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A Value-at-Risk (VaR) forecast may be calculated for the case of a random loss alone and/or of a random loss that depends on
another random loss. In both cases, the VaR forecast is obtained by employing its (conditional) probability distribution of loss
data, specifically the quantile of loss distribution. In practice, we have an estimative VaR forecast in which the distribution
parameter vector is replaced by its estimator. In this paper, the quantile-based estimative VaR forecast for dependent random
losses is explored through a simulation approach. It is found that the estimative VaR forecast is more accurate when a copula is
employed. Furthermore, the stronger the dependence of a random loss to the target loss, in linear correlation, the larger/smaller
the conditional mean/variance. In any dependence measure, generally, stronger and negative dependence gives a higher forecast.
When there is a tail dependence, the use of upper and lower tail dependence provides a better forecast instead of the single

correlation coefficient.

1. Introduction

A Value-at-Risk (VaR) forecast is crucial as a main reference
for banking and insurance industries in assessing their finan-
cial risk performance as well as in allocating their capital. The
VaR forecast may also be used as an alarm for such industries
before they reach the worst risk. It is, therefore, a must for a
risk manager to have accurate and reliable forecast of VaR.
Forecasting VaR, in general, requires the quantile of the
loss distribution (see, e.g., [1-4], for review of VaR forecast);
later, we name this as the quantile-based VaR forecast which
will be described in Section 2 through simulation. In practice,
however, we may obtain VaR of loss data by simply taking
the quantile of its ordered data (known as the historical sim-
ulation method) without knowing its estimate of probability
function or density. This approach, however, may not be sat-
isfied and has the possibility of high forecast error. Other
approaches include variance-covariance and Monte Carlo
methods with some restrictions such as normality distribu-
tion assumption and accurate parameter estimate. In fact,

there are still efforts by authors to develop the best risk fore-
cast models.

A VaR forecast model may typically be developed in
the direction of proposing the best VaR forecast technique
along with its accuracy. For example, we may forecast VaR
by a technique that substitutes model parameters by their
estimates. The resulting VaR forecast, called an estimative
VaR forecast, has coverage probability accuracy bounded to
O(n™'). To have the best VaR forecast, one then can modify
the calculation to yield the so called improved VaR forecast
(e.g., [5-7]). This improved VaR forecast is more accurate
and has coverage property bounded to O(n™*?). An alter-
native direction of having the best VaR forecast is by incor-
porating statistical properties of loss distribution in the VaR
forecast technique such as high kurtosis, volatility cluster-
ing, and heavy-tailed distribution, e.g., [8, 9], or in relation
to extreme observations as in [10]. It is hoped that the
resulting VaR forecast is not only having the best accuracy
but also capturing the empirical moment as well as distri-
butional properties.
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F1GURE 1: VaR forecast of normal distribution (a-d) and ¢ distribution (e-h) calculated from the distribution function; the red dot mark in the
figure shows the “position” of the VaR forecast (to x-axis) and its corresponding (1 — &) (to y-axis).

In this paper, we aim to explore the VaR forecast in a
different direction for a random loss that depends on another
random loss, i.e., forecasting VaR for dependent losses. In
particular, we are interested in finding the effect of depen-
dence measures, such as unconditional correlation and tail
dependence, to the estimative VaR forecast. There have been
some works related to the dependence and VaR forecast. For
instance, Ku and Wang [11] have used the MGARCH model
with dynamic conditional correlation (DCC), instead of con-
stant correlation, in backtesting the VaR forecast through
forecast failures and average deviations. Meanwhile, Santos
and Alves [10] considered dependence of excesses and
duration by using S&P 500 index and found that the lin-
ear correlation was weak. In addition, Messaoud and Aloui
[12] calculated the VaR and CoVaR forecast based on the
Clayton copula which is in fact less than those based on the
t/mormal copula since the Clayton copula has tail correlation.
Multivariate ¢ copula shows more observations in the tails, a
function of correlation.

To begin with, we review, through examples and simula-
tion, the quantile-based VaR forecast for a random loss alone
and/or a random loss that depends on another random loss,
in Section 2. We visualize such estimative VaR forecasts
along with their coverage probability via distribution func-
tion and probability function. It is important to note that
the use of a copula to obtain bivariate distribution function
is unavoidable due to nonnormality or nonidenticality of
marginal loss distributions.

In Section 3, we present the conditional estimative
VaR forecast that is explicitly formed as the conditional

TaBLE 1: The estimative VaR forecast and its coverage probability
(in the bracket) of a random loss.

