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.e Löwner partial order is taken into consideration in order to define Löwner majorants for a given finite set of symmetric
matrices. A special class of Löwner majorants is analyzed based on two specific matrix parametrizations: a two-parametric form
and a four-parametric form, which arise in the context of so-called zeroth-order bounds of the effective linear behavior in the field
of solid mechanics in engineering..e condensed explicit conditions defining the convex parameter sets of Löwner majorants are
derived. Examples are provided, and potential application to semidefinite programming problems is discussed. Open-source
MATLAB software is provided to support the theoretical findings and for reproduction of the presented results. .e results of the
present work offer in combination with the theory of zeroth-order bounds of mechanics a highly efficient approach for the
automated material selection for future engineering applications.

1. Introduction

.e Löwner partial order introduced by [1] is connected to
several matrix partial orders. It implies several matrix in-
equalities and has been widely studied (see, e.g., [2–6]). .is
matrix partial order is specifically important for linear and
nonlinear optimization problems in semidefinite pro-
gramming (see, e.g., [7–14]) since it describes an essential
part of the constraints in many real-world optimization
problems.

In the field of materials science, semidefinite program-
ming problems arise, e.g., in the context of zeroth-order
bounds of linear elastic properties of solids..e zeroth-order
bounds were introduced by [15] in the context of statistical
bounds of linear elastic properties, further analyzed by [16],
and corrected by [17, 18]. For instance, an N-phase solid is
constituted of N materials with corresponding symmetric
positive-definite stiffness matrices, say,A(1)

�
, . . . , A(N)

�
∈Rn×n

with n � 6 for three-dimensional linear elasticity. A zeroth-
order bound of the effective linear material behavior of the
N-phase solid is a symmetric matrix B

�
∈Rn×n which satisfies

0≤xT(B
�

− A(i)
�

)x ,∀x ∈Rn ,∀i ∈ 1, . . . , N{ } for all possible
realizations of the solid. In solid mechanics, from reali-
zation to realization of a composite material, the orien-
tation of the material constituents may change, i.e., the
direction of the eigensystem of each of the stiffnesses A(i)

�
can vary from realization to realization. For practical
reasons, see, e.g., [17] or [19] for details, the zeroth-order
bound is chosen as an isotropic stiffness such that the
orientation of the eigensystems of the stiffnesses A(i)

�
may

not be identical but can at least be fixed. .en, an optimal
zeroth-order bound is chosen through the minimization
of a, in general, nonlinear function φ(β) depending on
parameters β of B

�
� B

�
(β), cf. [17] for a discussion. .is

yields the minimization problem

min
β

φ β􏼐 􏼑 such that 0≤ xT B
�

β􏼐 􏼑 − A(i)
�

􏼐 􏼑 x,

∀x ∈Rn ∀i ∈ 1, . . . , N{ },

(1)

which is a classical, in general, nonlinear semidefinite
programming problem. Of course, this optimization
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problem can be tackled with a high number of general
techniques of semidefinite programming. But, since the
zeroth-order bounds are chosen as isotropic, the number of
free components of B

�
(β) reduces significantly, in linear

elasticity to two, and the structure of B
�

(β) is highly specific.
An analogous problem can be formulated for linear thermo-
elasticity, cf. [19], where the number of parameters is four.
.e low number of parameters in these problems imme-
diately suggests to condense the optimization constraints to
a couple of explicit conditions in terms of the parameters
β, which are then easily and more efficiently treatable with
standard methods. .is would significantly reduce the
computational time of the optimization problem defining
the zeroth-order bounds. .is efficiency perspective is
particularly of practical importance since, as described in
[19], large material databases for solids with multiple con-
stituents could then be scanned, greatly benefiting the
material selection in material design problems of engi-
neering applications. .is is not only relevant for linear
elasticity but also for many associated physical problems,
e.g., linear heat or electric conductivity, see, e.g., [20, 21] or
[16], such that an investigation of the optimization problem
defining the zeroth-order bounds in elasticity would greatly
benefit all associated physical problems and corresponding
material selection approaches.

