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In this paper, we study the resolution of a permutation flow shop problem with sequence-independent setup time.'e objective is
to minimize the maximum of job completion time, also called the makespan. In this contribution, we propose three methods of
resolution, a mixed-integer linear programming (MILP) model; two heuristics, the first based on Johnson’s rule and the second
based on the NEH algorithm; and finally twometaheuristics, the iterative local search algorithm and the iterated greedy algorithm.
A set of test problems is simulated numerically to validate the effectiveness of our resolution approaches. For relatively small-size
problems, it has been revealed that the adapted NEH heuristic has the best performance than that of the Johnson-based heuristic.
For the relatively medium and large problems, the comparative study between the two metaheuristics based on the exploration of
the neighborhood shows that the iterated greedy algorithm records the best performances.

1. Introduction

'e problem of scheduling in the manufacturing industry is
characterized by the allocation of jobs on machines and
establishing the correct sequence of those jobs in order to
optimize an imposed criterion. Each job is identified by a set
of tasks that form the path to be followed in the production
cycle in the workshop. Every task has a running time on each
machine when launching jobs in the industrial process.
Several classifications are distinguished: one by machine
grouping, one by job grouping, and one by mixed group. In
this study, we are interested in a family where the set of jobs
follows the same path on a set of machines arranged in series.
'is type of problem is recognized in the scheduling liter-
ature as the flow shop problem (see Figure 1). In this type of
problem, several constraints may be involved, for example,
in logistical means, one can find, transferring, assembly, and
disassembly of parts between machines, as well as the ad-
justment of production tools. Solving the scheduling
problem is considered as an NP-difficult issue given a certain
size of the batch and number of machines.'e approaches of
resolution are diverse, and we cite exact methods, heuristics,

metaheuristics, and other combined methods. In this paper,
we propose these three classes for solving the flow shop with
permutation problem (PFSP) under the constraint of se-
quence-independent setup time (SIST). In this case, the SIST
constraint depends on the technology nature of the machine,
as well as the means used to prepare it for the execution of a
new job. 'is preparation time is considered unproductive,
and its introduction into the scheduling is of great use for the
control of the process. We note that the PFSPs are widely
studied in the last 50 years under various constraints and
objectives. Research is currently knowing significant ad-
vances by introducing new constraints and new trends of
multiobjective optimization. 'e scheduling problem PFSP
is known in the literature as NP-complete optimization
problem [1] for more than two machines. In general, since
the number of jobs and the number of machines can be high,
it is difficult to find the right solution with an exact method.
Hence, metaheuristics are usually used to look for the right
solution or at least approach it. 'e mainly used meta-
heuristics are based on an improvement of an initial solution
by research in its neighborhood by one of the disruption
procedures of the current solution. In the literature, we find
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simulated annealing (SA) [2–4], the genetic algorithm (GA)
[5–8], and the combined metaheuristics SA and GA [9, 10]
that are used to solve flow shop scheduling problem.We find
also other resolution methods such as tabu search [11–14]
and the greedy randomized adaptive search procedure
[15–18].

Other nature-inspired metaheuristics are applied for
solving flow shop scheduling problem, the artificial bee
colony algorithm [19–21], ant colony optimization algo-
rithm [22, 23], and water wave optimization algorithm
[24, 25]. 'e efficiency of these metaheuristics is observed
during the resolutions of the flow shop scheduling problems
with several jobs andmachines. Sometimes, a machine has to
be prepared in some way before it can process a certain job.
It may need retooling, adjusting, and so on. 'e time re-
quired for such preparation is called setup time. 'e need to
consider this new constraint, in simulation models, is
pushing researchers to develop new models. Resolving flow
shop problems with permutation and setup time is part of
this new problem category. 'is topic has attracted a wide
attention and has been subject of recent works for many
researchers (see, for example, [26–29]).