Normal t
1.7182 (0.9500) 2.3341 (0.9500)
1.6946 (0.9476) 2.1947 (0.9442)
1.7182 (0.9500) 2.6182 (0.9596)
1.7070 (0.9489) 2.8759 (0.9663)

Quantile-based
Historical simulation
Monte Carlo

Variance-covariance

mean and variance; we take the case symmetrical distribu-
tions of normal and ¢ random samples. The effect of some
dependence measures such as unconditional correlation
and tail dependence is shown. Furthermore, we describe, in
Section 4, dependent random losses for a certain stochastic
process, namely, Autoregressive Conditional Heteroscedas-
ticity (ARCH); note that the Generalized ARCH model,
known as GARCH, has been also the interest for authors,
including [2], in finding the VaR forecast with a copula. For
this stochastic process-type dependent random loss case, we
treat it as from (i) a single stochastic process and (ii) two
dependent stochastic processes. Finally, Section 5 considers
the dependent random losses with upper tail dependence
coefficient. We show and compare simulated data to find
the estimative VaR forecast by involving the tail dependence
coefficient in comparison to a single correlation coefficient
or two correlation coefficients. To illustrate our proposed
method on involving dependence for the VaR forecast, we
simulate such calculations for real data of the S&P 500 index
and the Dow Jones index; this is described in Section 6. The
discussion is given in Section 7.
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F1GURE 2: The corresponding probability function-based visualization of calculation for the VaR forecast of normal and ¢ distributions; the
red dot mark in the figure shows the “position” of the VaR forecast (to x-axis) and its corresponding (1 — &) (under the line).

2. Motivating Examples of Quantile-Based
Value-at-Risk Forecast

From a statistical perspective, the Value-at-Risk (VaR) fore-
cast is an application of the concept of (upper) forecasting
limit for future observations, given a collection of random
variables for losses. Suppose that a random loss X has distri-
bution function Fy, where 0 is the distribution parameter.
Provided that the inverse of distribution function exists, we
obtain VaR of X at the level of significance a:

VaR, (X;0) = Fyy(1 - ), (1)

for all 0; for more general random loss, we may use the VaR
forecast formula as VaR,(X;0)=inf {x; Fxq(x) 21 -a},
see, e.g., [3, 13]. For symmetrical distributions such as nor-
mal and t, Fyly(1 - a) in (1) consists of the mean and vari-
ance of X. Furthermore, in practice, parameter 6 must be
estimated from data. The estimative VaR forecast, VaR (X ;
5) or VaR (X ; 5), is obtained by substituting parameter 0

with its estimate @ as in [5, 6]; the common estimators used
are the maximum likelihood and least square. As mentioned
early in this section, VaR forecast calculation is actually the
(upper) forecasting limit of X,,, when the available data
are X;,X,, -+, X,,. We may assume that the distribution of
X, is identical to X;, for i = 1, 2, ---, n. Note that forecasting
VaR may be carried out for the d-step-ahead forecast.

We illustrate, in Figure 1, the VaR forecast of normal
(Figures 1(a)-1(d)) and ¢ (Figures 1(e)-1(h)) distributions.
The red dot mark in the figure shows the “position” of
the VaR forecast (to x-axis) and its corresponding (1 — &)
(to y-axis). The first row (Figures 1(a) and 1(e)) is obtained
by taking the quantile of such distributions. The next
three rows explain the VaR forecast calculated from some
approaches of historical simulation (Figures 1(b) and 1(f)),
Monte Carlo (Figures 1(c) and 1(g)), and variance-
covariance (Figures 1(d) and 1(h)). It may be observed that
the VaR forecast obtained from the variance-covariance
method has an interesting feature: a lower value than other
methods (for normal distribution) and a higher value than
others for t distribution (see Table 1 for the exact number).
The corresponding VaR forecasts calculated from the proba-
bility function are shown in Figures 2(a)-2(d) for normal dis-
tribution and Figures 2(e)-2(h) for t distribution. The
visualization of the probability function-based VaR forecast
instead of distribution function may be easier for some
readers as the coverage probability (1 — &) for such VaR fore-
casts is easy to see in the area under the line (see, for instance,
[3]), whilst the sample quantile for normal and ¢ distribu-
tions along with their bands may be found in [14]. We may
conclude that the quantile-based estimative VaR forecasts
obtained directly from (normal and t) loss distributions are
more accurate than other methods.

The choice of normal and ¢ distributions for the VaR
forecast illustration above came from the fact that both are
symmetrical distribution and location-scale family (thus,
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FiGURrk 3: The simulated data of univariate (a) and of conditional (c) normal distributions; (b) displays the corresponding scatter plot of

bivariate normal random losses.

they are comparable) with certain features of heavy tail for
t distribution. The estimative VaR forecast of normal dis-
tribution with parameter 0 = (u, 02) is

\T;E{a(x;é)zwaqua—a), (2)

where @ and @ (1 - «) denote the distribution function
and (1 - «)-quantile of the standard normal, respectively.
Meanwhile, the VaR forecast for ¢ distribution with
degrees of freedom «, t,, which has mean g and variance
o%kl(k - 2), for k>2,is g+ 0 ;' (1 — «), where f, denotes
distribution function of standard t. The class of (i) (a)sym-
metrical, (ii) heavy-tailed, and/or (iii) extreme distribu-
tions in the VaR forecast, typically for return innovation,
has also been discussed by authors, e.g., [8-10, 13].

