ΛR(t)− μR( )/ΛR(t)( )+τ( )− μR| |dq

. (65)

)erefore, if RL2
(τ)< 1, when IR(t)⟶ 0 as t⟶∞.

We assume for simplicity that □

SR(0) + IR(0) �
M ΛR(t) − μR( 􏼁

ΛR(t)
. (66)

)en

NR(t) �
M ΛR(t) − μR( 􏼁

ΛR(t)
, ∀t. (67)

)erefore, we say

SR(t) �
M ΛR(t) − μR( 􏼁

ΛR(t)
− IR(t). (68)

From the compartment for the Mastomys Natalensis rat
population, we obtain the single one compartment equation
in IR given by

dIR(t)

dt
�
βRM ΛR(t) − μR( 􏼁

ΛR(t)NR

1 − IR( 􏼁IR − μRIR(t). (69)

Using the above notations and concepts, we summarised
Lemma 3 below.

Lemma 3. 7e disease-free equilibrium (DFE) is globally
stable if IR(t) goes to zero as t tends to infinity whenever
RL2
< 1.

Lemma 4. If ΛR(t) is a periodic function with period Q and
let RL2
> 1 then equation (69) has a unique periodic solution

η(t) [33].

Proof. First we define the region JR � IR: IR ∈ [0, NR]􏼈 􏼉

such that the equation (69) is considered in this region. We
applied here the Poincare map P to establish the existence of
a periodic solution. It is obvious that by the Poincare map we
define

P IR( 􏼁: 0, NR􏼂 􏼃⟶ 0, NR􏼂 􏼃􏼂 􏼃, (70)

which implies

P IR(0)( 􏼁 � IR Q, IR(0)( 􏼁, (71)

such that IR(Q, IR(0) is the value of solution at time t � Q.
We understand that the Poincare map is injective be-

cause of the properties of solutions of ODEs. Hence, we can
further show that it is continuously differentiable. Hence, it
is easy to show thatP(0) � 0P and (NR <NR). Since the
number IR ∈ [0, NR] is an initial value of a periodic solution
if and only if IR is a fixed point of the Poincare map. Hence,
for one to establish the existence of a positive periodic
solution of equation (69), it is expedient to show that the
Poincare map has a fixed point. Hence, we define

h(t) �
zIR

zIR(0)
t, IR(0)( 􏼁. (72)

We obtain the derivative of the Poincare map which is
given as

P′ IR(0) �
zIR

zIR(0)
Q, IR(0)( 􏼁 � h(Q)􏼠 􏼡. (73)

Hence, by differentiating equation (79) with respect to
IR(0) in order to obtain the derivative of the Poincare map.
For this case, we obtain a differential equation in h such that
dh(t)

dt
� h(t)

βRM ΛR(t) − μR( 􏼁IR t, IR(0)( 􏼁

ΛR(t)NR

− μRIR(t)􏼢 􏼣.

(74)

By differentiating the IR(0) which is the initial condition
with respect to IR(0), we have that h(0) � 1. For the de-
rivative of the Poincare map, which gives the following
expression, the differential equation for h can be obtained as
follows:

dP IR(0)( 􏼁(t)

dt
� exp􏽒

Q

0
βRM ΛR(t)− μR( )IR t,IR(0)( )/ΛR(t)NR( )− μRIR t,IR(0)( )[ ]dt.

. (75)

It is clear that (dP(IR(0))(t))/dt > 0 and it is obvious
that the Poincare map is increasing. Given that, if IR1

and IR2

are two initial conditions which satisfy IR1
< IR2

, then we
obtain (dP(0))/dt � expQ((βR(〈ΛR〉− μR)/〈ΛR〉)(M/NR)− μR). )is
implies that the exponent since RL2

> 1 and that
(dP(0)(t)/dt)> 1. )us, for IR(0) sufficiently small

P IR(0)( 􏼁 − P(0)

IR(0)
≃
dP(0)

dt
> 0. (76)

It means that IR(0) is small enough for
P(IR(0))> IR(0). For P(NR)<NR which implies that the
function P(IR(0)) − IR(0) changes sign in the interval
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(0, NR). )erefore, there should exist an Im such that it
becomes zero, which means that

