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The focus of this work lies on proving the existence theorem of a unique state vector solution (Stvs) of the triple nonlinear
hyperbolic boundary value problem (TNHBVP) when the classical continuous control vector (CCCVE) is fixed by using the
Galerkin method (Galm), proving the existence theorem of a unique constraints classical continuous optimal control vector
(CCCOCVE) with vector state constraints (equality EQVC and inequality INEQVC). Also, it consists of studying for the existence
and uniqueness adjoint vector solution (Advs) of the triple adjoint vector equations (TAEqs) associated with the considered triple
state equations (Tsteqs). The Fréchet Derivative (Frde.) of the Hamiltonian (HAM) is found. At the end, the theorems for the

necessary conditions and the sufficient conditions of optimality (Necoop and Sucoop) are achieved.

1. Introduction

The subject of optimal control problem (OCP) plays a basic
role in many real life problems in different branches of
sciences; for example, in, medicine [1], engineering and
social sciences [2], biology [3], ecology [4], electric power
[5], aerospace [6], and many other branches.

This role encouraged many researchers to go deeply into
studying the OCPS governed by differential equations
(degs). Such OCP problems are studied at the beginning for
the systems which are controlled by nonlinear ordinary deqs
(nodegs) [7] or by linear deqs (Ipdeqs) [8]. Later great in-
terests have been made to study this subject but for systems
which are controlled by pdegs of elliptic type (ET) [9], or of
hyperbolic type (HT) [10], or of parabolic type (PT) [11], or
by couple of npdegs of ET [12], or of PT [13], or of HT [14].

Recently, the attention in this subject is magnified to deal
with more general types as the studying the CCCOPCVE
controlling by TBVP of ET [15], and of PT [16]. All these
studies motivated us to look deep inside the CCCOPCVE
controlled by TNHBVP.

In this work and at first, we give a mathematical de-
scription for the CCCOPCVE, and then the TNHBVP is
written in its weak form (wkf), and the existence and

uniqueness theorem of the Stvs for the TNHBVP using the
Galm with the Aubin compactness theorem is proved under
appropriate hypotheses when the CCCVE is given. Under
reasonable hypotheses, the objective function and the EQVC
and INEQVC are proved continuous. The proof of the
existence theorem of a CCCOPCVE governed by the
TNHBVP is achieved. Under a certain hypotheses, the study
of the existence theorem for a unique Advs of the TAEgs
associated with the considered Tstegs is done. The Fréchet
Derivative (Frde.) of the HAM is found. Finally, the Necoop
and the Sucoop theorems for the CCCOPCVE are proved.

1.1. Problem Description. Let I =[0,T], T<oo, E be a
bounded and open region in R? with Lipschitz (Lip.) boundary
OE, I1 = Ex I, and O0Il = OE x I. The considered CCOPCP
consists of the Steq which is given by the TNLHPDEGgs:

Vig = Ay + 9y — v -y =k (% 6y, @), indL (1)
Vo =AY, + Y, + Y5 + Y =k (x, t, vy, “’2)» inIl, (2)
Vi =AY + Y3+ Y~y = ks (6t ys, ), il (3)

with the BCs and ICs.
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Yy (1) = 0,9, (x,t) =
¥, (x,0) = v (%), v, (x,0) = ¥ (%), y5 (x,0) = ¥3 (x),

Yy, (%, 0) = y; (%), ¥y, (%, 0) = 13 (%), ¥, (%, 0) = 3 (%),

where ¥ = (y,,¥,, v;) € (H'(E))® is the Stvs, corre-
sponding to the CCCVE & = (w,, wy, w3) € (L2(11))* and
(ks kyy k3) € (L2(ID))? is a function defined on (IT x 2 x
C) % (ITx & xCyp)x (x FxL;) with ( ¢ R for
i=1,2,3. Y
The controls set are @ € W, W c (L*(IT))* with
= = = - —
W ={We (I>’(IN))*|W € (, ae inIl}, with [ ¢ %>
The cost function is
3

My(@) =Y j o (6, £, vy ;) . )
iz1 711
The EQVC and INEQVC on the state vectors are
3
M, (@) = J m,; (x,t,v;, w;)dx dt = 0,
i:zl i (8)
I<r<p,
3
M, (@)= J m,; (%, t, v, w;)dx dt <0,
; 1 ( ) 9)

p+lsr<gq.

Wi v + (Vv Vo) + (v, — vy —vs,0)) =

(‘/’(1)’1’1) =
(‘//1101) =

W 020 + (VY Vo) + (v, +yy +95,0,) =

(‘//grvz) =
(1/’;1’2) =

Wi 030 + (V3. Vo) + (Y3 + ¥y — ¥y, 05) =

(V’g’vs) =
(‘/’é’vs) =

The following assumptions (Assums.) are needed to
investigate the classical continuous optimal control problem
(CCOPCP).
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0,v¥5(x,t) =0, ondll, (4)
onkE, (5)
onkE, (6)
ey
The set of admissible control vector is W, =

=
{we WM, (w) =0,Mr+p(ﬁ)so,1grgp}.

The continuous optimal control problem is to find
L o= N _— ——min -

W € W, such that My () =w e W, My(w).

Let Y =Y, x.Y,x.Y;={7V: 7 e (H (Q))’, with
v, = v, =0, = 00n0E}, U = (v, 0,,0).

We denote by (v, v), (v,v),,and (v, 7)1 iztil (vj v,
to the inner products in L* (E), H' (E), and Y respectively
wl}ile the norms in these spaces is denoted by v, v;, and
V=Y, 03, Y is denoted the dual of Y. Also, the
symbol-will be used to indicate that the convergence of a
sequence is weak, while the strong convergence of a se-
quence will be indicated by — .