Several works dealing with scheduling issues are pre-
sented in the optimization. Recently, a number of studies
have been carried out on permutation flow shop scheduling
problem under the constraint of setup time. We distinguish
two types of setup time: the first depends on the sequence of
the jobs on the same machine, called the sequence-depen-
dent setup time (SDST), and the second is qualified as a
setup time independent of the sequence of jobs in the same
machine, called the sequence-independent setup time
(SIST). For the first category of problem which is designated
as the permutation flow shop scheduling problem with
sequence-dependent setup time (PFSP-SDST), a large
number of works have been carried out. 'is setup time
depends on each job to be processed; for example, a big job
requires more time of preparation than a small one. Often
additional constraints are added such as no-waiting,
blocking, and other new PFSP constraints that concertize
industrial cases. 'e resolution of PFSP-SDST problem is
presented in [30] using the migratory bird algorithm as well
as a set of heuristics to minimize the makespan. In [31], the
authors propose the water wave optimization algorithm to
minimize the makespan with a blocking constraint for a
PFSP-SDST problem. Similarly, [32] proposes an MILP
model for the case of no-wait criterion for the same problem.
In the same context, [33] proposes a case study of the PFSP-
SDST problem under no-idle constraint to minimize the
total flow time. Recently, PFSP-SDST problem is studied by
using three metaheuristics with a local search neighborhood
[29], and it was revealed that the iterated greedy gives good
results comparing with the two other used methods. For the
second category of problem, i.e., PFSP-SIST, we note that
only few works has been tackled, which may be a way to be
explored for future research. 'is second class of problem is
very interesting to study when a given machine requires the
same setup time for all jobs. For example, the machine can
have an automatic fixed setup time to process every job; such
a setup time can be interpreted in same industrial cases as

cleaning, parts assembly-disassembly, or maintenance of a
certain machine. We note that [34, 35] propose a set of MILP
models and lower bounds for specific cases of the PFSP-SIST
problem. In the same context, [36] propose an MILP model
and a set of constructive heuristics to solve
Fm|prmu, SIST|Cmax. We are continuing the investigation in
PFSP-SIST issues by solving this problem for larger size of
instances and testing two metaheuristics. To this end, we
propose a study with three methods: MILP, heuristics, and
metaheuristics. 'e two implemented metaheuristics for
resolution are among the most powerful in the neighbor-
hood exploration, the iterative local search (ILS) algorithm,
and the iterated greedy (IG) algorithm. We note that our
case study is particular because of the presence of the SIST
constraint. In fact, this setup time may be the subject of
several cases such as assembly and disassembly of parts or
tools in the machine, cleaning, evacuation of production
means, and so on. 'ese activities can be carried out by
robots or manipulators independent of the processed jobs in
the machine. In this perspective, we present a study to
contribute to the resolution of this problem which forms an
essential manufacturing case to be encountered in the new
industrial technology. We continue in this line of research
and propose a model in MILP and two metaheuristics for
solving the PFSP-SIST problem.

Our paper is organized as follows. In Section 2, a de-
scription of the problem is presented; in Section 3, we de-
velop all the proposed approaches to resolution. In Section 4.
a comparative study between the different methods of
resolution is presented. Section 5 summarizes our resolution
approaches.

2. Description of the PFSP-SIST Problem

In the PFSP-SIST scheduling problem, a set of jobs J �

J1, J2, . . . , Jn􏼈 􏼉 constituting a production batch is launched
in the production process consisting of a set of machines
M � M1, M2, . . . , Mm􏼈 􏼉 arranged in series. All jobs have the
same path andm operations on all machines, and each job Jj

starts with the first machine and ends its cycle with the last
machine. We consider that pi,j the processing time of the job
Jj on the machine Mi, and eachmachine has an extra time of
preparation si when processing a new job. Denote a sequence
π � π1, π2, . . . , πn􏼈 􏼉 constituting a possible permutation
when processed by the machines. We note Ci,πj

the com-
pletion time of the job πj of the sequence on the Mi

machine.'e goal is to find the right sequence among the n!

possible sequence to minimize the production time of the
batch of n jobs and determine the start and completion time