P Im( 􏼁 � Im. (77)

For us to establish the uniqueness of a periodic solution,
it is essential to assume that there are two kinds of periodic
solutions Im1

and Im2
. Hence, assume without loss of

generality that

Im1
< Im2

. (78)

Let Im be a periodic solution which satisfies firstly the
equation (69):

􏽚
Q

0

βR ΛR(t) − μR( 􏼁

ΛR(t)

M

NR

− IR t, Im( 􏼁􏼠 􏼡 − μR

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dq � 0. (79)

For Im1
and Im2

, we obtain

Im1
− Im2

� P Im1
􏼐 􏼑 − P Im2

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �
dP Iv( 􏼁

dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Im1

− Im2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(80)

such that Iv satisfies Im1
< Iv < Im2

, then we have that

dP Iv( 􏼁

dt
� exp􏽒

Q

0
βR ΛR(t)− μR( )/ΛR(t)( ) M/NR( )− IR t,Im( )( )− μR− βR ΛR(t)− μR( )ΛR(t)IR t, Im( 􏼁<F1dt<F2dt< 1, (81)

where

F1 � exp􏽒
Q

0
βR ΛR(t)− μR( )/ΛR(t)( ) M/NR( )− IR t,Im( )( )− μR− βR ΛR(t)− μR( )ΛR(t)IR t, Im( 􏼁,

F2 � exp􏽒
Q

0
βR ΛR(t)− μR( )/ΛR(t)( )IR t,Iv( )ΛR(t)IR t, Iv( 􏼁.

(82)

)erefore, the result showed that the contradiction we
obtained in (80) is as a result of the assumption that we have
two distinct positive periodic solutions.

Lemma 5. Suppose ΛR(t)is a periodic function with the
period Q and assume that 􏽥RL2

> 1, then the unique periodic
solution η(t) of equation (69) is globally stable, that is, if
IR(t, IR(0)) is a solution with initial condition IR(0), then

lim
t⟶∞

IR t, IR(0)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � η(t). (83)

Proof. Here, we first show the convergence to the periodic
solution and consider the solutions of equation (69) by
assuming that RL2

> 1. Suppose IR(t) is an arbitrary solution
with the initial condition IR(0). Recall that Iv is the initial
condition for the periodic solution. If we assume that
Iv � IR(0), we have two choices:

(i) P(IR(0))> IR(0)

(ii) P(IR(0))< IR(0)

Lets assume that P(IR(0))< IR(0) and then the second
option can be taken care of in the same manner. We have

P
k

IR(0)( 􏼁<Pk− 1
IR(0)( 􏼁. (84)

)erefore, the sequence Pk(IR(0)) is a decreasing se-
quence. Hence, it must converge to a limit since it is
bounded below:

lim
k⟶∞

P
k

IR(0)( 􏼁 � IR(∞). (85)

)enumber IR(∞) is the limit of the sequence which is a
fixed point of the Poincare map P(IR(∞)) � IR(∞). )e
Poincare map of model equation (79) has only two fixed
points IR(∞) � Iv.

If IR(∞) � 0, then for some NR, the number
PNR (IR(0)) is small enough that from the properties of the
Poincare map,

P
NR+1

IR(0)( 􏼁>Pk
IR(0)( 􏼁, (86)

which contradicts the fact that the sequence is decreasing.
Hence, IR(∞) � Iv as a result, the limit in (83) holds.

5. Existence of Endemic Equilibrium Point

Here, we present the existence of the endemic equilibrium
point JEE for the Lassa fever periodically forced model (10).
It is a nonnegative equilibrium state where the Lassa fever
disease persists in the population.

Theorem 4. Suppose there exists a unique endemic equi-
librium point when R0 > 1 in the Lassa fever periodically
forced model (10).