2.1. The Example of Two Dependent Random Losses. We con-
sider now two random losses where one depends on another
random loss. For example, observe bivariate normal distribu-
tion simulated data (second and third rows) with several cor-
relation coeflicients: 0.1-0.5-0.9 (first-second-third columns)
in Figure 3. To compare with, a univariate normal distribu-
tion simulated data is given (Figure 3(a)). It is interesting to
learn a quite different probability function of univariate and
bivariate normal data and perhaps the effect of dependence.

Suppose that two random losses X and Y are dependent
on the parameter vector, for their joint distribution function,
w and dependence measure p(w). We assume that their

dependence may be a Pearson linear correlation, a rank cor-
relation, and the coeflicient of tail dependence, where the last
two are copula-based dependence measures [3]. Our aim is to
find the VaR forecast of X, given Y, such that it has condi-
tional coverage probability equal to 1 —«, i.e.,

P(X<VaR, (X|Y;p(w))]| V)=1-a, (3)

for all w; in other words, the VaR forecast (3) is obtained by
calculating the inverse of conditional distribution function
of X|Y, Fy|'y,,(1 - a). It is, therefore, important to derive
a joint distribution function of (X,Y), Fyy,(X,y;w), in
order to obtain conditional distribution function Fyly,,. It
is easy to have bivariate normal or ¢ distribution. However,
when the distributions of X and Y are neither normal nor
identical, we may need a copula to obtain such joint distribu-
tion function.

We briefly describe a copula as follows. Let Fy and Gy
denote the distribution function for X and Y, respectively.
Defining U =Fy(X) and V =Gy (Y), each has uniform
distribution in [0, 1]. According to Sklar’s theorem, a two-
dimensional copula C: [0,1]* — [0,1] is the distribution
function C(u, v) = C(Fx(x), Gy(y)) = Hx y(x, y), where Hy y
is the joint distribution function of (X,Y) (see, e.g., [12,
15]). The copula will be beneficial not only for reducing
parameters (particularly in an explicit copula) but also
for relaxing dependence models and understanding their
dependence more easily [3]. For example, the class of the
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FIGURE 4: Quantile-based VaR forecast (the red dot mark) of normal (left column) and ¢ (right column) distributed data obtained from
bivariate normal (a) and ¢ (d) distributions. The implicit copulas (Gaussian and t) are shown in (b) and (e), respectively, whilst the use of
Clayton copula (explicit copula, member of Archimedean copula) is shown in (c, ), respectively.

Archimedean copula, namely, Gumbel and Clayton cop-
ulas, are

CS(u, ), = exp (—((—m ()" + (-In (v))") ”6>, 0<6<co,

~1/0
Cc(u,v)ez(u_9+v_6—1) , —1<60<00,0%+0,
(4)

which reduce the parameter vector of bivariate normal
(Uy> Hy>0x*, 0y%) to only one parameter 6. The Gumbel
copula is more appropriate for data with upper tail depen-
dence whilst the Clayton copula represents phenomena of
lower tail dependence. Meanwhile, the implicit copulas of
Gaussian and f are not in the closed form and are repre-
sented as

G (y, v) = — e
) J 00 27'[(1—p(w)2)1/2 d

. <‘(rf —2p(w)riry ”§)>dr dr,,
2(1-p(w)?) o

—00

(5)

and Ci(u,v) =t (t;" (1), £' (v)), respectively, where t,
denotes joint distribution function and ¢, is the distribu-
tion function of standard f. In contrast to the Gumbel and
Clayton copulas, the Gaussian copula does not have tail

dependence. On the other hand, the ¢ copula has both upper

and lower tail dependence and is suitable for financial return
data [2].

In Figure 4, we present the estimative VaR forecast (in the
probability function-based visualization) for normal (left col-
umn) and ¢ (right column) distributed data; in Figures 4(a)
and 4(d), such forecasts are computed by using the bivariate
normal, Hy N™(x,y), and t, Hy,'(x,y), distribution
functions. The estimative VaR forecast (in the red dot mark)
obtained from Gaussian and ¢ copulas (member of implicit
copula) is shown in Figures 4(b) and 4(e), respectively; in
Figures 4(c) and 4(e), the use of the Clayton copula (which
is a member of the Archimedean copula) is presented. As
in Table 2 (for the exact number), we find a quite similar
result of the estimative VaR forecast computed by bivariate
normal (¢) and the corresponding Gaussian (t) copula.