. . .
J1

Jn . . .
J1

JnM1 Mm

Figure 1: Flow shop problem with n jobs and m machines.
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of each job on each machine. 'e assumptions used are
those of the classic case, that is to say the interruption is not
allowed, and each machine processes only one job at time
and job can process only once by the same machines. All
jobs and machines are available at the initial moment. 'e
aim is to minimize the maximum completion time called
makespan Cmax under the selected assumptions as well as
the availability constraints of the machines during
scheduling in the real time of the entire batch. We give here
a set of equations to determine the completion time of each
job on each machine:

C1,π1 � p1,π1 + s1, (1)

C1,πj
� C1,πj− 1

+ p1,πj
+ s1, j � 2, . . . , n, (2)

Ci,π1 � max si, Ci− 1,π1􏽮 􏽯 + pi,π1, i � 2, . . . , m, (3)

Ci,πj
� max Ci,πj− 1

+ si, Ci− 1,πj
􏼚 􏼛 + pi,πj

, i � 2, . . . , m;

j � 2, . . . , n,

(4)

Cmax � max
1≤j≤n

􏼚Cm,πj
􏼛. (5)

Equations (1) and (2) allow to determine the end date of
the first job and the other jobs on the first machine, re-
spectively. Equations (3) and (4) allow to determine, re-
spectively, the end date of the first job and the other jobs on
all the other machines. Equation (5) calculates the makespan
Cmax. In this model, the objective is to determine an optimal
sequence π∗ in the set permutation Π, such as Cmax(π∗)
≤Cmax(π), π ∈ Π.

2.1. Numerical Example. We give here an numerical illus-
tration with small instance represented by three jobs and
three machines.'e processing time of all jobs and the setup
time for all machines of are given in Table 1. We represent
the Gantt chart for the sequence π � (3, 1, 2), the makespan
of this instance is 48 unite of time (see Figure 2). From this
numerical example, it can be easily seen that jobs will be
processed on the first machine continuously. On the con-
trary, when scheduling jobs in other machines, some ma-
chines remain on hold, which leads to a waste of time. In
conclusion, the sequence in the first machine is a deter-
mining factor in the search for the right solution.

3. Resolution of PFSP-SIST Problem

'e resolution of the scheduling problems during the last
decades has undergone a great evolution and a great based
on power of the height technology computers. To solve our
problem Fm|prmu, SIST|Cmax, we propose three approaches,
a MILP, two heuristics among the most powerful for the
scheduling problem and finally two metaheuristics algo-
rithm ILS and IG. In the last resolution category, we rely on
the exploration structures of the neighboring of a sequence π
based on the permutation or insertion of a job in the

sequence to obtain a new sequence in the space search for
solution.

3.1. Mixed-Integer Linear Programming. Modeling optimi-
zation problems in scheduling and in particular in the PFSP
is one of the most important areas of research in operational
research. In fact, these models propose a function to opti-
mize under constraints solved by one of the solvers dedi-
cated to this type of model. 'e models are numerous and
diverse, often characterizing a practical case for industrial
need or a theoretical case for academic research. Several
models inMILP are proposed for different case studymodels
of the PFSP; a comparative study is described in [37], and a
new model is presented [38]. Furthermore, more models are
presented in [39] for the PFSP-SDST problem. We present
here a model inMILP for our problem, and we define a set of
parameters and variables necessary for the realization of the
proposed model.

xk,j �
1, if job j is assigned to the position k of the sequence,

0, otherwise,
􏼨

k, j � 1, . . . , n,

Ci,k � completion time of job at position k onmachine i,

i � 1, . . . , m,

k � 1, . . . , n.

(6)

'e objective is to

minimize Cmax � Cm,n, (7)

subject to

􏽘

n

j�1
xk,j � 1, k � 1, . . . , n, (8)

􏽘

n

k�1
xk,j � 1, j � 1, . . . , n, (9)

C1,1 ≥ s1 + 􏽘
n

j�1
x1,j × p1,π1; j � 1, . . . , n, (10)

C1,k ≥ s1 + C1,k− 1 + 􏽘
n

j�1
xk,j × p1,πj

; k � 2, . . . , n, (11)

Ci,k ≥Ci− 1,k + 􏽘
n

j�1
xk,j × pi,πj

, i � 2, . . . , m;

k � 1, . . . , n,

(12)

Table 1: 'e processing time of 3 jobs on 3 machines.