Proof. Suppose JEE � (S∗∗H , E∗∗H , A∗∗H , I∗∗H , R∗∗H , S∗∗R , I∗∗R ) is a
nontrivial equilibrium of the model equation (10), which
implies that all components of JEE are positive. Setting the
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LHS of the model equation (10) to zero, we obtained the
following:

S
∗∗
H �

ΛH + μH( 􏼁ΛH + σc2I
∗∗
H + σc1A

∗∗
H

ΛH + μH( 􏼁μH βHI∗∗R + β1A
∗∗
H + β2I∗∗H( 􏼁

,

E
∗∗
H �

cc2I
∗∗
H + ΛH θ + μH( 􏼁( 􏼁 β3 ω1 + c1 + μH( 􏼁 NRMΛR(t)βR − Mμ2R − ΛR(t)N2

RβR( 􏼁􏼂 􏼃

β3 ω1 + c1 + μH( 􏼁 NRMΛR(t)βR − Mμ2R − ΛR(t)N2
RβR( 􏼁 θ + μH( 􏼁 θ + μH( 􏼁 − σc1(1 − υ)θNH

,

A
∗∗
H �

(1 − υ) σc2I
∗∗
H + ΛH θ + μH( 􏼁( 􏼁 β3 ω1 + c1 + μH( 􏼁 NRMΛR(t)βR − Mμ2R − ΛR(t)N2

RβR( 􏼁􏼂 􏼃

β3 ω1 + c1 + μH( 􏼁 NRMΛR(t)βR − Mμ2R − ΛR(t)N2
RβR( 􏼁 θ + μH( 􏼁 θ + μH( 􏼁 − σc1(1 − υ)θ( 􏼁 ω1 + c1 + μH( 􏼁 NRMΛR(t)βR − Mμ2R − ΛR(t)N2

RβR( 􏼁
,

I
∗∗
H �

υθ c2I
∗∗
H + ΛH θ + μH( 􏼁( 􏼁 ω1 + c1 + μH( 􏼁β3 NRMΛR(t)βR − Mμ2R − ΛR(t)N2

RβR( 􏼁( 􏼁

β3 ω1 + c1 + μH( 􏼁 NRMΛR(t)βR − Mμ2R − ΛR(t)N2
RβR( 􏼁 θ + μH( 􏼁 θ + μH( 􏼁 − σc1(1 − υ)θNH

,

R
∗∗
H �

Z1

σ + μH( 􏼁 NRβ3 ω1 + c1 + μH( 􏼁 MΛR(t)βR − Mμ2R − ΛR(t)NRβR( 􏼁 − σc1MβRμR( 􏼁
,

(87)

where

Z1 � I
∗∗
H c2NRβ3 ω1 + c1 + μH( 􏼁 MΛR(t)βR − Mμ2R − ΛR(t)NRβR􏼐 􏼑

− σc2c1MβRμRI
∗∗
H + c1 σ + μH( 􏼁(1 − υ)θΛHMβRμH + σc1c2I

∗∗
H MβRμR,

S
∗∗
R �

NRμR

βR

,

I
∗∗
R �

NRMΛR(t)βR − Mμ2R − ΛR(t)N2
RβR

MβRμR

,

(88)

and I
∗∗
H is a positive solution of an equation which is given as

Q1 − β3υθc2Q2( 􏼁I
∗∗
H − β3υθΛHQ2 � 0, (89)

where

Q1 � β3 ω1 + c1 + μH( 􏼁 NRMΛR(t)βR − Mμ2R − ΛR(t)N
2
RβR􏼐 􏼑 θ + μH( 􏼁 θ + μH( 􏼁 − σc1(1 − υ)θNH,

Q2 � θ + μH( 􏼁􏼁 ω1 + c1 + μH( 􏼁β3 NRMΛR(t)βR − Mμ2R − ΛR(t)N
2
RβR􏼐 􏼑􏼐 􏼑.

(90)

)e positive solution to the equation (89) depends on
(Q1 − β3υθc2Q2) and β3υθΛHQ2, respectively. Hence, there
exist a unique endemic equilibrium given by I∗∗H �

(β3υθΛHQ2/Q1 − β3υθc2Q2) and β3υθΛHQ2 < 0, whenever
􏽥RL > 1.