3. Correlation Dependence and Conditional
VaR Forecast: The Case of
Symmetrical Distribution

3.1. Normal Distribution. Let X and Y be two dependent
random losses assumed normally distributed. The mean
and variance vectors are (i, yy) and (oy? 0y?%), respec-
tively; thus, the parameter vector is w = (py, py, 05>, 0y?).
The conditional distribution of X, given Y, is normal with
conditional mean

EX|Y=y)=ux+p(w) (y—#y)z—’;> (6)
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TaBLE 2: The estimative VaR forecast and its coverage probability (in the bracket) of a random loss that depends on another random loss.

Normal

t

1.9951 (0.9509)
1.5273 (0.9533)

Bivariate normal

Gaussian copula

Bivariate t 1.8636 (0.9500)

t copula 2.4528 (0.9543)

Clayton copula 1.5359 (0.9542) Clayton copula 2.4674 (0.9549)
2.5 and normalize it (equalized to zero), we obtain the value of
— ’K p(w) that maximizes the estimative VaR forecast that is
2 4
1.5 1 p(w)max: ) ! ‘uz 2 : (10)
- Vor @ (1-a) + (- pny)
o
o) It is interesting to observe the impact of dependence mea-
e 051 sure p(w) to the behavior of the conditional estimative VaR
- forecast (see Figure 5). The stronger the dependence of Y to
0+ X (in the positive direction), the larger the conditional mean
of X, given Y, whereas the large value of p(w) may reduce the
~0.51 weight of conditional variance of X which means the smaller
conditional variance. In comparison to p(w), other depen-
-1 . —

-1 -08 -06 -04 -02 0 02 04 06 08 1
Dependence measure value

F1gUrE 5: Conditional estimative VaR forecast, for bivariate normal
distribution, against dependence measure p(w) (blue line), compared
to other dependence measures of 7(w) (brown line) and A, (w)
(yellow line); -1 < p(w), 7(w) <1, 0< A, < 1.

and its corresponding conditional variance
Var(X | Y =y) = 0% (1- (@), 7)

where p(w) is the Pearson correlation coefficient of linear
relationship between X and Y [16]. The estimative VaR fore-
cast of X|Y, based on the standard deviation premium prin-
ciple, at the level of significance « is given by

[

VaR (X | Y5 p(w)) = i + p(@)(y — iy)

Q)

Y (8)
+ 07 (1= )/ 55 (1= p2(@)),
where ®@7!(1 - a) denotes the (1 —«)-quantile of standard
normal. When X and Y are independent (p(w) = 0), we will
obtain the well-known estimative VaR forecast for a normal
random loss X: iy + @'(1 —a) gy, whereas when p(w) =
1 (there is strong linear dependence between X and Y), we
have the estimative VaR forecast of random loss X, given Y,
as just. Note that by taking the first derivative of the estima-
tive VaR forecast with respect to p(w), i.e.,

O0VaR, (X |7Y; p(w))
3p(w)

dence measure of 7(w) is presented, and it is observed that
the higher value of 7(w) (than p(w)) will give a similar esti-
mative VaR forecast, for negative dependence, whilst positive
dependence of 7(w) will give a higher estimative VaR forecast
than p(w).

3.2. t Distribution. We consider ¢ distribution for both ran-
dom losses of X and Y. For simplicity, we take pt, =y, =0
and the degrees of freedom xy = xy = «.

The bivariate probability function of (X, Y) is defined as

1 1 I(1+x/2)
fxy(oy)= po
oY oy0y1 /1 - p(w)? " I'(x/2)

~(14x/2)
1+ A
wiot(l-pw)))

for —0o < x, y < 00, where A =x%0% + y*0% — 2 p(w)xyoyoy
[17]. To obtain conditional probability function X, given Y,
fxjy» we need to divide the above probability function by
the probability function of Y, f (x, y)/fy ().

The resulting conditional probability function is

fX|Y(x ly)=

K

1 1 T'(1+x/2) (Hyz)(”“"”)

04Oy /1_ () km I'(1/2 +x/2)

A ~(1+x/2)
x| 1+ — v ,—00 < X < 00,
k0303 (1- p(w)?)

(12)

where its conditional mean and variance do not have explicit
form and thus must be obtained numerically. In Figure 6, the
effect of correlation to the estimative VaR forecast is illus-
trated. As p(w) tends to have a positive strong correlation,
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FIGURE 6: The estimative VaR forecast of t distributed data
against dependence measure p(w); the degrees of freedom are set
Ky = Ky = K.

the estimative VaR forecast is lower. It is typical of heavy-
tailed ¢ distributed data, commonly in financial data, to
reduce the effect on a random loss by another (dependent)
random loss.