The wkf of problem (1)-(6) when 1_//) € (H(l) (E))* is given
almost everywhere on I for each v, €Y, v, €Y,, and
U3 € Y5t

(ki (v 01),01), ¥ (1) €Y, (10)

(v, (0),0;), (11)

(v, (0),0;),

(ky (o 03),05), Y1) €Y, (12)

(V/Z (O)a 02)’ (13)

(¥ (0),v,),

(ks (v @3),03), ¥ (1) €Y, (14)
O b bl

(v5(0), v5) (15)

(v (0), v3).

Assumption A. k; is of the Carathéodory type (Caraty.) on
ITx (£ x(;) and satisfies the following conditions for
(x,t) eIl and Vi =1,2,3:
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ki (2.t i @) < Fi (3, 8) + Bl
|ki (ot v, w) = ki (%69, wi)l < Lil'/’i - W|>

1.2. The Solution of the State Equations. In this part, the
existence theorem of a unique solution for triple nonlinear
hyperbolic partial differential equations (TNLHPDEQs)
under Assumption A is proved when the control vector is
given, and the following proposition will be needed.

Proposition 1 (see [17]). Suppose D ¢ %*(s =2,3), k: D x

R — B is of Caraty. It satisfies

Ik (v, )l < a(v) + B (V)|x|% for each (v,x) € D x R", where

x € (D, %", a € L'(D,R), B e L9 (D,R),a € [0,b],

1f b#oco, a=0 if b=oco. Then, the functional
K(x) = _[Dk(v x (v))dv is cont.

Theorem 1. Existence and Umqueness of the Stvs: with
Assumption A, for any given @ € (L2 (I1))*, the wkf of
(10) (15) has a umque solution = (Y, ¥, ¥3) St
v e (L(LY), (1//“,1//2,,1//3t) ¢ (L2()Y,  and
Vi = Wi Voo V) € LA

Proof. Let 7,1 =Y, xY,xY,c Y (for each n) be the set of

where y;, w; € ®,p,>0,F; € L (17),

_ (16)
where y;, ¥, w; € #,L; > 0.

sequence of subspaces of ]_(}, such that V70 = (v;,0,,
5 _ = (vln’UZn’
v;,) € Y,,¥n, and T, in Y= 7,=7 in
(L2 (E))>. {7]- = (01),0,,03): j = 1,2,...,n} be a finite

is cont. function in E, with ¥ j (x)=0

-
v;) € Y, there exists a sequence {V,} with 7,

N
— U

basis of 1_(),1 (where U i
on the boundary dE) and let ¥, = (¥, ¥y, ¥3,) be the
Galerkin approximate solution (Galso) to the exact solution

? = (1//1: 1//23 1//3) SU.Ch that

Vi = Zcij(t)vij (%), (17)
i

where c;; (f) are unknown functions of £, Vj=1,2,...,n,
and. Vi = 1,2,3.

The wkf of (10)-(15) is approximated with respect to x
using the Galm, and substituting v;,, = (;,,(i = 1,2, 3) in the
obtained equations, they become for each v,,v,, v; € Y,

cont. and piecewise affine function in E. {7,1} be a
n=1
i 010 + (V1 V1) + (Y10 01) = (V2 01) = (V3 v1) = (kg (Y10 @1), 01)5 (18)
(Wiwovr) =(¥)h 1),
. . (19)
(viw o) =(vio01),
(o 03+ (V2 VU3) + (W 02) + (W30 03) + (Y10 02) = (K (V2 02)5 02), (20)
(V2 02) = (V3o 05),
) ) (21)
(WZn’ Vz) = (V’z’ Uz)’
o 030 + (V3 VU3) + (Y3 V3) + (V10 V3) = (V2o v3) = (K3 (Y30 @3), v3), (22)
(‘/’gn’ Ua) = (V’g’ Us)’
. ) (23)
(I/ISn’ U3) = (Wa’ U3)’
where v =9 (x) =y,,(x,0) €Y, (respectively, Substituting (17) for each i = 1, 2, 3, respectively, in the
O =yl = vl (x) = v, (x,0) € L* (E)) be the projection of ~ pairs (18) and (19), (20) and (21), and in (22) and (23),
y? onto V (be the projection of y! =y, onto L*(E)),  settingv, = vy;, v, = Uy;, U3 = Usp the obtained equations will
Vi=1,2,3 ie, be written as the following 1 order nodeqs with their ICs
and have a unique solution €eC(I,Y), ie, foreachl =
¥, — y;inV, s <b, (24) 1,2,3 and m % I: v &0
v, — v, inL*(E)and ||7;“0 <b,. (25)
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AD. () + B,C, (£) — E,C, () - H,C5 (1) = b, (YIT (x)C, (t)),
A,C,(0) =,
A,D, (0) = bj,
A,D, (1) + B,C, (1) + E,C, (£) + HyCs (1) = b, (Yf (x)C, (t)),
A,C, (0) = b, (26)
A,D, (0) = b)
AsD) (1) + B,Cs (£) + EsC, (£) — HyCs (1) = b (YI (x)C; (t)),
A,C5(0) = b)
A;D;(0) = b

where Cl(t) - (Cl] (t))nxl’ C2 (t) (C2] (t))nx1> Dl(t) 3 - (f31] nxn f31] - (UZj’v3i)’ Bl = (blij)nxn’ and blij =
(d};()pxr> Di(1) = (dlL(t))nxl’ by = (b)) x> bh = (k (V] [(Voy, Vo) + (v, 0]

¢ (1), wp), vy;), b (bm) (ll/l )Vlj) (al,])nxn, Then, corresponding to the sequence {Y } there exists
Aij = (vl]’vlz) El = (ell])nxn’ elz] (0 v17), Hl = (1w a sequence of the following approximation problems, i.e.,
fuj= (3p o)y By = (egijdaw €= (01j02),  Hy = for each U, = (v, Uy, U3,) C 7,,, andn=12,...