.e focus of the present work is the proper algebraic
analysis and condensation of the optimization constraints to
more easily treatable explicit conditions for the two- and
four-parametric forms B

�
(β). .is parameter constraint

condensation has not been conducted in either [15–18] or
[19]. For the present investigation, the Löwner partial order
is considered, and the concept of Löwner majorants of a
single matrix—representing, e.g., a single stiffness matrix—
and of a finite matrix set—corresponding to the set of
material stiffnesses of a composite material—is introduced.
.e derived explicit conditions for the parameters β offer
compact results which allow to solve nonlinear semidefinite
programming problems over the set of resulting Löwner
majorants. Most importantly, the evaluation of the con-
straints is independent of the matrix dimension (modulo a
once in a lifetime setup cost that can be performed before the
optimization initiation), and it does not require repeated
evaluation of subdeterminants of matrices. Additionally, a
deterministic construction of the solution is possible for
linear cost functions that are of complexity O(N) for the
two-parametric case. Furthermore, geometric interpreta-
tions of the stationary condition are provided. .e pa-
rametrizations are kept as general as possible such that the
results of the present work may be of use for other semi-
definite programming problems as an efficient generator of
simplified solutions or initial guesses.

.e manuscript is structured as follows: In Section 2,
Löwner majorants of a single symmetric matrix and finite set
of symmetric matrices are defined..e two-parametric form
is investigated in Section 3, and the explicit conditions
defining all corresponding majorants are derived. Examples
for the parameter sets of the two-parametric Löwner
majorants are given at the end of the section. .en, in
Section 4, the four-parametric form is examined building

upon the results of Section 3. Examples for the parameter
sets of the Löwner majorants are demonstrated at the end of
the section. Furthermore, Section 5 shows an example ap-
plication of the results in nonlinear semidefinite program-
ming problems and shortly discusses the importance of the
examination of the optimization domain and functions to be
optimized, since the existence of a minimum is not always
assured, even for convex optimization domains and convex
functions. Conclusions and potential applications are dis-
cussed in Section 6. For full transparency, the authors offer
through the GitHub repository [22]

https://github.com/EMMA-Group/LoewnerMajorant

open-source MATLAB software containing all programs
and data required for the reproduction of all shown ex-
amples of the present work.

Notation. .roughout this manuscript, the set of real num-
bers is denoted by R. Column vectors over Rn, n ∈ 2, 3, . . .{ },
are denoted by single-underlined characters, e.g., x, y.
Rectangular matrices over Rm×n are denoted by double-
underlined characters, e.g., A

�
, B
�

. Square matrices over Rn×n

are referred to as matrices of order n. .e set of symmetric
matrices of order n with finite eigenvalues is denoted by Sn.
.e transposition is denoted by the superscript (·)T, e.g., aT b

equals the scalar product of the vectors, and a bT yields the
outer product of the vectors. .e eigenvalues of a symmetric
matrix A

�
are denoted by λi(A) ∈R with i � 1, . . . , n. .e

multiplicity of an eigenvalue λ is denoted as mλ. .e l2 norm
of a vector a and the Frobenius norm of a matrix A are simply
noted as ‖a‖ and ‖ A ‖. .e identity matrix is noted as I. For a
compact notation, the orthogonality of two vectors p and q or
two vector spaces P and Q is denoted simply as p ⊥ q and
P⊥Q, respectively. .e Moore–Penrose inverse of a matrix
is denoted by A+.

2. Löwner Order and Majorants for
Symmetric Matrices

In this work, we consider the Löwner partial order of
symmetric matrices A, B ∈Sn (see, e.g., [6]):

A ⪯ B⟺ 0≤ x
T

B − A􏼐 􏼑 x, ∀x ∈Rn

⟺ B − A ∈S+
n ,

(2)

where S+
n ⊂ Sn denotes the positive semidefinite cone. Any

B ∈Sn is referred to, in this work, as a (Löwner) majorant of
a given A ∈Sn if A ⪯ B holds. Furthermore, any B ∈Sn is
referred to as a sharp (Löwner) majorant of a given A ∈Sn if
A ⪯ B and det(B − A) � 0 hold, i.e., if B − A ∈ zS+

n holds.
For given A ∈Sn, the corresponding majorant setB ⊂ Rn×n

and sharp majorant set zB are denoted as

B � B ∈Sn: A ⪯ B􏽮 􏽯,

zB � B ∈Sn: A ⪯ B ∧ det B − A􏼐 􏼑 � 0􏽮 􏽯.
(3)