3.3. Joint Distribution of Normal and t. In practice, the two
random losses X and Y may have nonidentical (marginal)
distributions. For example, X may be normally distributed
whilst Y has ¢ distribution or vice versa. Thus, the use of a
copula is unavoidable to obtain the joint distribution func-
tion of such nonidentical losses, and the conditional distribu-
tion function can be derived.

Let Fy and Gy be the marginal distribution function of X
and Y, respectively. As we mention in Section 2, the joint dis-
tribution function of (X, Y) can be represented, through cop-
ula C,(,) with dependence measure 7(w), as

Hy yo(%)) = Cro) (Fx(%), Gy () = Cyy (), (13)

where u = Fy(x) and v = Gy (y). Note that the choice of 7(w)
is because of its invariant property under nonlinear mono-
tonic transformation; in other words, it is copula-based
dependence measure [3]. From [18], by taking the first deriv-
ative of C,,) (1, v) with respect to v, we can obtain the condi-

tional distribution function of X, given Y, i.e.,

BCT(w) (u,v)

Fyyo(x1y)= —F ——= 0C, () (Fx(x), Gy(¥))

oGy (y) (14)
= CX\Y;T(w)(FX(x) |Gy (y))-

Here, the function Cy,y, () is the conditional distribution
function of U = Fy(X), given V = Gy(Y). For Archimedean,
Gaussian, and t copulas, based on [19], each function
Cxvsr(w) I given in Table 3.

Based on the conditional distribution function defined
above, the conditional VaR of X, given Y, at a level of signif-
icance « can be derived from

1 - o= Fyjy, (VaR(X|Y = y; 7())ly)

(15)
= Cxpyir(w) (Fx(VaR(X|Y =y 7(w))[Gy (¥)))»

and we obtain
VaR(X|Y =3 7(w)) = F' (Clyai (1 - 2lGr (). (16)

Because the parameter of the copula can be expressed as
the function of dependence measure 7(w) (see the third col-
umn of Table 3), it is clear that Fy' (Cy{y,(,) (1 = @Gy (y))) in
(16) consists 7(w) and so the conditional VaR of X|Y.

If X is normally distributed whilst Y has ¢ distribution, we
get the conditional estimative VaR forecast:

VaR (X|Y = y;7(w))

_ 7 17
:px+axq>—1<c;(}mw)(1-a|tk< am))). (17)
Y

If X has t distribution whilst Y is normally distributed,
the conditional estimative VaR forecast can be expressed as

VaR (X]Y =y; 7(w))

Y. ~d (18)
=HUxtOox t;cl (CXIY;T(w) <1 - ‘X|<D< P Y)))
Y

For both cases, the effect of dependence to the condi-
tional estimative VaR forecast is illustrated in Figure 7, by
using Gumbel, Clayton, Gaussian, and ¢ copulas. The stron-
ger the dependence of random loss to others (in negative or
positive sign), the lower the conditional estimative VaR fore-
cast. It happens when Clayton, Gaussian, and ¢ copulas are
used. If we use the Clayton copula, the conditional estimative
VaR forecast always decreases as the value of 7(w) increases.

4. The Case of Risk Model with Volatility: ARCH

In statistical modeling, random losses may be represented as
a stochastic process {X,} denoted as asset returns: X, = 0,¢,,
where ¢, is white noise with zero mean and unit variance, e.g.,
[1]. Suppose that the available data are X;, X,, ---, X,,. Thus,
the estimative VaR forecast for X,,,,, given observations up
to time #n, §,, is

n>

\mzx(xrﬁ”%n;f)(w)):8n+1'F;1(1_06)’ (19)

where 0,,, denotes the one-step-ahead volatility forecast;
p(w) is the dependence measure between X; and X; (with
w as the parameter vector of an asset return model), for i #
jsand F,"'(1 — ) is (1 — a)-quantile of distribution of «,.
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TasLe 3: Conditional function Cx |y, for Archimedean, Gaussian, and ¢ copulas and the expression of its parameter as the function of 7(«w).

Conditional function Cyy,(,) (1| v) Parameter
1/6)-1 1
G vy (=In (v))?! ((—1n (u))? + (-In (v))9)< ") CS, (1) T
C y ot (u’e +v9- 1)_(1/6)_1 0= 12_T‘(I_(E)3))
@ (u) - 007! (v) . (T

Ga O ————r7—" p(w) =sin (= 7(w)

1-— P(w)Z <2 )

() -0t (v

t ten fe () 6% (v) p(w) =sin (g T(a)))

V(1= p(@)) (k+ (5 (1)) (x4 1)

Unlike in Section 3, now the dependence is between
X=X,,, and Y =X, in which the literatures show that no
or little dependence occurs. Note that the VaR forecast for-
mula (19) does not include conditional mean E(X,,, | F,)
since this has zero value. As for the volatility process, we con-
sider an ARCH(1) model; its forecast is given by

Cpi = \/ G0 + X, (20)

which can be observed as conditional only on the last obser-
vation, X, since the Markov property applies to the ARCH
model. Table 4 and its corresponding Figure 8 show the con-
ditional coverage probability of the estimative VaR forecast.