Job Job 1 Job 2 Job 3 si

M1 9 5 9 3
M2 8 8 8 2
M3 7 6 6 3

Journal of Applied Mathematics 3



Ci,k ≥ si + Ci,k− 1 + 􏽘

n

j�1
xk,j × pi,πj

, i � 1, . . . , m,

k � 1, . . . , n,

(13)

Ci,k ≥ 0, i � 1, . . . , m; k � 1, . . . , n, (14)

xk,j ∈ 0, 1{ }, j, k � 1, . . . , n. (15)

Knowing that (7) defines the objective function to
minimize. Constraints (8) and (9) make it possible to
guarantee that each position in the sequence will be oc-
cupied by a single job, and each job can have only one
position. Constraint (10) is used to determine the com-
pletion time of the job occupying the first position in the
first machine. Constraint (11) calculates the completion
time of the job at the position k, k≥ 2 in the first machine.
Constraint (12) guarantees that for a job at the k position,
the completion time in the machine i is greater than or
equal to the completion time in the previous machine i − 1
increasing its processing time on the i machine. Con-
straint (13) ensures that, for two jobs of successive po-
sitions, the completion time in the machine of the one in
position k is greater than or equal to that of the one in
position k − 1 increasing in processing and setup times.
Constraints (14) and (15) ensure that the completion time
is positive and the assignment variables xk,j are binary,
respectively. To solve our mixed-integer linear pro-
gramming model dealing with PFSP-SIST problem, we
will use LINGO 17.3 software.

3.2. Heuristics. 'e PFSP scheduling problems under
various constraints can be solved through different
heuristics. In fact, for the industrialists, the search of the
solutions by heuristics constitutes simple and less ex-
pensive issue to ensure the production and to satisfy their
customers. 'e heuristics are usually based on priority
rules based on job characteristics such as processing
time, setup time, and other priorities related to the
problem being addressed. In this work, we present two
heuristics, the heuristic Johnson’s rule [40] and the one
based on the NEH [41] algorithm. 'ese two basic
heuristics are among the most promising approaches in
finding the right solution for most PFSP scheduling
problems.

3.2.1. An Heuristic Based on Johnson’s Rule. 'e PFSP
problem with two machines is the basic problem of any flow
shop scheduling problems. 'e studies that have followed
since the first study refer to this problem. 'e extensions of
these problems are numerous, and the cases studied often
fall under the particular constraints like the preparation of
the machines or the preparation of the jobs to schedule all
the jobs in the workshop.'emain objective of optimization
is to minimize the makespan from which we can deduce
many other intrinsic objectives. We were interested in this
approach by proposing a heuristic based on Johnson’s rule,
which we adopted to solve our case study of
Fm|prmu, SIST|Cmax. 'e following algorithm presents our
heuristic of resolution by highlighting the characteristics our
problem.

In this investigation, the Johnson algorithm is
adapted to fit more than two machines flow shop prob-
lems. Algorithm 1 shows the template of an heuristic
based on Johnson’s rule (HBJR) with construction of two
virtual machines by assembling the first 1< k<m − 1
machines into one virtual machine and the k − m

remaining machines into the second virtual one. 'e
processing time of a job πj on a virtual machine (pi,πj

′ ) is
the sum of the processing times pi,πj

of job πj on the
machines that compose the virtual machine.