Of course, B is nonempty, unbounded, and convex. .e
trivial majorant T ∈ zB of a given A is defined as
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T � Λ1 I, Λ1 � max
i

λi A􏼐 􏼑. (4)
For a finite set A � A(1), . . . , A(N)􏽮 􏽯 of symmetric matrices,
we define the analogous majorant set

B
A

� ∩
N

i�1
B ∈Sn: A(i) ⪯ B􏽮 􏽯 � B ∈Sn: A ⪯ B ∀A ∈A􏽮 􏽯, (5)

whose boundary zBA represents the set of all sharp
majorants of A:

zB
A

� B ∈Sn: A ⪯ B∀A ∈A∧∃A ∈A: det B − A􏼐 􏼑 � 0􏽮 􏽯.

(6)

.e trivial element on zBA is

T
A

� Λ1A I, Λ1A � max
A ∈A

max
i

λi A􏼐 􏼑. (7)

3. Two-Parametric Majorant

3.1. Construction of Two-Parametric Majorants for a Single
Matrix. For given A ∈Sn, from the corresponding major-
ant set B, we investigate a two-parametric form with given
(i.e., fixed) normalized vector p0 ∈R

n, p0 � 1, defined as a
rank-one perturbation of a scaled identity via

B
�

0
2 � β1I +β2p0p

T

0 ∈Sn, β � β1, β2( 􏼁
T ∈R2

. (8)

In the context of zeroth-order bounds of the effective linear
elastic behavior of solid materials, p0 � (1/

�
3

√
, 1/

�
3

√
,

1/
�
3

√
, 0, 0, 0) is given for isotropic zeroth-order bounds if a

specific parametrization is chosen, cf., e.g., [16] or [17] for
details.

.e goal of this section is the derivation of condensed
conditions for the parameters β such that B

�
0
2 ∈B holds. For

the sake of a clearer perspective in this section, we consider
the spectral factorization of the given A � U Λ UT with
ordered eigenvalue diagonal matrix Λ with diagonal entries

Λ1 � Λ11 ≥Λ2 � Λ22 ≥ · · · ≥Λn � Λnn, (9)

and corresponding orthogonal eigenvector matrix U, i.e.,
U UT � UT U � I. We denote the set of eigenvectors of Λ as
E and the space of eigenvectors corresponding to a par-
ticular eigenvalue as Ei, i.e.,

E � x ∈Rn
: Λx � Λx,Λ∈ Λ1, . . .􏼈 􏼉􏽮 􏽯,

Ei � x ∈Rn
: Λx � Λi x􏽮 􏽯, i � 1, 2, . . . , n.

(10)

A change of basis does not alter the Löwner partial order, i.e.,
A ⪯ B

�
0
2⟺Λ ⪯ UTB

�
0
2 U. We, therefore, define

B2 � UT
�

B
�

0
2U� � β1 I +β2 p pT, p � UT

�
p0, (11)

and note ‖ p ‖ � ‖p0‖ � 1. For the remainder of this section,
we seek the conditions on the parameters β �

(β1, β2) describing the parameter set

B2 � β ∈R2
: Λ ⪯ B2􏽮 􏽯. (12)

Due to linear dependency of B2 on β and the general
properties of B ⊂ Rn×n, the parameter set B2 ⊂ R2 is

nonempty, unbounded, and convex. Note that
β ∈ zB2⟺B

�
0
2(β) ∈ zB holds.