(f2ij)n><n> f2ij = (U3j’U2i)> E; = (eSij)nxw €3ij = (Ulj’USi)’

Wit Vi) + (V1 V1) + (V1 = Vo = Vi V1) = (kg (W1 @1), V1), (27)
(V/(l)n’ Uln) = (1//(1)’ Uln) >

X : (28)
(V’ln’ vl) = (V’l’ vln)’

<1//2ntt’ v2n> + (VWZW Vv2n) + (w2n + v/?an + wm’ v2n) = (kZ (w2n’ (,()2), vZn)’ (29)
(ll/(z)n’ vZn) = (‘l/(z)) UZn)’

SRR 30
(sz Uz) = (1//2’ UZn)’

Wit V3n) + (V3 V03,.) + (W3 + V1 = Vi 03,) = (K3 (W3, @3), 03,,), (31)

(Vlgn’ v.’m) = (‘//(3)’ U3n)’

(32)
(‘/’éw Us) = (‘//;> U3n)’

which has a sequence of unique solution {Tp’n} Substituting 1.2 in [18] for the first term of the LHS, to get (33) which is
Uiy = Wy fori=1,2,3in (25)-(27), respectively, adding the ~ given by
three obtained equations together, and employing Lemma

[" l//nt (t ”() +” ‘// ” ] - 2 w2n’ lljlm‘ ) + (v]3n> lljlmf ) (l//m’ l//2nt) (w3n’ l!/2nt) (vjln’ w3nt) (1//211’ 1//3nt)

(33)
+ (kg (Y10 @1)s Vi) + (ks (W @3)s Wae) + (s (W3 03), W)
Or (33) can be rewritten as (34) which is
d— 2 — 12
LT @1 170 <2002 v ) 410 Vi) 100 Vi )+ V) + 1 ¥ o

+l(‘/’2n> Wznt)l + |(k1 (Vi @), V/lnt)| + |(k2 (Vo @3)s ‘/’2nt)| + |(k3 (V3 @3)s 1/’3m)|)~
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Using Assumption A for the RHS of (34), 1ntegrat1ng
both 51des on [0,t], using |y, llo <yl < ||1p l,, and

1Wincllo < 19l we get

[ Sl f; #1907
< (1Tl 7R [ 3 el
B [ (17l # 17 Jar [[ [ulitr 39
< Y1l o [ (17l 17 o

<oy [ (IF.uls #1707 )t

where B, = Zl 1ﬂ1’ Bs =1+ P4 Ps=2+Py p; =max(Bs,
B By = X0 1 b;.

Since [l < by, and [, llo < by, with o = by + by + B
then (35) is reduced to

[V O 19,0 <y +8 [ (1905 + 7.l )
(36)

Appling the Belman-Gronwall (BGin) inequality, the
abovementioned inequality gives V¢t € [0, T]:

[ O +[F O <Boe™ =1 (0)
=V, (O] <b* (@), (37)

%, 0| <t* (), VteloT).

Easﬂy, one can obtain that ||1//m(t)||Q<b (c)and

1Y, (Ol Ly) <b(o).
Then, by applying Alaoglu’s theorem (Algth), 1 Y

R

v

has a subsequence; it is not loss of generality to say weN
—Y in (L*(11))’ and ¥,—7V in (L*(I,Y))?,

neN

n

such that ¥/,
and

(1*@.v)’ (L (2 Y").

(38)

< (F@p) = ((1*#.B)) ¢

Then, the Aubin compactness theorem [18] can be ap-
plied here to get that ¥, — ¥ in (L?(IT))’. Now, mul-
tiplying both sides of (27) and (29), and (31) by
x;:(t) € C*[0,T], such that x;(T)=x:(T) =0, x,;(0)+0,
x;(0)#0, Vi = 1,2, integrating on, finally integrating by
parts twice the 1°* term of each one of the obtained three
equations, led to

Td
- JO a@ (W1 V1)x; (£)dE + J (VY10 Vor)x: () + (W1 V1) = (W V1) = (W3 v1,) )11 (8] dE

(39)

T
= Jo (ky (Y10 1) v1)x; (D)dE +(V/}n’ Uln)Xl (0),

T T
IR R I (L I O R (T AT L A P

(40)

T
= JO (kl (WIn’ wl)’ Uln)Xl (t)dt +(w1n’ vln)Xl (0) +(1//(1)n’ vln)Xll (0)’

d T
J a@ (W V2n)x (£)dE + J (VW2 Vo )2 (8) + (Yo V2) + (W3 V2) + (W10 020) )Xo ()] At

~

[ a0 O+ [ (T P02 0+ (B 3) + (3 3) + (03 (0]

(41)

= J (K (W2 @3), 021, (1)t +(‘/’;n> Uzn)Xz (0),

(42)

= JO (kz (1//2n> w2)’ UZH)XZ (t)dt +(V’§n> UZH)XZ (0) +(w(2)n’ UZTI)XZ, (0)’

d T
- J @ (W3 V3,)x3 (£)dE + [Io (V3 VU xs () + (W 03) + (W10 V30) = (W 030) )X (H)dE

= J (k3 (W3 03), V3,15 (1)t +(‘//3n’ U3n)X3 (0),

(43)



6
T ) T
[ o B O+ [ [T90 703005 0+ (W 30) + (1 3) = (0315 O]
T
= Jo (k3 (W30 03), ) x5 (£)dlt +(‘/];n’ Usn)Xa (0) +(V’(3)n7 Usn)Xal (0).
Now, for each i=1,2,3, we have the following
convergences:

First, since
VX (8) — vy (8)
v;,, —v;inY — UinX;’ (t) — UiX; (t)
VinXi (0)— UiXi (0),
On the other hand, since , ,
v ) —vxi @ | .
v—vinL? (B} — | vl ()—sv, (0> F (D
Ui (0)—0,x:(0), inL?(E)

