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This paper proposes a statistical mechanical model for the energy conservation behaviour of energy users. The model was inspired
by the multipopulation Curie-Weiss model and the discrete choice with social interaction model. We demonstrate that the model
integrates the sociopsychological, the economic, and the energy technologist viewpoints to energy management, allowing us to
subject these perspectives to an empirical study.

1. Introduction

Energy is one of the most important drivers of the economy
of every country. Often, managing the energy resources has
been a problem. Electrical energy plays an indispensable role
in undertaking most of our daily activities from refrigeration,
cooking, lighting, entertaining to powering of machines and
record keeping in the industrial and commercial sectors [1].
Electrical energy serves as a crucial resource for productive
and quality education, efficient healthcare delivery, transpor-
tation systems, and the exploration of minerals such as iron
and gold. These serve as the building block on which every
sector of a nation’s economy thrives for development [1].
The efficient use of resources available at a given time by
the energy end users has also been a challenge. The demand
for energy around the world keeps on increasing, and the
existing traditional forms of energy such as the fossil fuels
and coal, which are not renewable sources of energy, are
struggling to keep up with this demand over time. Moreover,
the regular usage of the fossil fuels has a negative impact on
global warming and the ecosystem. Adaptation of a better
and dynamic demand response program which promotes
energy conservation practices among energy users is highly
sought after now than ever. Economic-engineering studies
have attempted to close this gap in energy efficiency through

the adoption of different technologies [2]. A model that can
simultaneously capture group dynamics, body use, cognitive
processes, and human-machine interactions is needed. To
date, progress towards such a model has been limited by
the theoretical preferences of the various disciplines involved
in energy research [2].

The main interest here is to import ideas from discrete
choice theory and statistical physics to develop models for
energy conservation decision-making. Here, our focus is on
a model that captures how individuals’ decision about energy
conservation is influenced by their socioeconomic attributes
and the choices of others. This work is structured as follows:
Section 2 gives an overview of existing models and theories in
relation to human behaviour and energy use. In Section 3, we
propose a model from discrete choice theory as a model for
interdependent energy conservation decision-making. Sec-
tion 4 discusses a more generalised form and multipopula-
tion version of the Curie-Weiss model and provides an
estimation procedure suitable for the model. Conclusion of
the work is found in Section 5.

2. Modelling of Energy Use Behaviour

Modelling of individual behaviour has always been a chal-
lenge in the context of energy conservation. There are various
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schools of thought here. These are the economists, energy
technologists/analysts, and sociopsychologists schools of
thought. Their approaches to modelling human energy use
and behaviour will be discussed below, and we will propose
a model which can incorporate all the three approaches
later. This section will begin by discussing the economists
and energy technologists approach, and this will be followed
by the sociopsychologist approach. These approaches are
qualitative and form the theoretical framework of this
study.

2.1. Economists Approach. The price of energy and income of
individuals is the main determinants of individuals energy
conservation behaviour in economics studies. The theory
of utility maximization and consumer rationality in micro-
economics modulates consumer’s demand. This theory is
derived from the concept that consumers always want to
maximize their utility at the least possible cost, i.e., con-
sumers try to weigh all other alternatives and actions to see
the one that will maximize their utility/satisfaction [3]. In
the economics viewpoint, rationality is defined as a funda-
mental axiom which control consumer behaviour. Consumer
energy conservation decisions must be rational, and effective
policies such as labels on electrical appliances and energy
demand response programs (efficiency methods) are liable
to weaken the economic theory of rationality by constraining
consumers of want for options [4].

In [4], the authors examined the disparities between
consumer rationality and other alternatives to energy effi-
ciency, and they found it useful to describe the link between
consumer rationality and energy demand behaviour. The
first viewpoint considered in [4] is attributed to ideologies
from neoclassical economics. According to a neoclassical
economic viewpoint on consumer rationality and energy
demand behaviour as discussed in [4], the consumers of
energy and suppliers/producers have a fixed preference that
they both endeavour to fulfil by means of market mediation.
The underlined preferences of consumers turn out to influ-
ence their decisions to accept or reject energy-efficient appli-
ances and equipment. These usually reflect a consumer’s
rational and relevant evaluation of costs and benefits from a
certain technology or practice.

Economists always base their points of view on the
notion that individuals react to the “performance of the mar-
ket system in terms of informal arguments based on intuitive
notions of rationality and preference” [5]. In this case, if
rational theory of choice is a literal system of describing con-
sumer behaviour, then energy consumers, producers, and
policy makers face the challenge of solving complex optimi-
zation problems daily. These problems are not just for a daily
cost minimization but also becomes an optimal control prob-
lem and stochastic dynamic problems [4, 5].

2.1.1. Limitation to the Economists Approach. The economic
theory of utility maximization and consumer rationality is
used as a model for influencing consumers’ demand with
price. An experiment conducted by psychologists has shown
that individuals do not consistently make rational decisions
[6] and their behaviour is not consistent with the standard

model of rational choice in economics [4]. Some of the fac-
tors include time inconsistency, reference dependence, and
bounded rationality. The economic theory of decision-
making is incapable to fully explain human behaviour, to be
specific behaviours related to residential energy use. The the-
ory of bounded rationality suggests that “individuals employ
heuristics” when making choices instead of the standard
“strict rigid rules of optimization” [6].

2.2. Energy Technologists Approach. The second view point
discussed in [4] is also related to consumer rationality and
other alternatives to energy efficiency and attributed to
energy technologists and behavioural scientists. Energy tech-
nologists and behavioural scientists assert that individuals’
choices for their preferences do not minimize their costs of
obtaining energy services. In the view of technological ana-
lysts, consumers are not having accurate knowledge regard-
ing energy-efficient technologies and lack the ability to
make accurate decisions even when they are given full and
complete information [4]. Making accurate and precise deci-
sions is based on relevant technical skills which are possessed
by experts and specialists in economics, mathematics, and
energy-related disciplines. Making correct choices always as
supposed by economists is highly impossible, since there will
be a need of high-speed computers to run complex optimiza-
tion problems on energy technologies [4].

The work in [6] also contributes to understanding energy
efficiency and stresses on the importance of human behav-
iour as a factor that is always ignored. The author discusses
the following three basic routes that can lead to energy
savings:

(1) Replacing the existing housing stock with low-energy
buildings designed primarily to minimize heating
and cooling loads [6]

(2) Developing energy-efficient domestic equipment [6]

(3) Promoting and achieving “energy-conscious” behav-
iour among end users [6]

Energy-efficient methods mostly follow the first two
route, i.e., the design of buildings and energy-efficient appli-
ances. The “physical-technical economic model” (PTEM) is
one of the dominant models in energy analysis. The PTEM
proposes that the energy conservation in buildings/house-
holds relies almost always on the engineering design (physical
characteristics) of buildings and the efficiency of technologi-
cal appliances. This model overlooks and considers human
behaviour as an insignificant factor to reducing peak demand
in the residential sector of energy consumption.