Due to the length and technical nature of several pas-
sages and proofs, the current section is:

(i) Preparations: introduction of several expressions and
relations needed for all following lemmas and remarks

(ii) Lemma 1: closed form description ofB2 for p ∈E
(iii) Remark 1: remarks for cases on zB2 for Lemma 1
(iv) Lemma 2: closed form description ofB2 for p ∉ E

and β1 bounded from below by Λ1 or Λ2
(v) Remark 2: remarks for cases on zB2 for Lemma 2
(vi) Lemma 3: closed form description ofB2 for p ∈E

and β1 bounded from below by a constant between
Λ1 and Λ2

(vii) Corollary 1: recapitulation of some topological
properties of B2 relevant for semidefinite pro-
gramming problems

(viii) Remark 3: remarks for cases on zB2 for Lemma 3
(ix) Remark 4: summarizing remarks and perspective for

corresponding semidefinite programming problems

Preparations. Before we derive the conditions describingB2
in (12), we introduce some quantities and relations needed
throughout this section. .e condition Λ ≺B2 is equivalent
to the positive semidefinitness of the difference matrix C:

C � B2 − Λ � D + β2 p pT,

D � β1 I − Λ,
(13)

i.e.,

0≤xT C x ∀x ∈Rn. (14)

We denote the dimension of the kernel of the difference
matrix C as

κ � dim ker C􏼐 􏼑􏼐 􏼑 . (15)

We define the mutually orthogonal vector spaces

P � span p􏽮 􏽯,

Q � x ∈Rn
: xT p � 0􏽮 􏽯,

(16)

and introduce a matrix Q ∈Rn×(n− 1) such that the concat-
enated matrix (p, Q) ∈Rn×n is orthogonal, i.e., the columns
of Q form an orthonormal basis of Q. We define

μP � pT Λ p,

μQ � max
x ∈Q∧ x| || |�1

xT Λ x � max
1≤i≤n− 1

λi QT Λ Q􏼒 􏼓,

cQ � pT μQ I − Λ􏼐 􏼑
+

p,

(17)

where μQ corresponds to the largest eigenvalue of the re-
duced matrix QT Λ Q ∈Sn− 1. Inserting vectors fromP and
Q into (14), respectively, yields the two elementary necessary
conditions:
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β1 + β2 ≥ μP, (18)

β1 ≥ μQ. (19)

Note that μQ is bounded by Λ1 due to

Λ1 � max
x| || |�1

xT Λ x ≥ max
x∈Q∧ x| || |�1

xT Λ x � μQ. (20)

Furthermore, the relation

μQ ≥Λ2, (21)

is obtained based on the following arguments:

(1) If pTe1 � 0, then e 1 ∈Q and μQ � Λ1 ≥Λ2 holds.
(2) If pTe1 ≠ 0, then using α � (pTe2)/(pTe1), one can

define q � e 2 − αe1 ∈Q with qT q � 1 + α2.
Substituting e 2 � αe 1 + q implies

Λ2 � e
T
2 Λ e 2

� αe 1 + q􏼐 􏼑
T
αΛ1e 1 + Λ q􏼐 􏼑

� − α2Λ1 + 1 + α2􏼐 􏼑
qT Λ q

qT q

≤
(17)

μQ − α2 Λ1 − μQ( 􏼁

≤
(20)

μQ .

(22)

.erefore, Λ2 ≤ μQ ≤Λ1, (23)

generally holds. Denote the algebraic multiplicity of the
maximum eigenvalue Λ1 by mΛ1. It is noted that

μQ � Λ1⟺P⊥E1∨mΛ1 ≥ 2, (24)

and based on (22),

μQ � Λ2 <Λ1⟹mΛ1 � 1∧P⊥E1 ∧P⊥E2, (25)

holds. Based on these preparations, we now proceed to the
description of the parameter set B2 through three lemmas.

Lemma 1. If p ∈E holds, then the parameter set B2 is
described by

B2 � β ∈R2
: β1 ≥ μQ ∧ β2 ≥ μP − β1􏽮 􏽯. (26)

Proof. If p ∈E, corresponding to Λi for some i ∈ 1, . . . , n{ },
then (18) and (19) simplify to

β1 + β2 ≥ μP � Λi, β1 ≥ μQ � max
j≠i
Λj. (27)

For this case, (27) is equivalent to Λ ⪯ B2 such that B2
defined in (12) simplifies to (26). □

Remark 1. For Lemma 1, all β ∈ zB2 (i.e., at least one of the
inequalities in (26) turns into an equality) are sharpmajorants
and induce a singular C � B2 − Λ with nonempty kernel
ker(C) of dimension κ, cf. (15). .e special cases for β ∈ zB2

p ∈E∧mμQ � 1∧ β1 � μQ ∧ β2 > μP − μQ

⟹ κ � 1∧ ker C􏼐 􏼑⊥P,
(28)

p ∈E∧ β1 > μQ ∧ β2 � μP − β1⟹ κ � 1∧ ker C􏼐 􏼑⊥P,

(29)

deliver a one-dimensional kernel of C. It is noted that only
(29) ensures κ � 1, independent of the multiplicity mμQ of
μQ, and, more importantly, that ker(C)⊥P holds. .is
property is of interest for Section 4.