4.1. Two Dependent Stochastic Processes. We may also con-
sider the case of stochastic processes {Xt} and {Yt} which
are dependent with certain dependence measures such as
Kendall’s 7(w), where w is the parameter vector of the model.
In other words, we aim to find the estimative VaR forecast of
Xn+1’ giVCl‘l Yn+1:

VaRoc(Xn+1| Yn+1 ;T(w))

(21)
:E(Xn+1| Yn+1) + (D_l(l - “)

VaR(XnJrl‘ Yn+1)’

with nonzero conditional mean and time-varying condi-
tional variance. For simplicity, we take an ARCH(1) model
for both processes. Provided an ARCH(1)-normal model,
X,+1 is normally distributed with mean iy, and variance

2
Ox

n+l
n+l ‘Xn ’

Now, the conditional mean of X
dependence measure 7(w) is given as

ap given Y, .., with

O'XMI‘XVL
EXpnl Yo =) =ty x, + 7(@) (y - #ymm) Fa—
0Yn+1‘Yn

(22)

where 7(w) = (2/7) arcsin (p(w)) (see [20]); its correspond-
ing conditional variance is

VAR (K ¥y =) =03, (1 (2) ) s (2(a).
23)

Note that the choice of 7 instead of p is mainly due to the
possibility of nonlinear dependence among two processes. In
Figure 9, we observe the coverage probability of the estima-
tive VaR forecast of two ARCH(1) processes. The simulation
result shows quite close conditional coverage properties (red
line) to the true coverage.

5. Estimative VaR Forecast of Two Losses with
Tail Dependence

We have so far consider the calculation of the estimative VaR
forecast as an upper prediction limit with a certain level of
significance; the parameter of distribution or model is typi-
cally estimated by the maximum likelihood (ML) method.
The accuracy of such VaR forecast may be computed through
coverage probability that takes parameter variability into
account (and the ML method is the common approach).
Some authors, e.g., [5-7, 21], have done the effect of param-
eter variability into coverage probability accuracy for inde-
pendent observations and heteroscedastic processes. We
propose here to observe the effect of dependence measure
for the case of two random losses, in particular when they
have tail dependence.

To gain more tail dependence effect on VaR forecast
computation, we first briefly show the linear correlation
behavior for whole data. We have usually assumed that a sin-
gle correlation coefficient is appropriate to cover dependence
behavior for such data. Figure 10 explains several types of
data with a single correlation line (that means single correla-
tion coefficient, p=0.9, 0.5, and —0.8). We, of course, hope
that such correlation line will represent whole data, i.e., each
observation is close to the line. However, there is possibility
that a single correlation line or coefficient may not be appro-
priate (see Figure 10(b)).
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F1cure 7: Conditional estimative VaR forecast, for X ~ normal and Y ~ ¢ (a), also for X ~ t and Y ~ normal (b), against dependence measure
7(w) by using Gumbel (blue line), Clayton (brown line), Gaussian (yellow line), and ¢ copulas.

TaBLE 4: The coverage probability of estimative VaR forecast of
ARCH(1) process for several (1 — &), ranging from 0.90 to 0.99.

l1-«a

0.90 0.93 0.95 0.97 0.99

0.89609 0.92654 0.947024 0.967739 0.988887
0.900009 0.930008 0.950007 0.970005 0.990002
0.891878 0.922777 0.943759 0.965222 0.987607
0.901274 0.93112 0.950958 0.970721 0.990347
0.899503 0.929562 0.949625 0.969717 0.989863
0.901369 0.931441 0.951231 0.970926 0.990446
0.898208 0.928418 0.948643 0.968973 0.989499
0.896911 0.927268 0.947653 0.968219 0.989126
0.901066 0.930938 0.950802 0.970604 0.990291

Now, we observe another direction of dependence behav-
ior for the data and thus the effect on calculating the estima-
tive VaR forecast. Specifically, we rely on tail distribution for
the dependence among losses; single dependence value but
only for some part of data. The proposed idea is motivated
by the fact that two random losses may have dependence only
in part of the data, say in the tail of its distribution. To illus-
trate, we describe in Figure 11 in which two losses have used
different dependence measures. As before, the key point here
is the joint distribution in which we most likely have to rely
on a copula instead of the classic joint distribution function;
the Clayton copula may capture the lower tail dependence
whilst the Gumbel copula shows the distribution to have
upper tail dependence.