3.2.2. NEH Heuristic. 'e NEH algorithm constitutes a
heuristic pillar for solving the PFSP problem with n jobs and
m machines. More and more researchers are developing
more adopted versions of the case and following the con-
straints of each problem. We do several research work as in
[42, 43] and more recently in [44]. Indeed, Ruiz and Maroto
compared NEH with more modern and more complex
heuristics, such as those of [45, 46] showing NEH algorithm
realized the better performance. Here, we propose a version
of the NEH algorithm for the resolution of PFSP-SIST, the
Algorithm 2 presents the necessary steps to establish the
sequence of NEH.

In order to adapt the NEH algorithm to the studied
problem, the setup time is added to the sum of processing
times of each job in the first step of the algorithm
Tj � 􏽐

m
i�1pi,πj

+ si.

3.3. Metaheuristic Algorithms. 'e resolution of PFSP by
metaheuristics has been very successful in recent years.
Indeed, the instance size of the problems has become larger

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time

Cmax = 48

M1 s1 s1s1

s2

s3 s3 s3

s2 s2

J3

J3

J3

J2

J2

J2

J1

J1

J1

M2

M3

Figure 2: Gantt chart for three jobs in three machines.
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and larger, exact methods such as MILP or the branch and
bound procedure are limited to a small-size instance. 'e
need to solve the real cases of problems induces researchers
to develop metaheuristics to give the right solution in a

reasonable time. In this paper, we propose two main met-
aheuristics, the iterative local search (ILS) algorithm and the
iterated greedy (IG) algorithm. 'e two algorithms are
proposed to solve the problem Fm|prmu, SIST|Cmax with the

Input: π0 � π1, . . . , πn􏼈 􏼉 % 'e initial sequence
π⟵ π0
% Construction of π′
p1,πj
′ ⟵p1,πj

, j � 1, . . . , n, p2,πj
′ ⟵􏽐

m
k�2pk,πj

, j � 1, . . . , n

π∗⟵ π′ % Sequence π on two virtual machines with new processing time pi,πj
′

for i � 2 to m − 1 do
% Reconstruction of new two machines
p1,πj
′ ⟵􏽐

i
k�1pk,πj

, j � 1, . . . , n, p2,πj
′ ⟵􏽐

m
k�i+1pk,πj

, j � 1, . . . , n

π″⟵ Johnson’s rule(π′)
if (Cmax(π″)<Cmax(π′)) then

π⟵ π″
if (Cmax(π)<Cmax(π∗)) then
π∗⟵ π

end if
end if

end for
makespan⟵Cmax(π∗)

Output: π∗,makespan

ALGORITHM 1: An heuristic based on Johnson’s rule.

Input: processing time pj1, . . . , pjm and the setup time si in m machines.
Evaluate the total processing time and setup time of each job by: T(j) � 􏽐

m
i�1pji + si

Construct the sequence π � (π1, . . . , πn) by sorting the jobs in descending order of T(j)

Schedule the first two jobs π1, π2 and choose the best sequence π of the first two jobs
for j � 3 to n do

Insert πj in the all positions of the current sequence built and select the best sequence
with the minimum Cmax in the last machine and update πNEH of the optimal sequence.

end for
Output: πNEH

ALGORITHM 2: NEH algorithm.

Input: π0 � π1, . . . , πn􏼈 􏼉 the initial sequence
π(best)⟵ π0, π⟵ π0
while {the stopping criterion not satisfied} do
Choose π′ from the neighborhood of Nk(π)

if Cmax(π′)<Cmax(π) then
π⟵ π′
if Cmax(π)<Cmax(π(best)) then
π(best)⟵ π

end if
else
if random≤ exp − (Cmax(π′) − Cmax(π))/Temp􏽮 􏽯 then
π⟵ π′

end if
end if

end while
Output: π(best)

ALGORITHM 3: ILS algorithm.

Journal of Applied Mathematics 5



diversification of neighborhood exploration that will be
given in detail as follows. For our considered instances, the
number of machines m ∈ 2, . . . , 30 and the number of jobs
n ∈ 5, . . . , 600; the processing times pij are defined in [1, 49]

and the setup times si are defined in [1, 10].