Lemma 2. If p ∉ E and μQ ∈ Λ1,Λ2􏼈 􏼉 hold, then the pa-
rameter set B2 is described:

(1) For μQ � Λ1 and eigenspace E1 corresponding to Λ1 as

B2 � β ∈R2
: μQ ≤ β1 ∧ β

min
2 ≤ β2􏽮 􏽯,

βmin
2 �

− pTD− 1 p􏼐 􏼑
− 1

, β1 ≠Λ1,

− cQ( 􏼁
− 1

, β1 � Λ1 ∧P⊥E1,

0, β1 � Λ1 ∧P⊥E1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

(2) For μQ � Λ2 <Λ1 and cQ ≠ 0, cf. (17), as

B2 � β ∈R2
: μQ ≤ β1 ∧ β

min
2 ≤ β2􏽮 􏽯,

βmin
2 �

− pTD− 1 p􏼐 􏼑
− 1

, β1 ≠Λ1 ∧ β1 ≠Λ2,
0, β1 � Λ1,

− cQ( 􏼁
− 1

, β1 � Λ2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(31)

(3) For μQ � Λ2 <Λ1 and cQ � 0, cf. (17), as

B2 � β ∈R2
: μQ < β1 ∧ β

min
2 ≤ β2􏽮 􏽯,

βmin
2 �

− pTD− 1 p􏼐 􏼑
− 1

, β1 ≠Λ1,

0, β1 � Λ1.

⎧⎪⎨

⎪⎩

(32)

Proof. We investigate the interval [μQ,∞) for β1 inB2 with
μQ ∈ Λ1,Λ2􏼈 􏼉 based on the following cases:

(1) β1 ∈ (Λ1,∞): In this case, sharp majorants require a
singular difference matrix C � B2 − Λ � D +β2 p pT.
Due to the restriction Λ1 < β1 of this case, the di-
agonal matrix D � β1 I − Λ is positive definite such
that, based on the determinant lemma, cf., e.g., [23]
or [24], we consider

0 � det C􏼐 􏼑

� det D +β2 p p
T

􏼐 􏼑

� det D􏼐 􏼑 1 + β2pTD− 1 p􏼐 􏼑 ,

(33)

which is a single-valued constraint in terms of β2
with pTD− 1 p > 0. .is is fulfilled iff
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β2 � −
1

pTD− 1 p
, (34)

meaning that (34) describes for every β1 ∈ (Λ1,∞)

the corresponding β2 yielding a sharp majorant, i.e.,
(34) specifies a portion of zB2. Due to the convexity
ofB2, β2 ≥ − (pTD− 1 p)− 1 delivers trivially nonsharp
majorants for β1 ∈ (Λ1,∞).

(2) β1 � Λ1: the matrix D � Λ1 I − Λ is singular and
positive semidefinite. We consider the matrices

E1 � e 1 . . . e mΛ1
􏼒 􏼓 , E

⊥
1 � e mΛ1+1 . . . e n􏼒 􏼓 , (35)

which contain in the respective columns a basis ofE1
for Λ1 and of the corresponding orthogonal space
E⊥1 . We examine the following cases:

(a) If P⊥E1 holds, then C is already singular, in-
dependently of β2, since

eT
1 C
�

e 1 � eT
1 Λ1 I − Λ+β2 p pT􏼐 􏼑e1

� e
T
1 Λ1e 1 − Λ e 1􏼐 􏼑 � o,

(36)

holds, meaning that ker(C) is at least one-di-
mensional. Based on (35) and x � E