The PTEM focuses on energy pricing, technological tools,
and improvement and considers social actions and noneco-
nomic factors as an insignificant aspect of consumption [7].
This is clearly contrary to what happens in the real world.
Household energy consumption varies, and this can be
attributed to variations in engineering design and economic
factors, demographic characteristics (gender, employment
status, household size, race, etc.), and the behaviour of the
household members.
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2.2.1. Limitation to the Energy Technologists Approach. The
PTEM focuses on energy pricing, technological tools, and
improvement and considers social actions and noneco-
nomic factors as an insignificant aspect of consumption.
On the contrary, social behaviours and noneconomic factors
are significant in the study of human energy consumption
activities [7].

2.3. Sociopsychological Approach. Research has shown that
consumers do not always act rationally as suggested by
economist. Individual behaviour is bounded by time, and
rationality and individuals are reference dependent [6].
According to [8, 9], the consumers of energy do not just con-
sider the minimization of energy cost in their day to day
activities. Energy users are also consumers and therefore
show higher preferences for things such as comfort and
appearance than the monetary benefits obtained from using
energy-efficient appliances. Consumers are in a social group
and therefore influenced by the things they hear from
neighbours or family more than information from distant
energy experts.

As stated earlier, the theory of bounded rationality sug-
gests that “individuals employ heuristics to make a decision
rather than a strictly rigid rule of optimization” [6]. This is
because consumers do not have the ability to compute the
utility of all alternatives and the complexity of situations.
Researchers have been stressing the importance of studying
residential energy consumption from a social context. It is
believed that despite the fact that encouraging changes in
individuals’ behaviour towards energy conservation is rele-
vant, analysis from a social perspective will also provide a
broad framework to understand residential energy conserva-
tion behaviours of individuals [3].

2.3.1. Theory of Reasoned Action. The model proposed by
Icek Ajzen which is known as the theory of reasoned action
makes an attempt to explain human behaviour [10]. Accord-
ing to [11], behavioural intention is simply what one intend
to do or not to do, and it is the most appropriate determinant
of behaviour. Behavioural intention is explained by the atti-
tude (A) and subjective norm (SN) of an individual. Attitude
is simply an individual’s evaluation of behaviour, whereas
subjective norm refers to the influence from the society or
surrounding on an individual to accept or not to accept a cer-
tain norm or belief. In [10], the author treats the likelihood of
response by an individual as three self-standing notions,
namely belief, attitude, and intention. The work in [12] also
indicates that for any behaviour, individuals have several
beliefs but have the ability to make use of only few at any
given instant. Beliefs about likely consequences of attitude
and its evaluations are the major determinants of attitude
[10, 11]. According to [10], it is the case that individuals
establishes/builds beliefs about an object by associating it to
an underlying characteristics or attributes of the object in
question. An example of how individuals form beliefs is as
follows; after a careful study of the exam result, it is obvious
that the students (object) in the class learned very hard or
copied each other or brought in foreign materials or stole
the questions (attributes) [10]. These attributes are evaluated

to be positive or negative by an individual concerning the
object. Hence, individuals immediately develop an attitude
towards the object. It is clear from these points that attitude
is a result of beliefs about an object, and how it is evaluated
by an individual. Suppose an individual has n beliefs
(b1, b2,⋯, bn) and n subjective evaluations (e1, e2,⋯, en) of
the beliefs. It follows from [10, 13] that the attitude A of the
individual is proportional to the sum of the product of the
beliefs and their evaluations, i.e.,

A∝ 〠
n

i

biei: ð1Þ

Thus, attitude is proportional to the scalar product of the
vectors b = ðb1, b2,⋯, bnÞ and e = ðe1, e2,⋯, enÞ of beliefs
and subjective evaluations, respectively.

As indicated above, behaviour is explained by both the
attitude and subjective norm of individuals. Subjective norm
is simply how an individual perceive others approval about
his or her behaviour. The strength of normative belief si, for
i = 1, 2,⋯, n, is concerned with the evaluation made by an
individual’s reference group, peers, colleagues, family, etc.
relating to the approval or disapproval for the individual to
hold belief bi. Subjective norm is determined by beliefs or
thoughts others esteem as important about specific things
one should do, and how much one is motivated to comply
ðm1,⋯,mnÞ with others on beliefs ðb1, b2,⋯, bnÞ [13]. Sub-
jective norm is directly proportional to the sum of the prod-
ucts of the strength of each normative belief (si) and an
individual’s motivation to comply (mi) to the belief bi across
the n different beliefs [10, 11, 13]. This can be mathematically
expressed as

SN ∝ 〠
n

i

simi: ð2Þ

To properly explain behaviour, the theory of reasoned
action proposes that behaviour (B) is approximated by
behavioural intention (BI), and BI is proportional to the
sum of attitude and subjective norm. Thus,

B ≈ BI = k1A + k2SN = k1 〠
n

i=1
biei + k2 〠

n

i=1
simi: ð3Þ

2.3.2. Theory of Planned Behaviour. The theory of planned
behaviour is also a sociopsychological theory which aims at
explaining human behaviour [13]. This theory is an exten-
sion to the theory of reasoned action which looks at the pos-
sible risky prediction that can be made with the theory of
reasoned action [11]. The theory of planned behaviour
extends the theory of reasoned action by adding perceived
behavioural control. Perceived behavioural control describes
the extent of control individuals think they have over their
behaviour, and it comes as an additional factor to behav-
ioural intention. It is usually measured by things such as
“passing the exam is under my control” and “it is easy for
me to pass the exam” [11]. According to [11], perceived
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behavioural control is included in behavioural intention;
hence, behavioural intention can be used directly to predict
behavioural achievement. The theory says that the most
appropriate determinant of one’s actual behaviour is simply
the motive an individual possesses to act in a certain manner.
The core to the theory of reasoned action discussed above
is intention. It can be noted that intention is central to this
theory of behaviour as well. It is assumed that intention
plays the role of capturing motivational factors that influ-
ences the actual behaviour of an individual [10, 13, 14].
Given the nature of a problem, behavioural intention is a
description of the willingness of individuals to attempt and
an indication of extensive effort willing to exert in order to
adopt a behaviour [10, 13, 14].