, inL2(LY)
inI? (E)

Viw—Vip»  inL*(ID)
Second, we have { v,,—vy;, inL?(1,Y)
Yin — ¥ inL*(TD)

T
0

T
- ,[o (V10 UI)XI’ (H)dt + J [(Vy, Vo) + (v = v, = y3,01) [x, (D)t

T
= Jo (ky (y1> @), v)x; (B)dt +(‘/’i> Ul)X1 (0),

T

T
[ oo @ | [(7p0) + (0= v, - paov) (0

0

T
= Jo (ki (y 01), v)x, (£t +(1//1’ Ul)X1 (0) +(‘//(1): UI)XII (0),

Case 1. Choose y; € C*[0,T], s.t. x;(0) = x:(0) = x;(T) =
x:(T) = 0. Using these values in (47) (for i = 1), using in-
tegration by parts twice for the first terms in the LHS of the
obtained equation, yields to
T T
[ e v 0+ [ (99 0)
+(¥1 — v — ya0) g (DAt (48)

T
= Jo (ki (v, @1), 01)x, (B)dt,

which give that y, is a solution of (10) (a.e. on I).

Similar way can be used for i = 2,3, with (41)-(44) re-
spectively to get that y, and y; are solutions of and (12) and
(14) respectively (a.e. on I).

Case 2. Choose y; € C*[0,T], such that y;(T)#0 and
x;(0) #0. For i = 1, integrating both sides of (10) on [0, T]
after multiplying it by y, (¢), using integrating by parts for
the first term in the LHS of the obtained equation, then

Journal of Applied Mathematics
(44)

Third, let w;, = v;,x; and w; = v;y;, then w;,, — wj; in
L*(11) and w;, is measurable in E, so from Assumption
(A-I) and  Proposition 1, the integral
Inki (%, t, Wiy w)w;,dx dt is cont. with respect to
(Vin» 0 wy,), then

T

T
JO (k; (Wi ;) v3)x; (1)dE — Jo (k; (w3 @;), v;)x; (£)dt.
(48

Now, from these convergences and (24) and (25), for
(i = 1), we can passage to the limits in (39) and (40) to get

(46)

(47)

subtracting the obtained equation from (41), we get
(0, 0 (0) = (v (0), v,)x; (0).

Also, similar way can be used but for i = 2,3 with the
pairs (12) and (47) and (14) and (48), respectively, to get the
same result.

Case 3. Choose x; € C*[0,T], such that y;(0)=
x: (T) = ¥;(T) =0,x:(0) #0. For i = 1, integrating both sides
of (10) on [0, T after multiplying it by x, (), using integrating
by parts for the first term in the LHS of the obtained equation,
then subtracting this obtained equation from (47), we get
(y?, vi)X; (0) = (y;(0), vi)X;. (0). Also, for i = 2,3 and by using
(12) and (14), we can use a similar way to get the same result.
From the last two cases, easily we can get the ICs (11) and
(13), and (15).
_, Uniqueness of the solution: let Y = (v, ¥, ¥;) and
v = (¥, ¥,, ¥3) be two solutions of the wkf (10)-(15), i.e.,
y; and y; (for each i = 1,2, 3) are satisfied the wkf (10)-(15),
subtracting each equality from the other and letting
v; = ¥, — ¥, yields to
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<(1//1 W;)tt’ ll/l I//1> +||I//l W’ "1
¥;(0) =0, (49)

¥;):(0)) = 0.

(v —9:)(0), y; -
((v; =9, 0), (v, -

Adding these three equations, using Lemma 1.2 in ref.
[18] on the first term in LHS of the obtained equation which
will be positive, integrating both sides from 0 to ¢, using the

k (Wz’w) k (Illl’w) V/z Wi)’

initial conditions, the Lipshctiz property on the RHS, and

lastly applying the B-G inequality, to get

jo[%u T - P, +207 - i)uf]dt <[ (|7 -Dr0, 17 - Jar

g 2 - = - =
[@-F10], 117 -9 <217 -l =0, viers

1T = 7) Ol iy, = 0=

Lemma 1. In addition to Assumption A, if the functions k;
(for eachi = 1,2, 3) is Lip. with respect to y; and w;, and zfthe
control vector is bounded, then the operator @+ 1//—> from
(L? (H))3 into (L® (I, L*(E)))® or in to (L*(1,Y))* or in to
(L2 (IT))? is cont.

Proof. Let a) = (wl,wz,wz) @ = = (w0, @,, W3) €, (LZ(I'I))3
Ao=0 -3¢ (L2 (H)) then by Theorem 1, ¥ = W—> =
(Y1, ¥ v3) and ¥ = ¥y— = (¥, ¥,,¥;) are their corre-
sponding states’ solutions ‘which satisty the wkf of (10)-(15),

setting A_l/)/ = (Ay,, Ay, Ay,) = i -y, then
Ay v + (VAY,, Vo) + (Ayy - Ay, = Ay, v)) (51)
= (ky (v, + Ay, 0) + Awy) = ky (v, @), 0y),
A ,0) =0,
v, (x,0) (52)
Ay, (x,0) =0,

(50)
the solution is unique.
(A, 0,) + (VAY,, V,) + (Ay, + Ay + Ay, 0,) (53)
= (ky (v + Ayy, 0 + Aw,y) = ky (Y5, @,), 0,),
A ,0) =0,
¥, (x,0) (54)
Ay, (x,0) =0,
(AYs,v3) + (VAY;, Vvs) + (Ays + Ay, — Ay, v3) (55)
= (ks (y3 + Ay, 03 + Aws) = ks (Y3, w3), v3),
A ,0)=0,
¥5(x,0) (56)
Ay, (x,0)=0