3.3.1. ILS Algorithm. 'e ILS algorithm is considered one of
the powerful optimization algorithms for solving scheduling
problems. We find the latest applications of this algorithm in
[47–49] for solving the PFSP problem and its extensions
under various implementations. In Algorithm 3, we describe
the steps of the development of this algorithm. In the first
phase, an initial solution is given by one of the initialization
heuristics. In the second, while the stopping criterion not
satisfied a search procedure in the neighborhood of the
current solution is triggered, each time, an update of the best
solution is performed. In this implementation model, we
choose an adaptation of the simulated annealing criterion to
better explore the neighborhood.

'e implementation of the ILS algorithm requires a set
of parameter settings to better converge to the optimal
solution depending on the size of the problem. 'e first
parameter is the stop condition of the algorithm that we
consider here in number of iterations, the second parameter
is the acceptance condition of the simulated annealing
model Temp, We adopt the following model:

Temp � T0 ×
􏽐

n
j�1􏽐

m
i�1pi,j + si

10 × m × n
. (16)

'is expression is given according to the characteristic of
the PFSP-SISTproblem.'e parameter T0 makes possible to
control the speed of convergence of our algorithm, we
choose in this study T0 ∈ 0.5, . . . , 0.98{ }. 'is model of
temperature has been adopted in several research works
concerning the PFSP problem (see, for example, [50]).

'e local search metaheuristics requires the defini-
tion of the neighborhood structure exploration, we
propose four structures (Ni, i � 1, . . ., 4). Starting from
the current sequence of Figure 3 where the jobs in

7 8 5 4 2 6 1 3

7 1 5 4 2 6 8 3

7 1 8 5 4 2 6 3

7 5 4 2 6 1 8 3

7 1 6 2 4 5 8 3

N1

N2

N3

N4

Figure 3: Neighborhood structure.

Input: π the initial sequence.
π(best)⟵ π
while unsatisfied stopping criterion􏼈 􏼉 do

π′⟵ π
for u � 1 to d do
Extract a job πu at random from the sequence π′ and add the job πu to the Φ subset.

end for
for u � 1 to d do
Extract the πu

′ job from Φ subset.
Test the job on all positions in the current sequence π′ and choose the best position giving the best completion time.

end for
Choose π″ from the neighborhood of Nk(π′)
if Cmax(π″)<Cmax(π) then
π⟵ π″
if Cmax(π)<Cmax(π(best)) then

π(best)⟵ π
end if

else
if random≤ exp − (Cmax(π″) − Cmax(π))/Temp􏽮 􏽯 then

π⟵ π″
end if

end if
end while

Output: π(best)

ALGORITHM 4: Iterated greedy algorithm.
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positions 2 and 7, respectively, are used to generate the
set of neighborhoods considered. Neighborhood N1 is
defined by the permutation of the position of two jobs.
Neighborhood N2 adopts the insertion and shift to the
right, and Neighborhood N3 considers the insertion and
shift on the left. Finally, neighborhood N4 is defined by
job blocks inversion between two different positions in
the sequence.

3.3.2. IG Algorithm. 'e second heuristic implemented to
solve our problem is the IG algorithm (see Algorithm 4).
'is algorithm is based on three stages of resolution: the step
of destruction of the current solution, the step of the re-
construction of the solution and the last step concerns the
local search procedure. 'e first two stages constitute the
first main phase of the principle of the algorithm IG, the
second main phase is that of the neighborhood exploration.
Recent work in applying the IG [51–53] algorithm shows the
rising power of this algorithm in solving the optimization
problem in the scheduling domain. 'e implementation of
this algorithm requires also a set of setting parameters, the
stop condition, the number d of jobs extracted in the se-
quence to build the new sequence, the parameter of the
simulated annealing temperature, and finally the structure of
the neighborhood used in the exploration phase. For the stop
condition and the temperature parameter Temp, we adopt the
same condition as that adopted for the ILS algorithm. As for
the neighborhood structure, we consider the same structure
as ILS. For the d parameter of extracted jobs, we consider
that it also depends on the size of the problem knowing that
d ∈ ⌊n/4⌋, ⌊n/3⌋{ }, for n ∈ 5, . . . , 50{ } and d ∈ ⌊n/3⌋, ⌊n/2⌋{ }