2.3.3. Goal-Framing Theory. The goal-framing theory deals
with cognitive process and studies environmental behav-
iours. According to the work in [15], the goal-framing theory
is motivated by studies revolving around cognitive social psy-
chology and aims at influencing one’s goals during cognitive
processes. Cognitive processes consider the mental function
of the mind related to logical reasoning and evaluations.
For the theory to work, an individual is given a prior knowl-
edge about certain innovations. Then, the receiver of the
knowledge forms an attitude towards the innovation, decides
to reject or approve of the innovation based on the knowl-
edge acquired, applies it, and confirms a decision. The frame-
work identifies three goals that are relevant to the study of
environmental behaviour. These goals are the normative,
hedonic, and gain goals, which are mostly relied on for
proenvironmental behaviour studies [15]. In regard to this
theory, normative goal frame is defined to be the motivation
an individual has “to act appropriately.”When an individual
is obsessed with this goal, then an individual has the tendency
to act “according to one’s own or others norm’s” in the most
appropriate way and kindled to portray proenvironmental
behaviour [15]. An individual inclined to hedonic goal is
concerned with things that enable him or her to “feel better
right now.” These include obsession in seeking personal
pleasure, contentment, or arousing one’s personal interest.
Individuals with this goal are very sensitive to things that
affect their satisfaction or pleasure [15]. An individual falling
under the gain goal frame is one with the motivation to
“guard and improve one’s resources” [15]. The framework
discussed above is mostly used in analysing and developing
policies and making decisions concerning proenvironmental
behaviours. Considering the three goal frames discussed, an
effective strategy to foster interest in proenvironmental
behaviours will be strengthening normative goals to reduce
the adverse impact of one’s behaviour on nature [16]. By
doing so, individuals would behave appropriately even when
hedonic or gain goals are focal. From this perspective, the
normative goal seekers’ behaviour is consistent with the rea-
soned action behaviour if an individual’s environment is
taken to be the reference group of the individual, and the rea-
soned action behaviour is dominated by the subjective norm.

Sociopsychological research have indicated that human
behaviour can better be explained by many factors (e.g.,
norms, beliefs, values). Consider an individual with higher

value for the environment. This individual will more likely
respond to environmental information than prices, while an
individual with higher value for energy security (blackout)
will respond to information relating to practices that will
ensure no blackout than prices and environment [6].

The authors in [17] investigated the belief that being a
witness to the behaviour of others significantly influence
the behaviour of an individual, and it can lead to people
believing in things that are untrue, saying things that are
false, or doing things that are wrong. In their work, they con-
ducted two studies with the first study focusing on exploring
respondents’ stated reasons for engaging in energy conserva-
tion [17], while the second study provided an initial test of
the actual factors influencing participants’ conservation
behaviour [17]. In the first study, participant indicated that
the behaviour of their neighbours (descriptive norm) had
the least influence on them to conserve energy. Result from
the second study indicates that descriptive norms is the most
influential factor to consider concerning individual energy
conservation behaviour. They also found out that the envi-
ronment and moral obligation to the society are the most
important factors to practicing energy conservation. In fact,
results from the study suggest that energy users do not know
what actually motivates them to practice energy conservation
and would not be able to forecast the most effective approach
to conservation. It was also noted that normative influence is
a powerful but underrated form of all social influence [17].

2.3.4. Limitation to the Sociopsychological Approach. In
energy-related decisions, the sociopsychological models dis-
cussed above provides qualitative interpretations to individ-
uals’ behaviour. It lacks the ability to interpret the effect of
social interaction among group of individuals based on cer-
tain socioeconomic attributes.

2.4. Logistic Regression Approach. Logistic approach is a well-
known technique in predicting the behaviour of individuals.
A study done in [14] employed ideas from the goal-framing
theory with the interest to determine the most dominant goal
in energy efficiency practices among individuals with knowl-
edge about energy conservation. The utility company Latve-
nergo, in Latvia, was used as the survey area. The utility
company Latvenergo is the main supplier and distributor of
energy in Latvia. The main idea behind their study was to
delve into the attitude or behaviour of people that are well
vest in energy efficiency to investigate how they form attitude
towards energy efficiency practices. A correlation analysis was
carried out to study the relationship between the response of
participant being actively engaged in energy-saving activi-
ties and all other answers of the questionnaire. The logistic
approach imported by the researchers was intended to iden-
tify a linear combination of factors that could possibly
explain the behaviour of the staff of Latvenergo to practice
or not to practice energy conservation behaviours. The logis-
tic function used in the work is given by

log P Xð Þ
1 − P Xð Þ
� �

= β0 + β1x1 + β2x2+⋯+βkxk: ð4Þ
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Here, PðXÞ represents the probability for individual to
engage in energy savings activity, βk is the coefficient of
the kth independent variable xk, and β0 is the constant in
the model.

Their result from the correlation analysis indicated that
respondents who are actively practising energy conservation
behaviours and those that are not, expressed, most of the time,
normative view. It was also observed from their fitted regres-
sionmodel that there exists no one clear goal dominating indi-
vidual’s motivation in Latvenergo. The authors made use of a
final model they called “energy efficiency motivation,” this
model combines all the three goal frames and with other
variables. This final model was able to explained 51.3685%
deviance in the data and 13.0465% of adjusted deviance.

According to the authors, the final model had a lower
adjusted deviance when compared with similar studies [18,
19]. They believe that the broad survey setting could be a fac-
tor and suggest a methodical improvement which will nar-
row down to a specific energy efficiency practice such as the
usage of LED appliances.

2.4.1. Limitation to the Logistic Model Approach. The logistic
model studied above considers only socioeconomic attributes
of individuals and makes no use of interaction among indi-
vidual. Individuals are in a community and therefore influ-
enced by the decisions of others within their reference
group and beyond.

The studies conducted above bring to light various per-
spectives of energy efficiency strategies and implementations
in support of demand response programs. The studies dis-
cussed so far are all qualitative with the exception of Section
2.4 and therefore forms a theoretical background of this
paper. These theories and models will culminate into a quan-
titative model which will be used to analyse individual’s
energy use behaviour in a community. The interest from
the above viewpoints is a mathematical model that incorpo-
rates all these ideas and how individuals’ decisions about
energy conservation are influenced by their socioeconomic
attributes and interaction.

3. Quantitative Model for Human Behaviour

A quantitative model that integrates group interactions, body
use, cognitive processes, and human-machine interactions
will be desirable. Progress towards such a model has been
limited by the theoretical preferences of the various disci-
plines involved in energy research [2].

3.1. Modelling of Decision-Making and Energy Use. In the
work of [2], the authors emphasized that theoretical
approaches to decision-making have two main roles:

(1) To explain behaviour and identify important behav-
ioural drivers for interventions to target

(2) To provide a framework for empirical research on the
impact of these interventions

Intervention in their work means any regulation, policy,
program, measure, activity, or event that aims to influence

behaviour [2]. According to [7], social processes or influ-
ences are quite complex and always ignored when modelling
energy conservation. Individual behavioural study is good,
but individuals are in a society of which collective behaviour
has influence on their behaviour and choices. Families and
large social groups are supposed to be considered in the
analysis of energy conservation [7]. The work in [7] sug-
gests that research with a simple rational model on energy
conservation decision-making is needed for both organisa-
tional and residential sectors.