Substituting v; = Ay, for each i =1,2,3 in (51), (53),
and (55), respectively, adding the obtained three equations
together, and using the same way that we used to get (32) a
similar equation can be obtained but with Al// in state of ¥/,
and then integration of both sides on [0, ], using the Lip.
property on k;, i = 1,2,3, with respect to each dependent
variable, yields

JO% (3%, 0] +17917| <2 j ;[(|A1//2| A ) [Ay] + 1Ay +ays]) Ay ]de

2 [ (v +[ava]) sl +(Tlava] + Tl ) v |ar (57)

t p— = p— =
v 2| [T 1wl + Tofaws])Iava] + T |avs] + Tl 4y |

0



Using the definitions of the norms and the relations
between them, we get
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[svi o] it <2 [ (13900 3w, )ar + I, [ (13905 a3 e
+ T JT IAwldt + T r ”E:"?dt (58)
0 0
2 —> 2 Ly 52 — 2
<T*JAa (Ol + L, J0(||A1//||0 +[awi], e,

where L, = max(L,,L,,L;), = max(fl,Lz,i), and
Ly=max(2+L,2+L, + ).

Applying the BGin, with L? = L’el1, we get

— 2 — 2 2 2 -
|av, 0, +1Avl, <PlA0 Ny, Ve e T

— 2 2 2 —
A9 O, < IR Oly, veeT= ()

— —
1AWl eo (1,12 8)) < LIA@ s

— — — —
Ayl AL LlAwll and Ayl < LI Aw| .

From the abovementioned three inequalities, the Lip.
continuity of the operator @y easily obtained.

1.3. The Existence of a Classical Optimal Control. This section
concerned with proving the existence theorem with a
CCOPCV satistying the EQVC and INEQVC is studied.

O

Hence, the following assumption and lemmas will be
needed.

Assumption B. Consider m,; (forr =0,...,qandi=1,2,3)
is of Caraty. on IIx (% x(;) and satisfies y; € # and
w; € (;

Im,; (%t v 0,)| < My (x,8) + ¢y, where M,; € L'(IT), Vi =1,2,3, Vr =0,...,q. (60)

Lemma 2. With Assumption B, the functional @—M, (@)
is cont. on (L*(I1))°.

Proof. Using Assumption B and Proposition 1 gives
men- (x,t, ¥;, w;)dx dt is cont. on L*(IT), Vi =1,2,3, and
Vr =0,...,g; hence, M;(w) is cont. on (L*(II))’. O

Lemma 3 (see [13]). Letm: Qx R* — R is of Caraty. on
Ox (BxR) and satisfies |m(x,y,w)| < m(x,t) +cy?,
where (x,t) € L' (IT), w € (, ¢=0, { ¢ R is compact. Then,
fnm(x, v, w)dx is cont. on L*(IT), with respect to .

Theorem 2. With the Assumptions A and B, if the set E) is
-
convex (cox.) and compact (com), W , # &, and the function
k; (Vi=1,2,3) has the form
ki (2.t w5, w;) = kiy (%, 6, 9;) + ki (x, Hw;, (61)

where |k (x,t, 9| <n; (%, 1) + c;lyl, ki (x, )] <k,

n; € L2(IT), ¢;>0.

In addition m,; is independent of w; (Vi =1,2,3, and
r=1,...,p),m, (Vi=1,2,3,andr = 1,..., p) is cox. with
respect to w; for fixed (x,t,y;), there exists a CCOPCV.

Proof. From the Assumption on (; ¢ & Vi=1,2,3 and
= = = =
Egorov’s theorem, one obtains that W x W, x W, = W is
L= 2T
weakly com. Since W , # &, hence there is w € W, s.t.
r(@) = O,ISrSp,Mk(g)SO,forp+ 1 <r<gqand thereis
=
a minimizing sequence {E’p} s.t. Z))p € W4, Vp, which
inf
Since
W, € W 4, Vp and W is weakly com., then {wp} has a

subsequence say again {E)p} which converges weakly to

.
satisfies  p —> coM, (?))p) =D e WAMO (5).

,—w in (L2 (11))® and IIE)pIIHSC, Vp.

. — — -
From Theorem 1, for any given control &, then v/, = I//E)P

T —
some w in W,ie.,

is a unique solution for the Tstegs, and IIVIIPLZ(LY),
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I pt12(my are bounded, then by Algth, the sequences {7 P}

and {th} have a weakly converging subsequences, say for
simplicity, {V’p} and {V/pt}’ ie.,
V,—v, in(L*@7),

thﬁvw in (L2 (H))

‘ (62)

Then, by applying the Aubin compactness theorem [18],
the sequence l_//)P} has a strongly convergirg subsequence,
say for simplicity, {7‘0} such that Wp — V¥ in (L*(ID))°.

Now, for each p, substitute the solution (y,,¥,,, ¥3,) in
the wkf of (18), (20), and (22), then multiply both sides of
each one by y;(t) (with y, €C*[0,T], such that
% (T) = x:(T) =0, x;(0)#0,x:(0)#0, for i =1,2,3). After
rewriting the first terms in the LHS in each one of them,
integrating both sides on [0,T], and then by applying in-
tegration by parts for these first terms, we get

T 4 T
Jo at (WIpt’ vl)Xl (H)dt + Jo [(Vll’lp) VUl) +(‘/’1p> Ul) _(Wzm Ul) _(‘/’3pa vl)]X1 (1)dt

(63)

T
= .[o (ku(x, t V’lp) +kyy (x, 1)@y, U)Xl (t)dt,

T g T
JO ar (‘/’Zpt) Uz)Xz (H)dt + Jo [(V%p’ VUz) +(1//2p’ Uz) +(‘/’1p> Uz) +(W3p’ Uz)]Xz ()dt

T
_ jo (Kan (36,6, 3p) + gy (36, a0 03 ), (),

T d T
[ S )t 0+ [ (T3 70) o (300) (910 05) (o0 s (1

T
= JO [(k31(X, £, %P) + k3, (x, H)ws,, U3)X3 (t)]dt.