for n> 50.
We present here an illustrative example of the pro-

cedure of destruction and reconstruction of the IG al-
gorithm. Knowing that the current solution is
π � 7, 8, 5, 4, 2, 6, 1, 3{ }, we randomly extract two jobs, for
example, 7 and 6, the remaining sequence is
πd � 8, 5, 4, 2, 1, 3{ }. Subsequently, we insert the first 7 job
in all positions, and we select the best constructed se-
quence giving the value of Cmax, for example
π � 8, 5, 4, 7, 2, 1, 3{ }. We repeat the procedure for the new
built sequence and insert job 6 in all possible positions,
and at the end, we get the best value from the makespan.
Figure 4 gives a representation of the procedure of de-
struction and reconstruction of the IG algorithm.

4. Computational Results

To validate our approaches of resolution for the studied
problem, we propose two comparative studies between the
different algorithms. 'e first comparative study is based on
the calculation of the relative percentage deviation (RPD).
'e second concerns the convergence study of resolution
algorithms for medium and large instances. For the first
comparative study, we give the expression of RPD by the
following formula:

RPDHi
�

CHi
max − Cbest

max

Cbest
max

× 100; i ∈ 1, 2{ }, (17)

where H1 stands for HBJR and H2 represents NEH heuristic.
In this expression, we measure the deviation of the solution
found from the optimal solution given by the MILP, for
relatively small instances, where CHi

max represents the solution
found by the heuristic Hi and Cbest

max represents the value
found by theMILP. Table 2 shows the results found for some
tested instances. We limit ourselves to such number of
problems; our objective is to highlight the effectiveness of
resolution heuristics and their relevance to solve this
problem. From the results, we find that the heuristic NEH is
better compared with the heuristic based on the rule of
Johnson.

Table 2 shows the RPDHi
obtained for different combi-

nations m × n, where m is the number of machines and n
stands for the number of jobs. It is observed that for m � 2,
the obtained results by the heuristics are the same and equal to
those given by the MILP. It is also shown that for a number of
jobs n≥ 10, the NEH heuristic gives better results than those
calculated by the heuristic based on Johnson’s rule.

For relatively large and medium instances, we measure
the deviation from the best solution given by the ILS and IG
algorithms. For this last class of problem, we vary the
number of jobs and machines to reach high instances. We
note that computation is given for an average of five in-
stances for each algorithm. 'e result in this comparative
study is given in Table 3; this table shows the clear supe-
riority of the IG algorithm with respect to ILS for all tested
instances. We report that the number of machines tested is
m ∈ 5, 10, 20, 30{ }, and the number jobs varies in a way to
cover different sizes and reaches a maximum of 600 jobs. We
have tried to better concertize the real size of the jobs
processed in industrial batches.

7 6

8 5 4 7 2 1 3 6

6 8 5 4 7 2 1 3
8 6 5 4 7 2 1 3
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Figure 4: IG procedure.
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'e analysis concerning the numerical results shows the
efficiency of our suggested metaheuristics in term of con-
vergence towards their good solutions.

In Figure 5, we represent the evolution of the values of
the objective function as a function of the number of
iteration for two instances 40 × 10 and 40 × 20; the two

algorithms converge to their stable values about after 80th
iteration, and IG saves an important gain of units time
compared with ILS. For the second instances, the two ILS
and IG algorithms converge to their stable bounds at
about 280th iterations and that IG is better compared to
ILS.