6. Evaluation of Lassa Fever
Intervention Strategies

)e intervention strategies available for Lassa fever disease
are capable of reducing the mortality of humans due to the
disease if applied early and reducing the morbidity of Lassa
fever in individual if preventive intervention strategies are

taken. )e following are the various interventions available
to reduce the mortality or morbidity of Lassa fever disease:

(i) Early treatment with ribavirin
(ii) Community hygiene to discourage Rodents from

entering homes
(iii) Isolation of infected humans suspected with

symptoms of Lassa fever
(iv) Culling/destruction of rodents with pesticides
(v) Educational campaign

Here, we create scenarios for our intervention strategies.
We understand that these multiple intervention packages are
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being applied differently in different nations. We need the
collection of the opinions of various experts from different
disciplines which include, modellers, Public Health officers,
entomologists, epidemiologists, etc. to decide along with the
local national control programs on Lassa fever disease that
can bring the disease into elimination locally. )e scenario
we are building here states that we minimize IH (the number
infected humans), which is the number of cases of Lassa
fever in humans. We know that each of the intervention
packages impacts some of the parameter values. We hereby
evaluate the change that a 1% change in a parameter qmakes
on I∗H through the principle of elasticity. )e elasticity is the
percentage change in a static quantity (e.g., reproduction
number, equilibrial prevalence, or equilibrial incidence)
with respect to the percentage change in any given parameter
in the model. )erefore, the elasticity of any static quantity

with respect to any given parameter is positive if the static
quantity is increasing with respect to any given parameter
and negative if the static quantity is decreasing with respect
to any given parameter. Hence, we say that the elasticity of
I
∗
H concerning the parameter q is given by

c
q

I∗H
�

zI∗H
zq

·
q

I∗H
≈
%ΔI∗H
%Δq

, (91)

where

I
∗
H �

υθNHMβRμR +(1 − υ)θNHMβRμR( 􏼁ΛHB1 θ + μH( 􏼁

Q
,

(92)

such that

A1 � ω1 + c1 + μH( 􏼁 ω2 + c2 + μH( 􏼁 MΛR(t)βRNR − Mμ2R − ΛR(t)N
2
RβR􏼐 􏼑NHβ3,

B1 � β3 ω1 + c1 + μH( 􏼁 MΛR(t)βRNR − Mμ2R − ΛR(t)N
2
RβR􏼐 􏼑,

Q � A1B1 σ + μH( 􏼁 θ + μH( 􏼁 − σc2υθNHMβRμR ω1 + c1 + μH( 􏼁 − (1 − υ)θNHMβRμRσc2 − σc1(1 − υ)θNHMβRμR.

(93)

Maple software was used in computing the elasticities
with the above evaluated parameters. We present the elas-
ticities in Table 3 below:

We observed directly from Table 3 above that the in-
tervention strategies, like the early treatment of Lassa fever
with ribavirin, have more effectiveness in influencing the
prevalence of Lassa fever in humans than others. We de-
termine which parameters each intervention would affect to
compare the available intervention strategies. For example,
culling affects μR, ω1, ω2, and βR, early treatment with ri-
bavirin affects c1, c2, σ, ω1, ω2, and β3, community hygiene
affects β3, educational campaigns affects β3, ω1, and ω2 while
isolation of infective humans affects ω1 and ω2, Hence, the
total effect of intervention strategies is defined as the sum of
efficacies of the effect of the strategy on each affected pa-
rameter. For example, treatment with ribavirin increases c1,
c2 but decreases σ,ω1,ω2, and β3.)erefore, the total efficacy
is − 0.78814 − 0.88662 − 0.91700443 − 0.1364 − 0.0301115 −

0.988� − 3.74627593, we take this number as an absolute
value. )e total effects of each intervention strategy are
summarised in Table 4.

Table 4 suggested that treatment with ribavirin is the
most effective strategy but where resources are not sufficient
educational campaign and community hygiene are the next
two most efficient and effective intervention strategies fol-
lowed by culling and lastly isolation of infected cases.

Remark 5. )e total efficacy is the overall sum of the pro-
tection/treatment provided by each intervention strategy
that was employed to control and/or eliminate a disease or
an outbreak, which excludes the herd effect.)e total efficacy
is dimensionless.