One can passage the limits in the LHS of (50)-(52) by
applying the same manner which is applied in the proof of
Theorem 1 to passage the limits in RHS of these equations;
we suppose (Vi=1,2,3), v; € C[E], w;=v;y;(t), then

(64)

(65)

w; € C[M] € L™(I,V) c L*(IT), set k; (y,,) = k;y (v;,)w;,
then k;;: II x R — R is of Caraty., using Proposition 1, to
get the integral jnkil (y;,)w;dx dt is cont. with respect to y;,,
but y;, — y; in L*(T) and w;,—w; in L*(T0), then

J kil(l//ip)widx dt — J ki (y)w;dxdt, VYw,; € C[II]fori =1,2,3, (66)
I I
J Ky (x, D), w,dx dt —> J k, (x, Dow,dxdt, Vw, € C[T], fori = 1,2,3. (67)
I I
Thus, (66) and (67) are holded for every v; € Y, since Now, since m,;(x,t,y;,w;) (for each r=0,1+
C(E) is dense in Y; hence, we get the wkf (10), (12), and (14). P2+ p,...,qandi = 1,2,3) is cont. with respect to (y;, w;)

Also, the same manner which is applied in the proof of
Theorem 2 can be used here to passage the limits in the ICs.
Hence, (v, ¥,,¥5) is a solution of the wkf of (10)-(15).

On the other hand, since m,; (for i=1,2,3 and
r=1,2,..., p)isindependent of w; and cont. with respect to
y;, by Lemma 2, jnmri (x,1, y;,)dx dt is cont. with respect to

— — . 2 3
Yo ¥, — ¥ in (L*(I1))°, then

J mri(x, t, wip)dx dt — J m,; (x,t, y;)dx dt.
I I (68)
lim

Hence, M,(E)) =p— ooM,(E’P) =0.

and since C; is compact, then using Lemma 3, we get

jnmri(x, b V¥ips wip)dx dt — Jnmﬁ(x, ty;, wip)dx dt.
(69)

On the other hand, Inmri (%, ¥}, w;,)dx dt is cox. and
cont. with respect to w; (since m,; (x,t,¥;, ;) is cox. and
cont. with respect to w;), then fnm,,- (x,t, y;, w;)dx dt
Necessary and Sufficient is weakly lower semicont. (welsc)
with respect to w;, i.e.,
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Jnm,,» (%t v, w;)dxdt<p L 001an (m,i(x, 5Ly, wip) - mn-(x, T wl-p))dx dt

+p % soinf mr, X1 Yips @ ,p)dxdt <p g 001an

i=1

it

2

ZJ m,; (x,t,y;, w;)dx dt <k — oomfZJ ,,(x,t Vi W; )dxth)
n

,,(x,t Vipr @ ,p)dxdt by (55)=

(70)

M, (®)< lim 1nfM( )

p—00

>
then M, (@) <0 (r=p+1,...,9) sinceﬁ)p € W, Vp,and

we get that

My (@) <p -3 00 inf M,(@,)
inf

WA Mo(w) (71)

— -
e W, M,(w).

Thus, @ is a CCOPCV.

Assumption C. Assume for r =0,...,q and i = 1,2,3, the

functions k;, k;,, k;,,»m,,,and m, , are defined and are of

Caraty. on T x (% x (') (where (' is an open subset in ()
and satisty |k;, (x,t, v}, w)| <L, |k, (.1, 93 @) < L

‘mr,-w,» (X, t, 1//1'>(“)1‘)| S]\/Ir,.5 (x’ t) +Cri5|l//i|’ (72)
|mr,w,- (X, 278 wi)| < Mr,-ﬁ (x’ t) + Criéll//il’

where (x,t) €11,
L,Lyc, ¢, 20.
Note: for simplicity, in the following theorem, we will
drop the index k from the functions m;; and M;. Also, we
assume the Assums. (A), (B), and (C) are considered.

vpw, €R, M, M, €L*(I0).

Theorem 3. Consider the TAEgs _E) = (§,,&,,8;) of Tsegs
(1)-(6) are defined by

S — DG + & + 8+ 8 = §ikyy, (.t yp, wp) + My, (.t ¥, @), onll,
& =0, onX & (x,T)=&,(x,T)=0, onE,
S — A+ 8 -8 - & =6k, (.t Yy w,) + My, (x,t,y5,w,), onll, (73)
§,=0, onX, &(xT)=&,(x,T)=0, onE,
E3 — A8+ & - & + &, = §13k5,, (.t y3, w3) + My, (x.t, 3, w3), onll,
& =0, onX &(x,T)=&,(x,T)=0, onkE,
. . - - 7 N
and the Ham is given by Z(xt vy, d, &)= where H— (x.t, v, E, @) = (Crop Crop Cra,)> and
Zle G (xt v, w)), where (; =&k (x,t, v, w;)+ AW = (Aw,, sz, Aw,), with

m; (x,t,y;, w;), for each i =1,2,3.
Then, the Frde. of G is defined by
= J %—) (x,t, 1//

M (B)AT E)Awdx dt, (74)

( w; Ekzw (X,t 1//1’ w; ) + mzw (x’t V/z’ w; )’ m; = 22:0 KMy

and & = Y1« &, for each i = 1,2,3.