Table 3: Comparison between iterated local search and iterated greedy.

job × machine RPDILS RPDIG

10 × 5 0.000 0.000
20 × 5 0.864 0.000
30 × 5 0.559 0.000
40 × 5 0.050 0.000
50 × 5 0.086 0.000
60 × 5 0.466 0.000
20 × 10 1.713 0.129
30 × 10 0.440 0.101
40 × 10 0.902 0.043
50 × 10 1.464 0.287
60 × 10 0.272 0.110
10 × 20 0.461 0.000
20 × 20 0.990 0.030
30 × 20 0.427 0.159
40 × 20 0.430 0.187
50 × 20 1.386 0.483
60 × 20 1.937 0.097
70 × 20 1.588 0.010
80 × 20 0.545 0.143
90 × 20 0.645 0.109
100 × 20 0.34 0.120
140 × 20 1.158 0.060
160 × 20 1.370 0.051
200 × 20 1.167 0.000
240 × 20 1.315 0.173
300 × 20 0.466 0.121
340 × 20 0.637 0.007
400 × 20 1.729 0.000
500 × 30 0.816 0.000
600 × 30 0.506 0.016

Table 2: Comparison between mixed-integer linear programming and heuristics.

job × machine MILP HBJR NEH RPDH1
RPDH2

5 × 2 177 177 177 0 0
10 × 2 324 324 324 0 0
15 × 2 495 495 495 0 0
20 × 2 658 658 658 0 0
30 × 2 928 928 928 0 0
5 × 5 316 332 316 5.06 0
10 × 5 449 459 453 2.22 0.89
15 × 5 598 660 602 10.36 0.66
20 × 5 763 826 767 8.25 0.52
5 × 10 460 476 493 3.47 7.17
10 × 10 599 652 616 8.84 2.83
15 × 10 764 841 780 10.07 2.09
5 × 15 599 599 605 0 1.0
10 × 15 727 765 739 5.22 1.65
15 × 15 882 994 919 12.69 4.19
5 × 20 748 757 759 1.2 1.47
10 × 20 900 958 933 6.44 3.66
15 × 20 1069 1166 1101 9.07 2.99
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In Figure 6, we represent the evolution of the objective
function for the two instances 100 × 10 and 100 × 20, re-
spectively. 'ese two instances can be considered relatively
larger instances. 'is type of size is frequently encountered
in modern industry, where customers ask for a fairly high
batch. For the first instance, we can see that the two algo-
rithms stabilize after the 180th iteration; a significant gain in
calendar scheduling time is recorded by IG compared with
ILS algorithm. For the second instance, we can conclude that
the IG gives best results comparing with the ILS algorithm
after 90th iteration.

'e four tested instances, in the convergence compar-
ison study, have been implemented for the NEH initiali-
zation heuristic. Indeed, this initialization algorithm gives us
better results in terms of RPD for relatively small instances
and relatively large and medium instances.

5. Conclusion

In this paper, we have studied a flow shop problem with
permutation and sequence-independent setup time in order
to minimize the makespan. First, we have conducted a
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Figure 5: Makespan vs. number of iterations for n � 40 and m � 10 (a) and for n � 40 and m � 20 (b).

0 20 40 60 80 100 120 140 160 180 200
9700

9800

9900

10000

10100

10200

Number of iterations

M
ak

es
pa

n

ILS
IG

(a)

0 10 20 30 40 50 60 70 80 90 100

1.07

1.08

1.09

1.1

1.11

1.12

1.13

Number of iterations 

M
ak

es
pa

n

×104

ILS
IG

(b)

Figure 6: Makespan vs. number of iterations for n � 100 and m � 10 (a) and for n � 100 and m � 20 (b).
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comparative study between the exact mixed-integer linear
programming method and two heuristics, one is based on
Johnson’s rule, and the other is based on NEH algorithm.
'e two heuristics were compared with the results of the
MILP for all instances. Simulations are performed for rel-
atively small instances by varying the number of jobs and
machines. It was observed that the NEH heuristic gives
better results than those given by the heuristic based on
Johnson’s rule. On the contrary, two metaheuristics are used
for medium to relatively large instances. We have concluded
that IG algorithm gives good results comparing with ILS
metaheuristic. In this paper, we have studied PFSP-SIST
problem by using MILP model and different metaheuristics.
However, adding an other constraint to this problem like
unavailability or no-idle machines can be considered as a
potential future issue.
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