�
⊥
1 ξ,

ξ ∈Rn− mΛ1 , (14) can be further reduced to

0≤ ξT 􏽥C ξ, ∀ ξ ∈Rn− mΛ1 ,

􏽥C � D􏽥
�

+ β2􏽥p 􏽥p
T

,

D􏽥
�

� E
�

⊥
1􏼐 􏼑

T
D E

�

⊥
1 ,

􏽥p � E
�

⊥
1􏼐 􏼑

T
p . (37)

.e matrix D􏽥
�

is positive definite, and since p is
not an eigenvector of Λ, 􏽥p≠ o holds. For 􏽥C to be
singular, its determinant has to vanish. Analo-
gous application of the matrix determinant
lemma as in (33) yields that 􏽥C is singular iff

β2 � −
1

􏽥p
T 􏽥D

− 1􏽥p
� −

1
pTD+ p

, (38)

where D+ denotes the Moore–Penrose inverse of
D. .e choice (38) induces a second vanishing
eigenvalue in C such that its kernel is then at least
two-dimensional.

(b) If P⊥ E1 holds, then using (35) and x � E1 ξ,
ξ ∈RmΛ1 in (14) yields the necessary condition

β2 ≥ 0 . (39)

.is condition is also sufficient for Λ ⪯B2. For
β2 � 0, one retrieves for the current scenario the
trivial majorant β � (Λ1, 0) ∈ zB2, cf. (4).

If μQ � Λ1 holds, cf. (24), then cases 1 and 2 of this proof
describe βmin

2 , at what cQ ≠ 0, cf. (17), is identified in (38),
yielding (30)—cf. Lemma 2.1 as depicted in Figure 1 in the

ramification for p ∉ E and μQ � Λ1. If Λ2 <Λ1 and μQ � Λ2
hold, cf. (25), then case 1 of this proof still applies, but the
following cases relevant for Lemma 2.2 and Lemma 2.3,
depicted in Figure 1, also need to be considered:

(2′) β1 �Λ1: Due toP⊥E1, (39) must hold for this case.
(3′) β1 ∈ (Λ2,Λ1): For the present case, D � β1 I − Λ is

indefinite and regular such that the determinant
lemma can be applied analogously as in (33), but
(34) is not immediately clear since the term pTD− 1 p

may vanish for such indefinite D. More precisely,
the term pTD− 1 p may vanish, iff D− 1 p ∈Q holds.
We search now for a vector q � Q ξ ∈Q such that
p � D q holds, with the necessary condition

o � QT D q

� QT β1 I − Λ􏼐 􏼑 Q ξ

� β1 ξ − QT Λ Q ξ .

(40)

.is means that ξ would be required to correspond
to the eigenvector of the reduced matrix QT Λ Q for
eigenvalue β1. But, we consider β1 larger than the
maximum eigenvalue μQ � Λ2 of QT Λ Q such that
no such ξ exists, and therefore, the term pTD− 1 p

cannot vanish. Solving (33) for β2 yields again (34).
(4′) β1 � Λ2: Due to P⊥E2, analogous reasoning as in

2(a) is applied to this case with corresponding E2
and E

�
⊥
2 up to the corresponding equation

0≤ ξT 􏽥C ξ, ∀ ξ ∈Rn− mΛ2 ,

􏽥C � 􏽥D + β2􏽥p 􏽥p
T
,

􏽥D � E
�

⊥
2􏼐 􏼑

T
D E

�

⊥
2 ,

􏽥p � E
�

⊥
2􏼐 􏼑

T
p . (41)

.e difference to 2(a) here is that 􏽥D is not positive
definite but regular and indefinite. For 􏽥C to be
singular, its determinant must vanish. Application
of the matrix determinant lemma as in (33) yields

0 � det 􏽥C􏼐 􏼑 � det 􏽥D􏼐 􏼑 1 + β2􏽥p
T 􏽥D

− 1􏽥p􏼒 􏼓 . (42)