Suppose that two random losses, X and Y, are dependent
with parameter vector w. McNeil et al. [3] and Lai et al. [15],
for instance, have a formal definition of upper TDC between
X and Y as

AdXJQ:AUzh%J%X>F;U—aﬂY>G?O—aD,

(24)
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FIGURE 8: The coverage probability of estimative VaR forecast for
the case of the ARCH(1) process; 1 —a=0.9 (blue), 0.95 (brown),
and 0.99 (yellow).

provided that the limit exists. The tail coeflicient is ranging
from zero to one, i.e., 0 < A, < 1. Note that F~! and G ™! are
the inverse of distribution function for X and Y, respectively.
When the coeflicient is zero, i.e., A;; =0, then we would say
that two losses are asymptotically independent.

The upper TDC formula involving the Gumbel copula,
for example, will be defined as

Col@a)

a—0* [0

=2-2", (25)

where C denotes the surviving copula and w is the param-
eter of the Gumbel copula. Figure 11 describes Gumbel dis-
tributed data against linear correlation coefficient and tail
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FiGURE 9: The conditional coverage probability of the estimative VaR forecast developed from two ARCH(1) processes; the estimated
coverage (dashed red line) is quite close to the true coverage (solid blue line).
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FIGURE 10: Single correlation line or coeflicient for several types of data; p =0.9, 0.5, and —0.8.

dependence. We show the behavior of linear correlation in
“adapting” (to adjust) data behavior. In Figure 11(a), there
is only one correlation coefficient for each figure (pw =
0.5767, top; pw = 0.8866, bottom), whereas there are two cor-
relation coeflicients for each figure in Figure 11(b) to adjust
data generated from the Gumbel copula. It may be explained
as follows (for example, Figure 11(b), bottom figure): data
generated with upper tail dependence coefficient A, (w) =
0.8 may have similar behavior with composite data with a
lower correlation coefficient p; = 0.8281 and upper correla-
tion coefficient p;; =0.6104; in other words, these lower
and upper correlation coefficients may be more appropriate
than a single correlation coefficient.

The estimative VaR forecasts of X, given Y, along with
correlation, rank, and upper tail dependence coefficient are
shown in Table 5; its backtesting (Table 6) is carried out

via Correct-VaR (e.g., see [22]). As the correlation coefhi-
cient (and the rank and upper tail dependence coefficients)
is higher, so is the estimative VaR forecast for a single
random loss. The accuracy, however, may not be accurate.
In comparison, the Correct-VaR for dependent random
loss is quite accurate and close to a=0.05. The stronger
the dependence of random loss to others (in negative or
positive signs), the better the coverage properties of their
estimative VaR forecasts.

6. Illustration of VaR Forecast for Real Data

We carry out numerical study on a data set that contains neg-
ative daily log-returns of Standard & Poor’s 500 (or S&P 500)
and Dow Jones stock market indexes for the time period
2015-2019. The data set is obtained from Yahoo Finance.
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FiGureg 11: Correlation line(s) for the Gumbel copula generated data with upper tail dependence coefficient; (b) shows two correlation
coefficients, upper and lower, to cover dependence behavior of the whole data.

TaBLe 5: Correlation, rank, and upper tail dependence-based
estimative VaR forecast for a single random loss and a random
loss that depends on another random loss.

p@) 7w  Ay(@) VaR,(X;0) VaR,(X|Y=y;p(w))
-09 -0.7129 0 1.6450 —-0.7577
-0.6 -0.4097 0 1.6656 0.3306
-0.5 -0.3333 0 1.6450 0.6172
-0.1 -0.0638 0 1.6478 1.4791
0 0 0 1.6499 1.6528
0.2 0.1282 0.0413 1.6452 1.9603
0.3 0.1940 0.1271 1.6494 2.1140
0.5 0.3333 0.3391 1.6503 2.2522
0.8 0.5903 0.6716 1.6585 2.3044
0.9 0.7129 0.7884 1.6582 2.0230

First, we assume that the negative daily log-returns are i.i.d.
observations. The goodness-of-fit of the data can be deter-
mined visually in Figure 12. We can see that each data set fits
to ¢ distribution.

Since the marginal distributions are from the same family
(t), we consider bivariate ¢ for their joint distribution. As
comparison, the scatter plot in Figure 13 shows that the ¢

copula can also be used because the transformed data have
both upper and lower tail dependence. The (conditional)
estimative VaR forecasts of the negative daily log-return of
the S&P 500 index, given the negative daily log-return of
the Dow Jones index, are summarized in Table 7. As we
can see, for each level of significance, the use of the ¢ copula
implies the larger conditional estimative VaR forecast than
the forecast through the bivariate ¢ distribution.