Our focus, in this paper, is to import ideas from dis-
crete choice theory and statistical physics to develop models
for energy conservation decision-making. The interest here
is a model that will capture how individual’s choices about
energy conservation are influenced by their socioeconomic
attributes and interaction. By socioeconomic attributes, we
are referring to individual’s gender, income level, religion,
and ethnicity.

3.2. Discrete Choice with Social Interaction. We propose, in
this section, a discrete choice with social interaction model
for energy conservation behaviour. The discussion here fol-
lows closely the presentations in [20, 21]. Imagine there are
N-energy users who are to decide on whether to conserve
or not to conserve energy at some common time. We encode
the choice made by the ith energy consumer as σi ∈ f−1, 1g,
with σi = 1 representing conservation decision and σi = −1
representing nonconservation decision. The decisions of
all the consumers in the reference group is an N-coordi-
nate vector σ = ðσ1,⋯, σNÞ. In the sequel we denote by
σ−i = ðσ1,⋯, σi−1, σi+1,⋯, σNÞ, the ðN − 1Þ-dimensional
vector of decisions made by all consumers less the deci-
sion of consumer i. From an economic perspective, con-
sumer i will decide on σi if it maximizes his/her utility
function VðσiÞ expressed as

V σið Þ = u σið Þ + S σi, μe σ−ið Þð Þ + ε σið Þ: ð5Þ

The quantities uðσiÞ and Sðσi, μeðσ−iÞÞ are, respectively,
referred to as the private and social utilities/incentives the ith

consumer derives from the decision σi. The perception/belief
of consumer i about the choices σ−i made by the rest of the
consumers in the reference group is quantified by the proba-
bility μeðσ−iÞ. Further, εðσiÞ is that part of the consumer’s util-
ity that is unobserved by the experimenter/modeller, but
consumer i is aware of it at the time of taking the decision
σi. It is referred to as the random part of the utility. For our
application of the discrete choice theory to energy use behav-
iour, the random utility may correspond to the consumer’s
inability to properly optimize their utility. This may result
in the consumer making incorrect choice even when he/she
is provided with full and complete information. Further, it
may reflect the lack of information on the part of the con-
sumer about new technologies.

The authors of [22] noted that the above discrete choice
model is equivalent to a statistical mechanical model called
the Curie-Weiss model when we have the following:
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(i) uðσiÞ = hσi, for some h ∈ℝ. For this choice of the
private utility h = 1/2½uð1Þ − uð−1Þ�, i.e., h is propor-
tional to the difference between the private utilities
of the two choices.

(ii) Sðσi, μeðσ−iÞÞ = Jσim, where m = 1/N − 1∑j≠iσi and
J ∈ℝ. This choice of our social utility belongs to a
large class utility functions that exhibit totalistic
and constant strategic complementarity [23].

(iii) εð−1Þ − εð1Þ is logistically distributed, i.e.,

ℙ ε −1ð Þ − ε 1ð Þ ≤ xð Þ = 1
1 + exp −βxð Þ , β > 0: ð6Þ

It follows from the above considerations that if consumer
i decides on σi = 1, then it is the case that Vð1Þ >Vð−1Þ. It
follows from here that the probability that consumer i takes
the decision σi is given by

P σið Þ = exp β hσi + Jσi �m
e
i½ �ð Þ

∑ηi∈ −1,1f g exp β hηi + Jηi �m
e
i½ �ð Þ : ð7Þ

The parameter h quantifies an individual’s personal
motivation to make a choice, and J modulates an individual’s
motivation to conform (not to conform) to social norm m.
Positive h values indicate that at the private level an individ-
ual will be motivated to choose 1, and the alternative choice
of -1 will be preferred for negative h values. J > 0 on the other
hand, will promote conformity to social norm and noncon-
formity to social norm if J < 0. The parameter β describes
how much of the actual decision of the consumer is deter-
mined by the deterministic part of the utility.

Under the assumption that energy consumers in a refer-
ence group do not communicate or coordinate their deci-
sions, the probability that the reference group makes a
choice σ = ðσ1,⋯, σNÞ is given by

P σð Þ =
exp β∑N

i=1 hσi + Jσim½ �
� �

∑η1∈ −1,1f g ⋯∑ηN∈ −1,1f g exp β∑N
i=1 hηi + Jηim½ �

� �

=
YN
i=1

exp β hσi + Jσim½ �ð Þ
∑ηi∈ −1,1f g exp β hηi + Jηim½ �ð Þ

ð8Þ

Note from (8) that σ1,⋯, σN are independent and
identically distributed Bernoulli random variables with com-
mon mean

E σ1ð Þ = tanh βh + βJmð Þ: ð9Þ

The strong law of large numbers then tells us that as
N tends to infinity the empirical average mN = 1/N∑N

i=1σi
almost surely tends to tanh ðβh + βJmÞ. Further, it follows
from [24] that the fix point equation (10) below has at least
one solution:

m∗ = tanh βh + βJm∗ð Þ: ð10Þ

Under the social equilibrium condition of [25, 26], we
have that

E σ1ð Þ =m = tanh βh + βJmð Þ: ð11Þ

This implies that the equilibrium mean choice level of
a consumer in the reference group is a solution to (10).
Under the social equilibrium condition, the discrete choice
model under consideration is equivalent to the Currie-Weiss
model [27]. This statistical mechanical model could exhibit
multiple equilibria due to the properties of the tanh function.
The multiplicity of mean equilibrium levels of choice
depends sensitively on the strength of the social utility
and the magnitude of the bias towards one choice induced
by the private utility. In particular, the following result is
proved in.

Proposition 1. For the solution(s) to (10) the following holds:

(1) If h = 0, then (10) has

(a) a unique solution for 0 < βJ ≤ 1

(b) three solutions for the case βJ > 1

(2) Suppose h ≠ 0, then there is a threshold H, depending
on β and h, such that (10) has

(a) a unique solution with the same sign as h if ∣βh∣
>H

(b) three solutions, one of them has the same sign as h,
and the others have opposite sign, if ∣βh∣ ≤H

3.3. Discrete Choice and Energy Use Behaviour Models. In the
sociopsychological approach to modelling behaviour, beliefs
are the building blocks. The beliefs about an object are
formed base on an individual’s evaluation of the attributes
of the object [10]. How this evaluation of attributes of an
object is done is silent in the sociopsychological models. This
evaluation, we believe, is the starting point of the discrete
choice theory. Here, it is natural to assume that individuals
evaluate the attributes of an object based on their own attri-
butes and the influences from their respective social environ-
ments. Thus, individuals’ attributes and social environments
are the determinants of their evaluation of attributes of an
object, which in turn inform their beliefs about the object.
In particular, the objects forming the basis of the sociopsy-
chological model are obtained from the discrete choice model
after optimizing the utility function of the discrete choice
model. Let us now look at how the various models for energy
use behaviour fit into the present scheme of discrete choice
with social interaction.