Here, the term 􏽥p
T 􏽥D

− 1􏽥p � pTD+ p equals the
quantity cQ for μQ � Λ2, see (17). .e quantity cQ
may or may not vanish, depending solely on Λ and
p. .is means that if cQ ≠ 0, then (42) can be solved
for β2 as in (38), yielding β1 ∈ [μQ,∞) and (31)—cf.
Lemma 2.2 as depicted in Figure 1. But, if cQ � 0
holds, then there exists no β2 for β1 � Λ2 such that
(β1, β2) ∈B2 holds since det(􏽥C) cannot vanish.
.erefore, cQ � 0 yields (32) and, more importantly,
excludes μQ � Λ2 from the range of β1 for the
current scenario, i.e., β1 ∈ (μQ,∞), cf. Lemma 2.3
illustrated in Figure 1. □
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Remark 2. It is noted that, for Lemma 2, κ � 1, cf. (15), holds
in a number of scenarios. In order to visualize the following
argument, the position of the upcoming cases in the setB2 is
depicted in Figure 2.

In cases 1 and 3′ of the proof of Lemma 2, the rank-one
perturbation β2 p pT can only induce a one-dimensional
kernel on the difference matrix C � D +β2 p pT with reg-
ular D for β2 fulfilling (34). .is corresponds to the majority
of points described through βmin

2 in Lemma 2, only excluding
the special case β1 � Λ1. .e corresponding kernel vector n

with ker(C) � span n􏼈 􏼉 is obtained as

n � D− 1p⟹ C n � D n +(− 1)
1

pT n
p pT n � o, (43)

such that

p ∉ E∧ μQ < β1 ∧ β1 ≠Λ1 ∧ (34)⟹ κ � 1∧ ker C􏼐 􏼑⊥P,

(44)

holds since 0≠pT n � pTD− 1 p holds. .e corresponding
points β ∈ zB2 based on βmin

2 inducing (44) are indicated in
Figure 2 at the lower border of B2 with κ � 1, and more
importantly, due to the consequences of Section 4, ker(C)⊥P.

For μQ � Λ1, i.e., Lemma 2.1 is considered, the point at
β1 � μQ � Λ1 is to be examined. Hereby, cases 2(a) and 2(b)
of the proof of Lemma 2 need some attention. In case 2(a),
i.e.,P⊥E1, C is already singular (C e 1 � o, i.e., e 1 ∈ ker(C))
and for β2 fulfilling (38), the rank-one perturbation β2 p pT

induces a further vanishing eigenvalue of C such that ker(C)

is at least two-dimensional. .is special case corresponds to
the black point in Figure 2. For β2 above the critical value
given in (38), ker(C) is then at least one-dimensional such
that κ � 1 is only possible at β1 � μQ � Λ1 under the current
assumptions only for mΛ1 � 1, i.e.,

p ∉ E∧mΛ1 � 1∧P⊥E1 ∧ β1 � Λ1 ∧ β2 > − cQ( 􏼁
− 1

⟹ κ � 1∧ ker C􏼐 􏼑⊥P .
(45)

In case 2(b), i.e., P⊥E1, p is not perpendicular to the
complete eigenspace of Λ1, but for mΛ1 ≥ 2, there always
exists at least one eigenvector toΛ1 which is perpendicular to

p. .erefore, κ � 1 is only possible at β1 � Λ1 under the
current assumptions for mΛ1 � 2, i.e.,

p ∉ E∧mΛ1 � 2∧P⊥E1 ∧ β1 � Λ1 ∧ β2 > 0

⟹ κ � 1∧ ker C􏼐 􏼑⊥P.
(46)

.ese arguments imply that, for Lemma 2.1, based on
(44)–(46), κ � 1 and ker(C)⊥P are assured only for points
β ∈ zB2 corresponding to μQ � Λ1 < β1 and β2 � βmin

2 (β1).
For μQ � Λ2 <Λ1, cf. (25), we need to examine the points

at β1 � Λ1 and β1 � Λ2 � μQ for Lemma 2.2 and Lemma 2.3.
For case 2′, addressing β � Λ1,

p ∉ E∧mΛ1 � 1∧P⊥E1 ∧ β1 � Λ1 ∧ β2 � 0

⟹ κ � 1∧ ker C􏼐 􏼑⊥P,
(47)

follows such that, for μQ < β1, the lower boundary of B2
depicted in Figure 2 yields κ � 1 and ker(C)⊥P. Analogous
reasoning as for (45) yields for case 4′, addressing
β1 � Λ2 � μQ,

p ∉ E∧ μQ � Λ2 <Λ1 ∧ cQ ≠ 0∧mΛ2 � 1

∧ β1 � Λ2 ∧ β2 > − cQ( 􏼁
− 1

⟹ κ � 1∧ ker C􏼐 􏼑⊥P .