7. Numerical Results and Discussion

In this section, we present the numerical simulation results
of our model and its analysis to establish our theoretical
findings. Of all the parameters presented in Table 5, some
were taken from the literature and some were from as-
sumptions. We simulated the model system (10) using
MATLAB ODE45 solvers and the following initial condi-
tions were considered: SH � 996, EH � 0, AH � 4, IH � 0,
RH � 0, SR � 5000, IR � 10.

7.1. Time Series Solution of the Periodically Forced Lassa Fever
Model. It can be observed from the first graph in Figure 2(a)
that as the infected humans population increases at an in-
stant of time, which implies that as people get exposed
within less than 30 days, they become infected and infec-
tious, but in the long run, as the infected humans population
decreases until they reached a steady-state, it denotes that
the Lassa fever is endemic in the population, even in the
absence of the exposed and the asymptomatic humans. It
was observed from figure 2(a) that the susceptible pop-
ulation decreases as more people get infected with Lassa
fever over a long period of time. )is showed that if con-
tinuous and consistent interventions are not put in place, a
large number of people will be infected in the long run. It can
be also observed from Figure 2(b) that the number of
susceptible rats/rodents depleted over time as the number of
infected rats increases. )ere was seasonality in the increase
rate of infected rats due to seasonality in the birth rate. )is
depicts that the increase in the number of infected rats also
caused an increase in the number of infected humans when
there is a successful interaction between humans and
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infected rats. In the Figure 2(a), we also observed that when
people recovered due to treatment with ribavirin the number
of recovered humans increases in the population. Treatment
with ribavirin alone does not stop the transmission of the
disease; it will only reduce mortality but not morbidity. So,
we must employ other intervention strategies to eliminate
the disease from the community.

7.2. Behaviour of the Time-Dependent per Capita Birth Rate of
Rodents with Varying Values of Λ1. It can be observed in
Figure 3 that as we vary the value of the degree of seasonality
(Λ1), it increases the peak, the magnitude, and the length of
the seasonality of the time-dependent per capita birth rate of
the mastomys rat. )e higher the degree of seasonality, the
higher the effect of seasonality.

7.3. Behaviour of the InfectedMastomys Rodents with Varying
Values of Λ1. It can be observed in Figure 4 below that as we
increase the value of the degree of seasonality (Λ1), the peak,
the magnitude, and the length of the seasonality of the
infected mastomys rat population increases over a long
period.

7.4. Behaviour of the Infected Mastomys Rodent Against In-
fected Humans. It can be observed in Figure 5 that as the
number of infectedmastomys rodents increases, it implies an
increase in Lassa fever disease prevalence. )is depicts that
the number of infected mastomys rodent has a great role to
play in humans Lassa fever disease prevalence.

8. Conclusion, Recommendation, and
Future Work

Based on the works of Bawa et al. [25], where they modelled the
dynamics of Lassa fever by subdividing the rodent population
into infant and adult classes and carried out analyses on their
model to establish global stability condition for the control of
Lassa fever, Mohammed et al. [26], where they developed a
transmission dynamic model for Lassa fever with humans
immigration. Model analyses were carried out to calculate the
reproduction number and sensitivity analysis of the model was
also performed. )eir results showed that human immigration
rate is the most sensitive parameter and then the human re-
covery rate is the second most sensitive parameter followed by
person-to-person contact rate. Hence, they suggested that
control strategies should target human immigration, effective

Table 3: Elasticities of I
∗
H.

Parameter Elasticity
ΛH +1
Λ0 − 1
Λ1 − 0.4937
ϕ 0.0193
β3 − 0.988
βR − 0.0000000065347
σ − 0.91700443
c1 − 0.78814
c2 − 0.88662
μH − 0.2417115
μR +1
θH +1
ω1 − 0.1364
ω2 − 0.0301115
M − 0.000001292
υ − 0.00000000065976

Table 4: )e list of intervention strategies and their efficacy.

Intervention Affected
parameter

Total efficacy
(dimensionless) Rank

Culling without
repopulation μR, ω1, ω2, βR 0.8334885 4

Early treatment
with ribavirin

c1, c2, σ, ω1,
ω2, β3

3.74627593 1

Community
hygiene β3 0.988 3

Isolation of infected
humans ω1,ω2 0.1665115 3

Educational
campaign β3, ω1,ω2 1.1545115 2

Table 5: Values and ranges for parameters used in the Lassa fever
model.