The discrete choice model offers a natural extension to
the theory of reasoned action. In that, upon optimizing the

6 Journal of Applied Mathematics



utility function, the optimal utility is still a random quantity,
the optimal private utility now becomes the attitude and the
optimal social utility becomes the social norm part of behav-
iour. Here, we are looking at the theory of reasoned action
with random behaviour. The randomness here could be
modelling some intrinsic attributes of the individual that
cannot be observed by the modeller. Due to this random
nature of behaviour, we can no longer describe behaviour
with a value but rather with probability distribution on the
set of all possible realisations of behaviour.

The theory of planned behaviour extends the theory of
reasoned action by adding perceived behavioural control.
People can control their behaviour if they know themselves
very well. It is this knowledge that determines the level of
control an individual will have over his or her behaviour. In
the context of the discrete choice theory, this control may
refer to the extent to which individuals know about the
parameters h and β, i.e., how individual evaluates their beliefs
and the motivation for the individual to comply or not to
comply with the perceived evaluation by the rest of the refer-
ence group. Thus, to get the discrete choice analogue of the
theory of planned behaviour, the parameters β and h need
to be taken randomly with some a priori distribution, which
could be updated as and when we get new information via
Bayes rule. This leads us into disordered discrete choice
models. For a statistical mechanical version of this model,
we refer the reader to [28]. We shall not treat these class of
models here.

The discrete choice analogue for the normative and gain
goal frames are the case where the social utility component of
the utility dominates the private utility of an individual. Over
here, one is preoccupied with the needs of neighbourhood or
the environment. The hedonic goal frame corresponds to the
case where the private utility part of an individual’s utility
dominates. We shall later on observe that the logistic model
considered in [14] results from the discrete choice model
when there is no social utility.

The random component of the utility function for the
discrete choice theory may corresponds to the individual’s
inability to properly optimize their utility. This may result
in the individual making incorrect choice even when he/she
is provided with full and complete information. Further, it
may reflect the lack of information on the individual’s part
about new technologies. This connects the discrete choice
theory to the energy technologists’ model.

3.4. The Curie-Weiss Model. This section is devoted to the
statistical mechanical model that will be shown to be equiva-
lent to the above discrete choice model. We will follow closely
the discussion and notation from [21]. The objects appearing
in the discrete choice theory are obtained for the statistical
mechanical model after taking the thermodynamic limit,
i.e., the limit as the number of consumers tend to infinity.
The statistical mechanics model of interest is referred to as
the Curie-Weiss model is introduced as follows: consider a
positive integer n and let Ωn = f−1, +1gn, be the set of spin
configurations of the system. The Curie-Weiss model is given
by an energy function/Hamiltonian Hn onΩn, which for any
σ ∈Ωn takes the form

Hn σð Þ = −
J
2n 〠

n

i,j=1
σiσj − h〠

n

i=1
σi = −n

J
2m

2
n + hmn

� �
−
1
2 ,

ð12Þ

where

mn =
1
n
〠
n

i=1
σi: ð13Þ

The quantity mn is called the empirical average, and it
assumes values from the set f−1, −ðn − 1Þ/n,⋯, 0,⋯, ðn
− 1Þ/n, 1g, for each positive integer n. The parameter h and
J are real valued, and they represent the interaction bias
and interaction strength, respectively. h is the strength of
external field, and J measures the strength of the interaction
among pairs of spins. The first term in the Hamiltonian turns
to align pairs of spins if J > 0 and the pairs will not be aligned
if J < 0. The second term also tends to align spins in the direc-
tion of the external field h. Let α be the uniform probability
measure on f−1, 1g, i.e., αð−1Þ = αð1Þ = 1/2 and put Pn =
α⊗n, the product probability measure onΩn. The above Ham-
iltonian defines a physical system whose equilibrium state is
given by the probability measure

μn σð Þ = 1
Zn

exp −βHn σð Þð ÞPn σð Þ, σ ∈Ωn, ð14Þ

The normalization term Zn is called the partition func-
tion of the model and is defined as

Zn = 〠
~σ∈Ωn

exp −βHn ~σð Þð ÞPn ~σð Þ: ð15Þ

The parameter β is the inverse temperature. The Curie-
Weiss Hamiltonian can be written in terms of the empirical
average as follows:

Hn σð Þ = F mnð Þ = Jm2
n

2 + hmn + o nð Þ, ð16Þ

where mn is the empirical measure of σ:
Further, we write the μn expectation for any bounded

measurable function f defined on Ωn as follows:

<f>n,β,h =
ð
Ωn

f mnð Þdμn σð Þ: ð17Þ

The specific empirical magnetization of the model is also
given as

mn β, hð Þ = 1
n

ð
Ωn

〠
n

i=1
σi

 !
dμn σð Þ = 1

βn
∂
∂h

log Zn: ð18Þ
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The second equality follows from (12), (14), and (15).
The specific magnetization then becomes

m β, hð Þ = lim
n→∞

mn β, hð Þ: ð19Þ

To understand the form of the specific magnetization, the
exponential growth rate of the partition function Zn will be
crucial. Let us now lay some foundation to access this growth
rate. Suppose n = n1 + n2 and recall from (13) that

mn =
n1
n
mn1

+ n2
n
mn2

: ð20Þ

Using the convexity of the map x↦ x2 and (12), we get

Zn ≤ Zn1
Zn2

: ð21Þ

Therefore

log Zn ≤ log Zn1
+ log Zn2

: ð22Þ

It follows from the Fekete’s subadditive lemma [29] that

lim
n→∞

1
n
log Zn, existsand lim

n→∞

1
n
log Zn = inf

n

1
n
log Zn:

ð23Þ

Next, we state a result taken from [24] that characterizes
the limiting μn expectation of bounded measurable functions
of the empirical average mnðβ, hÞ.

Theorem 2.