Now, Figure 14 shows that the negative daily log-return
data have volatility clustering and time-varying properties.
Hence, we also assume that the data follow a heteroscedastic
process; here, the ARCH(1) process is considered. The (con-
ditional) estimative VaR forecasts are summarized in Table 8.

Note that all the (conditional) estimative VaR forecast
above have been evaluated through its conditional coverage
probability, as shown in the bracket, or Correct-VaR. Such
forecast accuracy is computed by the method as in [5, 6,
23]. The best or more appropriate VaR forecast is determined
by the closeness of coverage probability with the target value
of 1 — a. The use of the copula, in Table 7, suggests larger VaR
forecast with the consequence of less accuracy.

7. Discussion

The estimative VaR may be calculated based on the quan-
tile of its distribution. In addition, the effect of dependence
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TaBLE 6: The accuracy of estimative VaR forecasts via Correct-VaR; its value corresponds to « as this refers to the number of violations, i.e.,
the number of observations above the estimative VaR forecast.

p(w) 7(0) Ay(@) Correct-VaR, (X 8) Correct-VaR,(X|Y =; p(w))
-0.9 -0.7129 0 0.0580 0.0510
-0.6 —0.4097 0 0.0430 0.0550
-0.5 —0.3333 0 0.0530 0.0540
-0.1 —-0.0638 0 0.0410 0.0470
0 0 0 0.0420 0.0470
0.2 0.1282 0.0413 0.0540 0.0490
0.3 0.1940 0.1271 0.0380 0.0490
0.5 0.3333 0.3391 0.0550 0.0450
0.8 0.5903 0.6716 0.0550 0.0530
0.9 0.7129 0.7884 0.0390 0.0490
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FIGURE 12: Histogram of the negative daily log-returns of the S&P 500 (a) and Dow Jones (b); each data set fits to the ¢ distribution
(represented by the blue probability function) better than the normal distribution (represented by the green probability function).
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F1GURE 13: The scatter plot of the negative daily log-returns of the S&P 500 index versus the Dow Jones index (a) and their transformations
into uniformly distributed data (b) that have both upper and lower tail dependence.
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TaBLE 7: The (conditional) estimative VaR forecast and its coverage probability (in the bracket) of the negative daily log-returns of the S&P
500 index, given the negative daily log-returns of the Dow Jones index, with i.i.d. assumption; the conditional estimative VaR forecast in the

last column is calculated through t copula.

1-a VaR,,(X; p(w)) VaR,(X|Y = y; p(w)) VaR,(X|Y =3 p(w))
0.90 0.0081 (0.9019) 0.0022 (0.8989) 0.0029 (0.7959)
0.93 0.0101 (0.9308) 0.0026 (0.9290) 0.0035 (0.8624)
0.95 0.0121 (0.9499) 0.0030 (0.9504) 0.0041 (0.9022)
0.97 0.0156 (0.9687) 0.0036 (0.9708) 0.0050 (0.9400)
0.99 0.0254 (0.9896) 0.0050 (0.9915) 0.0073 (0.9789)
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FI1GURE 14: The time series plot of the negative daily log-returns of the S&P 500 (a) and Dow Jones (b) indexes.

TaBLE 8: The (conditional) estimative VaR forecast and its coverage
probability (in the bracket) of the negative daily log-returns of the
S&P 500 index, given the negative daily log-returns of the Dow
Jones index, by assuming ARCH(1) processes.

-« VaR (X, |8, ; p(@)) VaR ,(X,.1]Y,. 5 p(@))
0.90 0.0099 (0.8976) 0.0025 (0.8977)
0.93 0.0114 (0.9303) 0.0029 (0.9288)
0.95 0.0127 (0.9512) 0.0032 (0.9482)
0.97 0.0150 (0.9683) 0.0037 (0.9682)
0.99 0.0179 (0.9896) 0.0045 (0.9899)

(such as Pearson’s correlation, Kendall’s tau, or tail depen-
dence) occurs for the VaR forecast of two dependent ran-
dom losses or stochastic process. Furthermore, the use of a
copula is significant due to the fact that the classical joint
distribution function may not be explicitly formulated.
However, it has consequence of reducing forecast accu-
racy. As for the efficiency of the VaR forecast, it may be
applied when we consider several models such as ARCH/-
GARCH with different assumptions of innovation: normal
(N), skewed normal (SN), skewed t (ST), generalized error
distribution (GED), etc.

Kuan et al. [24] pointed out the expectile-based VaR fore-
cast, say eVaR. This considers the magnitude of losses instead
of just the probability of losses. There is a possibility that the
measure of dependence is incorporated to the eVaR forecast.
It is of course because the tail dependence and corresponding
copula play an important role.

Data Availability
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