Proof. at first, let the wkf of the TAEqs are given
Yy, 05,05 €Y, by

Erp 0y + (VEL, Vo) + (8 + & + E,0y) = (& Ky, +my,,0,), Vv, € Yaeond, (75)
(&1 (D), vy) = (£ (T),01) =0, (76)
(2E5103) +(VE,, V) + (&, — & = &5,0,) =(&kyy, + M5y ,0,), V0, € Yae onl, (77)
(&,(T), v,) = (&, (T),v,) =0 (78)
oo v3) +(VE;, Vo) + (& — & + &, 03) =(&3kyy, +m5,,0;), V0, € Yae onl, (79)

(&5(T),v3) = (& (T), v5) = 0. (80)
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From the assumptions and using the same manner
which is applied in the proof of Theorem 1, once can prove

11

Substituting v; = Ay, foreachi = 1,2, 3 in (75), (77), and
(79) and integrating both sides on [0, T], we get

that the wkf (75)-(80) has a unique solution
T = (£, 6,8 € (L2 ().
T T
(KA, &) + (VELVAY,) + (& + &5 + &, Ayy)|dt = (flklw] +91w]>AW1)dt) (81)
0 0
T T
[{A,, §) +(VE, VAY,) + (&, - & = &, Ay,)|dt = (fzkzwz * 9oy, A‘/’z)dt’ (82)
0 0
T T
[(Aws, &) + (VE, VAYS) + (85 - & + &, Ay;)dt = (53]‘3% *t 93y, A‘/’s)dt (83)
0 0

Now, let @, @ € (L2(I)), Aw=5,- @ € (I(Q)’,
and then by Theorem 1, ¥ = 1,{/—» and ¥ = 7? are their
correspondmg solutions.  Set At// = (Ay,, Ay, Ays) =

v - 1// substitute v; = &, for eachi = 1,2,3in (51), (53), and

(55), integrate both sides on [0,T], and then integrate by

T
JO [<Ayy, &) + (VAY,, VE) +

parts twice the first term in the LHS of each equation.
Finding for each i = 1,2, 3 the Frde. of k; in the RHS of each
equation which are exist from the Assumption C, then by
Lemma 1, and the inequality of Minkowiski, one has

(Ay, = Ay, — Ay, §))]dt

(84)

T
_ JO (Kuy, Ay, + kA, £ )t + O, () B0l

T
,[o [<Ayy, &) + (VAY,, VE) + (Ay, + Ay, + Ay, &,)dE]

T
_ JO (Kny 30 + Ky Ay £, ) + O, (BBl

(85)

T
Jo [{AYs, &5 + (VOy3, VES) + (Ayy, + Ay, — Ay, &) ]dt

T _—_ . —
= JO (Ksy, A + ks, Aws, €5 )d + O5 (Aw)l|Awlyy.

Subtracting (84)-(86) from, respectively, adding the
obtain equations, we get

T3 N T 3
ki, Aw;, & )dt + O, (Aw =J my, , Ay, )dt
j();( )it + 0,3 = | (. av:)

. )
where. N O (¢) — 0, asAw — 0, withO, (Aw) =
Y1 0; (Aw)Awr.

On the other hand, from the Assumption B on m; (for
i=1,2,3), the Frde definition, Lemma 1, and by applying
the inequality of Minkowiski, we obtain

3
M(@ +50) - M() = J S (g, Ay, + my, A )dxdt
1—[ 1 1

i=1
— —>
+ O (Aw)Awyy,
(88)

(86)

— —
where O; (Aw) — 0, as Aw — 0.
Now, by substituting (87) in (88), one has

3
M(@ +3a) - M(B) = J S G, (61 0) A dt
nig

— —
+ O¢ (Aw)Awy,
(89)
— — — —
where Og (Aw) = O5 (Aw) + O5 (Aw) — 0, as Aw — 0.

Finally, from the Frde. of, we get

M’(E’)Aﬁ:j H— (5,9, @, O)ATdxdt.  (90)

1.4. Necessary and Sufficient Conditions for Optimality.
This section deals with the theorems for the Necoop nec-
essary under certain hypotheses which are proved as follows:
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Theorem 4. Necoop (multipliers theorem):
-
(a) with Assumptions A, B, and C, if W is cox. and the

-
W€ W, is optimal, then there are multipliers
kK, €R,r=0,1,....,p,p+1,...,q9 with x>0, for

| 7ot v.3 Dagdaxarzo, v
II

k.M, (@) =0,

(b) Inequality (91) is equivalent to the (weak) piecewise
minimum principle

o (L, £, @) B (1) =™

Proof (a) From Lemma 2, the functional M, (@) (for
r=0,1,...,q) is cont., and from Theorem 3,
the functional M, (for r =0,1,...,q) is cont.
with respect to ® - @ and linear in @ — w,
then M is L— differential for every L, and then
applying the K. T. L. theorem [5], there are
multipliers x, € R, r =0,1,...,g9 with «,>0,
forr=0,p+1,...,4, Y%, |x,| = 1, such that
(91)-(93) are satisfied, by using Theorem 3,
then (91) becomes Y7, K,JH > Ciw,
(x,t,¥;, w;)Aw;dx dt >0, which can be re-
written as

=
J'77.Gi—$>nmzm Vo € W with {
II
= ({lwl’ (2(02’ (3103)'
(94)

=
(b) Let iglj be a dense sequence (dse) in W, m denotes
the Lebésgue measure on II, and I' ¢ II be a mea-
surable with

—
= _ o, (xt),if (x,t) €T
1) =1 Y )
@ (%) {a’(x,t), if (x,0) ¢ T
Therefore, (94) becomes

j - (T - @)dxdt >0, which impliesto { —
T

~(5},—5))20,a.e.0n H

(95)

subset property

This means the inequality is satisfied on the whole region
Q except in a subset IT; such that m(IT;) = 0, VI, where m
represents the Lebesgue measure; thus, the inequality holds

Journal of Applied Mathematics

r=0,p+1L,...,q Y1 lx.|=1 such that the fol-
lowing Kuhn-Tucker-Lagrange (K. T. L.) conditions
are holded:

-
DeW, M= -, (91)
forr=p+1,...,q (92)
— -
I (xty, ¢, w) w(t), aeonll (93)

on IT except in the union U,IT; with m (U,I;) = 0, but {5,} is

= - =
a dse in W, then there is w € W such that

- =
fn (7 . (5,—3)20, a.e. on H,Vﬁ) ewW.
That is, (91) gives (94). The converse is clear.