(1) Suppose f is a bounded and continuous function from
ℝ to ℝ . Then,

where zðβ, hÞ is the global minimizer of the function

iβ,h zð Þ = −
1
2
βJz2 − βhz + 1 − z

2
log 1 − zð Þ

+ 1 + z
2

log 1 + zð Þ
ð25Þ

on ∣z∣ ≤ 1 and zðβ,±Þ = limh→0±zðβ, hÞ.
(2) The specific magnetization mðβ, hÞ of the Curie-

Weiss model is given by the unique global minimizer
zðβ, hÞ of (25) for β > 0, h ≠ 0 and 0 < βJ ≤ 1, h = 0.
In particular,

m β, ±ð Þ = lim
h→0±

m β, hð Þ

=
z β, 0ð Þ = 0 for 0 < β J ≤ 1,

z β,±ð Þ ≠ 0 for β J > 1:

( ð26Þ

The above theorem says that whenever βJ > 1, a dramatic
change will be observed in the macroscopic behaviour of the
system if a small change is made in h around the value h = 0.
Observe that the specific magnetization for the Curie-Weiss
model, given in the above theorem, coincides with some of
the social equilibrium average choice levels found as solution
to the self-consistency equation (10). Because the self-
consistency equation (10) holds for the global minimizers
of (25). Some of the solutions to the self-consistency equation

(10) may not be specific magnetization of the Curie-Weiss
model as they may be local minimizer and local maximizer
of the function (25). In particular, for the case h ≠ 0, Theorem
2 suggests that there is a unique specific magnetization that
has the same sign as h as opposed to the result in Proposition
1 2, where it is observed that there are three self-consistent
solutions when β is high and h ≠ 0. In fact, the self-
consistent solution that has the same sign as h becomes the
specific magnetization for the Curie-Weiss model, and the
other two are, respectively, local minimum and maximum
of the function (25). The local maximum and minimum
are, respectively, the unstable and metastable self-consistent
mean choice levels of a consumer. For the rest of the paper,
we will concentrate on the self-consistent solutions that are
consistent with the statistical mechanical prescription, i.e.,
global minimizers of (25). Thus, up to these self-consistent
mean choice levels, the discrete choice model and the
Curie-Weiss model are equivalent. In particular, the joint
distribution (8) of the decisions made by the consumers in
the reference group is obtained from the Curie-Weiss model
by taking n − dimensional marginal of the Curie-Weiss
Gibbs measure μn, given in (14), as n tends to infinity.

4. Multipopulation Curie-Weiss Model

We present a multipopulation version of the Curie-Weiss
model in this section. This model will be our benchmark
model for modelling energy conservation behaviour of energy
users. Here, we follow closely the discussion in [30]. Our aim
is to understand the collective behaviour of consumers in a

lim
n→∞

< f>n,β,h =
f z β, hð Þð Þ forβ > 0, h ≠ 0and0 < βJ ≤ 1, h = 0

1
2 f z β,+ð Þð Þ + 1

2 f z β,−ð Þð Þ forβJ > 1, h = 0,

8><
>: ð24Þ
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reference group from the intricate interactions among the
consumers [20, 22, 31]. The statistical mechanical model
introduced in this section will help to achieve our aim.
Already statistical mechanics has successfully been applied
to study the aggregate behaviour of individuals facing interde-
pendence binary choice [27]. Statistical mechanics provides a
general framework for understanding aggregate behaviours
of interacting individuals. Here, our emphasis is on using a
multipopulation Curie-Weiss model to study energy conser-
vation behaviour of a community of energy users who are
interacting with themselves and their environment.

The Hamiltonian Hn for configurations (collective deci-
sions) σ ∈ f−1, 1gn given by

Hn σð Þ = 1
2n 〠

n

i,l=1
Jilσiσl + 〠

n

i=1
hiσi ð27Þ

is made up of the interaction part controlled by the interac-
tion strengths Jil and the external field part also modulated
by hi. The interactions tend to align spins/decisions σi and
σl whenever Jil > 0, i.e., neighbouring consumers will prefer
to be either +1 (conserve energy) or -1 (not to conserve
energy). Negative interaction coupling strengths, i.e., Jil < 0,
will result in neighbouring consumers taking different deci-
sions. From statistical mechanics literature, the parameter
hi is referred to as the external magnetic field applied to the
site i. From our socioeconomic applications point of view,
hi is the intrinsic attributes of a consumer that determines
his/her behaviour. Positive values for hi favours +1 decision
while negative values of hi favours −1 decision. For social sci-
ence applications of the model of interest, we refer the reader
to [20, 27, 30].

Here, we study the energy conservation behaviour of
energy consumers in a reference group, and how the behav-
iour of an individual in the reference group is influenced by
his/her intrinsic socioeconomic attributes and social interac-
tion with the rest of the members of the reference group.
Notable socioeconomic attributes of energy consumers may
include gender, place of residence, level of education, ethnic-
ity, beliefs, values, and norms. These attributes influence a
consumer’s evaluation of the attributes of energy alternatives
and energy saving technologies. A key assumption that we
would employ in our study is that consumers with the same
socioeconomic attributes will tend to behave the same way,
while consumers with different socioeconomic attributes
behave differently. This assumption reduces the number of
parameters in the Hamiltonian (27), allowing a systematic
statistical estimation procedure to be developed to estimate
the parameters of the model from data.

Suppose our reference group is made up of energy con-
sumers with k socioeconomic attributes, and the group is
made up on n consumers. Therefore, consumer iwill be iden-
tified by his/her attributes vector

ai = a 1ð Þ
i , a 2ð Þ

i ,⋯,a kð Þ
i

� �
: ð28Þ

Here, aðjÞi ∈ Aj is the j
th attribute of individual i, and Aj is

the set of attribute alternatives for attribute j = 1,⋯, k. Let
dðjÞ = ∣Aj∣ be the number of attribute alternatives for attri-
bute j, which we assume to be finite. Therefore, our reference
group of size n can be partitioned into

d =
Yk
j=1

d jð Þ ð29Þ

nonover lapping subgroups, with each subgroup made up
of individuals with the same socioeconomic attribute alter-
natives. Suppose we identify these sub-groups with number
1, 2,⋯, d, we denote by Ing and ∣Ing ∣ =ng the subset of indi-

viduals in sub-group g and the number of individuals in
sub-group g, respectively. Thus, n = n1+⋯+nd and for any
g ≠ g0 = 1, 2,⋯, d, Ing ∩ Ing0 =∅. Further, we assume that

for each g = 1,⋯, d,

γgn =
ng
n

and γg = lim
n→∞

γgn: ð30Þ

We assume that all individuals in subgroup g have the
same private utility �hg and for any pair of subgroups g
and g0, Jil = �Jgg0 whenever i ∈ Ing and l ∈ Ing0 . It implies

from this assumption and equation (27) that

Hn σð Þ = 1
2n〠

d

g=1
〠
d

g0=1
〠
i∈Ing

〠
l∈Ing0

Jilσiσl

0
@

1
A

+ 〠
d

g=1
〠
i∈Ing

hiσi =
1
2n〠

d

g=1
〠
d

g0=1
�Jgg0ngm

g
nng0m

g
n′

+ 〠
d

g=1
�hgngm

g
n = n

"
〠
d

g=1
〠
d

g0=1

�Jgg0
2 γgnm

g
nγ

g
n′mg

n′

+ 〠
d

g=1
�hgγ

g
nm

g
n

#
= n

"
〠
d

g=1
mg

n

 
〠
d

g0=1

�Jgg0
2 γgnγ

g
n′mg

n′

+ �hgγ
g
n

!#
= n〠

d

g=1
mg

nUn,g:

ð31Þ

In the above, we have used that

mg
n =

1
ng

〠
i∈Ing

σi, ð32Þ

is the empirical average decision for the individuals in sub-
group g. The Hamiltonian of the model has now become a
function of the empirical averages of the decisions of indi-
viduals in the subgroups. From our socioeconomic applica-
tion of the model, Hn measures the level of satisfaction for
each joint decision vector of the individuals in the reference
group. Here, �Jgg0 is the strength of the influence subgroup g

9Journal of Applied Mathematics



has on sub-group g0. It is also a measure of the social
incentive for subgroups g and g0 to interact. Positive �Jgg0
values imply that the subgroups are satisfied if their empir-
ical means have the same signs. On the other hand, if the
�Jgg0 < 0, the empirical means of the different subgroups will
prefer to have different signs, i.e., interaction between the
two subgroups is discouraged. Figure 1 presents an artistic
impression of the �Jgg0 ’s when d = 4. The parameter �hg is
the private incentive of the group g. This describes how
subgroup g is satisfied with itself.

The finite volume Gibbs measure associated to our multi-
population Hamiltonian Hn (31) takes the form

ωn σð Þ = eHn σð ÞPn σð Þ
Zn

, for σ ∈Ωn, ð33Þ

where

Zn = 〠
~σ∈Ωn

eHn ~σð ÞPn ~σð Þ ð34Þ

is the normalization constant called the partition function of
the model.

Recall from (32) the definition of the subgroup empirical
average mg

n and write mn = ðm1
n,⋯,md

nÞ ∈ ½−1, 1�d for the
vector of subgroup empirical averages. Define for any n ∈ℕ,

Fn mnð Þ = 〠
d

g=1
〠
g0=1d

�Jgg0
2 γgnγ

g
n
′mg

nm
g
n′ + 〠

d

g=1
�hgγ

g
nm

g
n: ð35Þ

Suppose a sequence ðmnÞn≥1 of empirical mean vectors

converges to m ∈ ½−1, 1�d , then

F mð Þ = 〠
d

g=1
〠
d

g0=1

�Jgg0
2 γgγg′mgmg′

+ 〠
d

g=1
�hgγ

gmg = lim
n→∞

Fn mð Þ:
ð36Þ

In the sequel, we shall write γ, �h, and �J for

γ = γ1,⋯, γd
� �

, �h = �h
1,⋯, �hd

� �
∈ℝdand�J

= �Jg,g0
� 	

1≤g,g0≤d:
ð37Þ

The finite volume pressure of the multipopulation model
then becomes

pn =
1
n
log Zn: ð38Þ

The large n behaviour of the model is controlled by the
exponential growth rate of the partition function, i.e., the
pressure. It follows from [32] that the thermodynamic limit

p γ, �h, �J
� 	

= lim
n→∞

1
n
log Zn ð39Þ

exists. An earlier proof of this claim for the case k = 1 and
γgn = γg, for all n, is found in [33, 34].

Theorem 3. Suppose the parameters, γ , h, and �J , are given as
above. Then the limiting pressure has the following variational
representation

p γ, �h, �J
� 	

= sup
m∈ −1,1½ �d

F mð Þ − 〠
d

g=1
γgI mgð Þ

" #
, ð40Þ

with

I mgð Þ = 1 −mg

2
log 1 −mgð Þ + 1 +mg

2
log 1 +mgð Þ ð41Þ

and F is defined in (36).

The maximizers m of the variational problem (40) have
coordinates mg satisfying the self-consistency equations

mg = tanh Ug

� 	
, g = 1, 2,⋯, d: ð42Þ

Here, we have used that Ug is the limit of Un,g (31) as n
tends to infinity, i.e.,

Ug = 〠
g0=1d

�Jgg0
2 γgγg′mg′ + �hgγ

g: ð43Þ

Group

J11

I1

Group

J44

I4
Group

J33

J32J23

J42

J13

J34

J43

J41J14

J31

J12

J21

J 24

I3

Group

J22

I2

Figure 1: A representation of the interaction network for the model
(I1, I2, I3, and I4 are the subgroups of the reference group. Within I1
(resp. I2, I3, I4), individuals feel a mean-field interaction with
coupling J11 (resp. J22, J33, and J44). Subgroup I1 influences the
other subgroups with coupling strength (J12, J13, J14).
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In the sequel, we put Jgg0 = ð�Jgg0 /2Þγgγg′ and hg = γg�hg.
Therefore, it follows from equation (43) that

Ug = 〠
d

g0=1
Jgg0m

g′ + hg, for g = 1,⋯, d: ð44Þ

The above theorem is proved in [35]. The proof for the
case k = 1 and γgn = γg for all n was earlier given in [33]. It fol-
lows from [33, 35] and references therein that the marginal
distribution for the ith energy user in subgroup g to make a
choice σi ∈ f−1,+1g is given by

ℙ σið Þ = eσiUg

eUg + e−Ug
: ð45Þ

The expected value of the ith individual’s decision results
in the self-consistency equations

mg = E σið Þ = eUg

eUg + e−Ug
−

e−Ug

eUg + e−Ug

= tanh Ug

� 	
, for g = 1, 2,⋯, d:

ð46Þ

Recall from (46) that mg is the average decision of the
individuals in group g. Again, with respect to the parameters
Jgg0 and hg, it follows from (44) that Ug is a linear regression

model with covariates mg′, for g0 = 1,⋯, d. Further, we
model the private utility part hg as a linear regression of the
attributes alternatives (28) as follows:

hg = α0 + 〠
k

j=1
〠
d jð Þ

s=1
αj
s〠
r∈L

δajg ,r: ð47Þ

Recall that our model considers k socioeconomic attri-
butes. Here, αj

s measures the value an individual places on
the s attribute alternative of attribute j, and α0 is the uniform
private utility for all the decision makers. ajg is the alternative
of attribute jth present in group g, and dðjÞ is the count of the
different alternative for attribute j. The set of all alternatives
for the different attributes is the alternatives set L, and δajg ,r
is the Kronecker delta function. The form of our private util-
ity hg (47) accounts for the influence of each of the attribute
alternatives on the private utility contrary to the case consid-
ered in [34], where the influence of some of the attribute
alternatives was put to zero. Consequently, the linear regres-
sion models for the Ug have Jgg0 , α

j
s, and α0 as their param-

eters that should be estimated.
The case Jgg0 = 0 for every g and g0 is the model with no

interaction. The regression model for Ug becomes

Ug = hg, for g = 1,⋯, d: ð48Þ

Therefore, it follows from (45) that the probability for the
ith individual in subgroup g to decide on σi = 1 takes the form

ℙ σi = 1ð Þ = eUg

eUg + e−Ug
= 1
1 + e−2Ug

: ð49Þ

Our model reduces to the logistic regression when the
Jgg0 = 0 for every g and g0. Therefore, taking logarithm of
the quotient of the probabilities to choose σi = 1 against
σi = −1 results in the following interaction version of the
logistic regression

1
2 log ℙ σi = 1ð Þ

ℙ σi = −1ð Þ
� �

= 〠
d

g0=1
Jgg0mg0 + hg: ð50Þ

As mentioned above, if Jgg0 = 0 for every g and g0, the
above logarithm of the quotient becomes the logistic
regression model outlined in Section 2.4. This model was
used in [14] to study the energy conservation behaviour of
energy users.