Symbol Dimension Range Source
ΛH Humans × day− 1 1000∗ 0.0003465 Chitnis et al. [21]
Λ0 Day− 1 0.033 Assumed

Λ1 Dimensionless 1.0 Keeling and
Rohani [19]

Φ Day− 1 10 Keeling and
Rohani [19]

βH Dimensionless 0.024–0.048 Chitnis et al. [21]
β1 Dimensionless 0.022–0.27 Chitnis et al. [21]

β2 Dimensionless 0.021–0.8 Mohammed
et al. [26]

β2 Dimensionless 0.021–0.8 Mohammed
et al. [26]

β3 Dimensionless 0.24–0.8 Mohammed
et al. [26]

σ Day− 1 0.00385 Mohammed
et al. [26]

c1 Day− 1 0.3333–0.8 Mohammed
et al. [26]

c2 Day− 1 0.6086–0.8 Mohammed
et al. [26]

μH Day− 1 0.0003465 WHO [14]

μR Day− 1 0.00641026–0.0038 Mohammed
et al. [26]

θH Day− 1 0.3333 CDC [17]
ω1 Day− 1 0.00019231 WHO [14]
ω2 Day− 1 0.00019231 WHO [14]
M Day− 1 3.9 × 107 Chitnis et al. [21]
Υ Day− 1 1.5 Assumed
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drugs for treatment, and education to reduce person-to-person
contact. Andrei et al. [28] had a simulation-based model and
showed from their work that seasonal migratory dynamics of
rodents played a key role in regulating the cyclic pattern of Lassa
fever epidemics and Joachim et al. [29] also developed a model
that suggested the use of continuous control or rodent vacci-
nation are the strategies that can lead to Lassa fever elimination.
All these works did not consider the impact of periodically
forced per-capita birth rate on the transmission dynamics of
Lassa fever. Hence, in this work, we presented a periodically
forced Lassa fever model to understand the transmission dy-
namics of Lassa fever disease in the host population. It was
observed that the yearly average is given by 􏽥RL < 1, when the
disease does not invade the population (means that the number
of infected humans always decrease in the following seasons of

transmission) and 􏽥RL > 1 when the disease remains constant and
is invading the population and it was detected that 􏽥RL ≠RL.
Rigorousmathematical analyses of themodel were carried out to
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Figure 2: Solution of the Lassa fever periodically forced model (10) with parameter values defined in Table 5. )e initial condition is
SH � 996, EH � 0, AH � 4, IH � 0, RH � 0, SR � 5000, IR � 10.
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study the qualitative properties of the model through which
existence and uniqueness of the periodic solution with its global
stability were established. Existence of the endemic equilibrium
point for the model was also explored, and a unique endemic
equilibrium exists whenever 􏽥RL > 1. Analysis of the Lassa fever
intervention strategies revealed that the use of multiple inter-
vention strategies must be employed to mitigate against Lassa
fever disease by reducing its morbidity and mortality. It was
established that to eliminate Lassa fever disease, treatments with
ribavirin must be provided early to reduce mortality and other
preventive measures like the educational campaign, community
hygiene, isolation of infected humans, and culling/destruction of
rodents with pesticides must be applied to also reduce the
morbidity of the disease. )ere are still many questions to
answer in themodelling of Lassa fever transmission dynamics. It
will be our interest to have access to country-specific observa-
tional or serological data that we can use to validate our model.
We are particularly interested in the data fromNigeria where we
have had a lot of epidemic of Lassa fever in recent times.We also
intend to apply other techniques like optimal intervention
analysis that will help us to set up some intervention scenarios
and guide us in choosing the best strategies; stochastic simu-
lations will also be of interest, which will help us capture the
random nature of the disease in the community. We strongly
believe there are many works to be done in the modelling and
epidemiology of Lassa fever disease. Finally, the results obtained
in this work can be a useful guide for the local national control
program on Lassa fever and to decide on the framework for
planning and designing the cost-effective strategies for the best
intervention packages in eliminating Lassa fever in Nigeria and
West Africa at Large.
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