Theorem 5. Sucoop: besides the Assumptions A, B, and C,

—
suppose W is cox., with E) cox., k;andm,; (Vr=1,2,...,p)
are affine with respect to (y;, w;) for each (x,t), m,; (Vr =
0, p+1,...,q) are cox. with respect to (y;,w;) V(x,t), for
i =1,2,3. Then, the Necoop for Theorem 4 with x,>0 are
sufficient.

-
Proof. Assume W € W, satisfies the condition (91) and
(92). Let M (@) = 1, x.M, (@), then using Theorem 3, we

get
q 3
=0 i=1

I 1

(i, - Ow;dx dt > 0.

i

1
M' (@AW = ) x,M(@)AW =
r=0

(96)

Since ki (x,t, v ;) =
ki (x, )y + ki (%, )w; + ki (x, 1), i =1,2,3.

Let w = (w;, w,, w;) and w = (w,,w,, w;) be two given
control vectors, then ¥ = (1, Wop» Wus) = (V1> ¥y ¥5) and
5
¥ = (Vo Var ¥a3) = (Y1, ¥, ¥3)  represent the corre-
sponding stats solutions. Substituting (@, y) in (1)-(6),
multiplying all the obtained equalities by « € [0, 1] once and
on the other hand substituting (5,?) in (1)-(6), multi-
plying all the obtained equalities by (1 — «) once again, and
lastly adding each pair from the corresponding equalities
together, we obtain
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(ayy + (1 =)W, )y = Alay, + (1 - a)¥) +a(y, — v, —y3) + (1 - ) (¥, — ¥, — 3) (97)
= a(kyy (6, 0y + ki, (6, )wy) + (1= a) (kyy (60, + ki (6 0)o,) + ks (x, 1),
ay, (x,t) + (1 - &)y, (x,0) =0, (98)
ay, (x,0) + (1 — &)y, (x,0) = v (x), (99)
ayy, (x,0) + (1 - &)y, (x,0) = v, (x),
(o, + (1= )P, )y — Aoy, + (L= a)P,) +a (Y, + ¥ +y3) + (1 =) (¥, + ¥ +V3) = (100)
(kyy (e, )y + Ky (1) @,) + (1 = @) (kyy (36, )W, + kyy (%, 1)@,) + kyy (x, 1),
ay, (x,t) + (1 - )y, (x,0) =0, (101)
e _ .0
ay, (x,0) + (1 “)fz (x,0) 1/? (x), (102)
ay,, (x,0) + (1 - )y, (x,0) = v, (x),
(ays + (1= a)¥3 ), = Alays + (1 - a)P3) +a(ys + vy —y,) + (1 =) (Y3 + ¥, = ¥,) (103)
= a(ks; (6 ) Y5 + ks (3, 1) w3) + (1 — @) (ksy (%, )5 + ksy (%, 0)@3) + kyz (x, 1),
ay; (x,t) + (1 - )5 (x,0) =0, (104)
ay; (x,0) + (1 — &)y, (x,0) = v (x), (105)

ays, (x,0) + (1 — @)y, (x,0) = 1//; (x).

Equations (97)-(105) show that if the control vector is
=4 -~~~ . 2 - s .
@ = (@,,@,,@;) with @ = & + (L a)w then its corre-
sponding  state vector is Y = (¥, ¥, ¥5) with
Vi = Vg, = Vit 0-a@) = oY+ (1 - Ay, Vi=1,2,3.
This gives the operator Wy — is convex-linear with re-
spect to (V},To’) for any (x,t) € IL

On the other hand, the function M,(w) (for
k=1,..., p)is convex-linear with respect to (¥, @) for any
(x,t) € I, this backs to the fact that the sum of two affine
functions m,; (x,t,y;,w;) (for each i=1,2,3, and

P q P q -
YoM (@) + Y M (@)<Y KM, (@) + Y kM, (7), Ve eW.
r=0

r=p+1 r=0

-
Let @ € W, with k. >0 (for r= p+1,...,9), then
from (8), (9), and (77), the abovementioned inequality
becomes

- -
koMo (@) < koMo (@), Y& € WGy (©)<G,y (@), V@ € W..@ isa CCOCVE.

2. Conclusions

The Galm with the Aubin compactness theorem are ap-
plied successfully to prove the existence of a unique
“continuous state vector” solution for the TNLHPDEqgs

(r=1,...,p) with respect to (v;,w;) and V(x,t) € II is
affine and the operator c_o"—>77 is convex-linear.

The functions M, (@), Vr = 0, p+1,...,q are cox. with
respect to (¥, @), V (x,t) € II (from the assumptions on the
functions m,, and m,,, Vr =0, p+1,...,q). Hence, M (@)

—

is cox. with respect to (7, @),V (x,t) € I in the cox. set W,
and has a cont. Fréd satisfies M' (@) - (6’ - W)>0=M(@)

-
has a minimum at w=M (W) sM(ﬁ),vﬁ ceW=

(106)

r=p+1

(107)

for a given cont. CCOPCVE. The existence theorem of
governing by the considered the TNLHPDEqs with EQVC
and INEQVC is proved. The existence of a unique solution
of ATEqs associated with the considered Tsteqs is studied.
The Frde. of the Ham is derived. The theorems of the
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Necoop and the Sucoop of the constrained problem are
proved.
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