4.1. Parameter Estimation. In what follows, we will esti-
mate mg (46) by mg

n (32). For large enough N , γgn will
be close to γg; hence, we drop the n dependence of γgn .
Consequently, the parameters Jgg0 and hg become n indepen-
dent. Two procedures will be discussed for the estimation of
the parameters.

4.1.1. Estimation Procedure 1. Recall from (46) that tanh ðUgÞ
model’s prediction of mg and it is estimated by the empirical
average choice mg

n . Due to the monotonicity property of the
tanh function, we estimate the parameters of the model via
looking for the parameter values that minimizes the sum of
squares error

〠
g

arctan h mg
nð Þ −Ug


 �2
: ð51Þ

since the parameters to be estimated are linear in Ug. This

procedure is only possible if mg
n stays away from being +1

or −1. In the regime where the interaction strength is non-
vanishing the covariates of the regression model may be cor-
related. Due to this, the partial least squares (PLS) estimation
procedure may be used [36–40]. This procedure extracts a set
of independent predictors from a set of correlated predictors
that jointly explain most of the variability in both the depen-
dent and the independent variables. The key question here is,
how many independent predictors should we use for the esti-
mation? This question is answered with the help of the root
mean square error of prediction for models formed from
increasing subsets of the extracted independent predictors
that are sorted in decreasing order of importance. The root
mean square error of prediction for the models decreases ini-
tially the more predictors are introduced one at a time. The
best fitted model is the one beyond which the root mean
square error of prediction starts to rise. One could not access
confidence intervals for PLS estimates. Bootstrap resampling
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techniques are usually applied to the best fitted model to gen-
erate a number of estimates that are used to construct confi-
dence intervals for the estimates.

4.1.2. Estimation Procedure 2. This section outlines the
parameter estimation procedure for multipopulation Curie-
Weiss model [41, 42]. Recall from the expression for Ug in
(44) and (31) that

Hn σð Þ = n〠
d

g=1
mgUg = n〠

d

g=1
mg 〠

d

g0=1
Jgg0m

g′ + hg

 !

= n 〠
d

g,g0=1
Jgg0mgmg′ + 〠

d

g=1
hgm

g

 !

= n Jm,mh i + h,mh ið Þ

ð52Þ

where m = ðm1,⋯,mdÞ, h = ðh1,⋯, hdÞ and J is the interac-
tion matrix

J =

J11 J12 ⋯ J1d

J12 J22 ⋯ J2d

⋮ ⋮ ⋮

J1d J2d ⋯ Jdd

0
BBBBB@

1
CCCCCA ð53Þ

From the self-consistency equations (46) we have that

mg J , hð Þ = E σið Þ = tanh 〠
d

g0=1
Jgg0m

g′ + hg

 !
,

for g = 1, 2,⋯, d:
ð54Þ

If the self-consistency equations above admit a unique
thermodynamic stable solution mðJ , hÞ = ðm1ðJ , hÞ,⋯,md

ðJ , hÞÞ, then the following identity hold [33, 42],

lim
n→∞

ωn mg
nð Þ =mg J , hð Þ, g = 1,⋯, d, ð55Þ

where ωn and mg
n are defined as in (33) and (32), respec-

tively. Note that ωnðmg
nÞ is the average value of the mag-

netization. According to [42], the susceptibility matrix of
the model has the following entries:

χgg0 = lim
n→∞

∂
∂hg0

ωn mg
nð Þ, for g, g0 = 1,⋯, d

= ∂mg J , hð Þ
∂hg0

= ∂
∂hg0

tanh hg + 〠
d

g0=1
Jgg0m

g′
 ! !

= 1 − mgð Þ2
� �

δgg0 + 〠
d

g0=1
Jgg0χgg0

 !
,

ð56Þ

where δgg0 = 1 if g = g0 and zero otherwise is the Kro-
necker delta . Hence, the susceptibility matrix is given as,

χ = P I + Jχð Þ, ð57Þ

where P = diag f1 − ðm1Þ2,⋯, 1 − ðmdÞ2g and I is an
identity matrix. Again, for each pair of groups g, g0 = 1,
⋯, d,

∂
∂hg0

ωn mg σð Þð Þ = ∂
∂hg0

∑σ∈Ωn
mgeHn σð Þ

∑σ∈Ωn
eHn σð Þ

 !

= ng0 ωn mgmg′
� �

− ωn mgð Þωn mg′
� �� �

:

ð58Þ

It follows from (56) and (58) that the susceptibility matrix
χ can be computed with the help of (57). With this, we obtain
an expression for the interaction matrix J , which is related to
the averages and correlations of the magnetizations in the
thermodynamic limit [42], i.e.,

J = P−1 − χ−1� 	
: ð59Þ

The external field h is obtained by using the above esti-
mate for the interaction matrix J and the self-consistency
equations (54), i.e.,

hg = tanh−1 mg J , hð Þð Þ − 〠
d

g0=1
Jgg0m

g′ J , hð Þ

= tanh−1 lim
n→∞

ω mgð Þ
� �

− 〠
d

g0=1
Jgg0 limn→∞

ω mg′
� �

,

for g = 1,⋯, d:
ð60Þ

Upon estimating the hg’s, we then fit the following
regression model (47) to determine the socioeconomic attri-
butes that contribute to the estimated private incentive hg for
each of the groups.

hg = α0 + 〠
k

j=1
〠
d jð Þ

s=1
αj
s〠
r∈L

δajg ,r: ð61Þ

5. Conclusion

This study incorporates ideas from economics, energy
management, social psychology, discrete choice theory,
and statistical physics. In the sociopsychological models
discussed, it was noted that beliefs are their building blocks
and that beliefs about an object are formed base on an indi-
vidual’s evaluation of the attributes of the object [10, 13].
How these evaluations are made, we argue, is the starting
point of the discrete choice model. The study proposes a sta-
tistical mechanical model to bridge the sociopsychological,
economics, and energy models used in energy management.
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Our model is motivated by the equivalence between dis-
crete choice theory with social interaction and the Curie-
Weiss model from statistical mechanics [22]. This formula-
tion provides a general framework for understanding how
interdependences modulate the aggregate behaviours of
individuals.
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