(48)

It can be concluded for Lemma 2 that only for μQ < β1
and β ∈ zB2, the kernel of C stays one-dimensional (indi-
cated in Figure 2 by the border with κ � 1) and, more
importantly, that ker(C)⊥P holds. .is property is of
interest for Section 4.

Lemma 3. If p ∉ E and Λ2 < μQ <Λ1 hold, then the pa-
rameter set B2 is described by

B2 � β ∈R2
: μQ < β1 ∧ β

min
2 ≤ β2􏽮 􏽯,

βmin
2 �

− pTD− 1 p􏼐 􏼑
− 1

, β1 ≠Λ1,

0, β1 � Λ1.

⎧⎨

⎩

(49)

ℬ2

β1μ

β2

κ ≥ 2

κ = 1
(β2

min)

κ ≥ 1

Figure 2: Dimension of kernel κ � dim(ker(C)) of difference matrix
C on zB2 for Lemma 2.1 and Lemma 2.2 with μQ ∈ Λ1,Λ2􏼈 􏼉 and
cQ ≠ 0; in case of cQ � 0, corresponding to Lemma 2.3, zB2 is described
by the curve βmin

2 (β1) (κ � 1), which then diverges to +∞ at β1 � μQ.

Lemma 2

p ∉ ℰ

μ = Λ1 μ = Λ2 < Λ1

c ≠ 0 c = 0

Lemma 2.2

β1

β2

ℬ2

μ

μ

Λ1

Lemma 2.1

β1

β2

ℬ2

μ

μ

Lemma 2.3

β1

β2

ℬ2

μ

μ

Λ1

Figure 1: Illustration of Lemma 2.

6 Journal of Applied Mathematics



Proof. We investigate the interval [μQ,∞) for β1 in B2
based on the following cases:

(1) β1 ∈ (Λ1,∞): the results for this case are identical to
case 1 of the proof of Lemma 2.

(2) β1 � Λ1: due to μQ ≠Λ1⟺mΛ1 � 1∧P⊥E1, this
case follows the reasoning of case 2(b) of the proof of
Lemma 2.

(3) β1 ∈ (μQ,Λ1): the results for this case are identical to
case 3′ of the proof of Lemma 2.

(4) β1 � μQ: due to Λ2 < μQ <Λ1, D � μQ I − Λ is regular,
and the determinant lemma can be applied as in (33).
.e vector q � D− 1 p can be defined based on the
regularity of D such that only one vector q exists
fulfilling p � D q. .e vector p then fulfills

o � QT p � QT D q � μQQT q − QT Λ q, (50)

which can only be achieved by one specific eigen-
vector of the reduced matrix QT Λ Q corresponding
to its maximum eigenvalue μQ, i.e., q � Q ξ with
QT Λ Q ξ � μQ ξ. .is implies q � D− 1 p � Q ξ ∈Q
and, consequently, 0 � pT q � pTD− 1 p. Since the
term pTD− 1 p vanishes, then, regarding (33), β2
cannot render the determinant of C to zero, i.e., for
β1 � μQ, there exists no β2 delivering a point on zB2.
More explicitly, μQ is excluded from the range of
β1. □

Corollary 1. ?e set B2 is always an unbounded closed
convex set. In particular, it is never compact, which has
implications for optimization problems over B2.

Remark 3. For Lemma 3, κ � 1 and ker(C)⊥P hold for all
β ∈ zB2. .is is concluded following Remark 2, see
reasoning for (44) and (47). .is property is of interest for
Section 4.

Remark 4. Wrapping this section up, the reader solely needs
to differentiate the cases:

(i) Case 1: p is an eigenvector of Λ ⟶ Lemma 1
(ii) Case 2: p is not an eigenvector of Λ and μQ ∈ Λ1,􏼈

Λ2}⟶ Lemma 2
(iii) Case 3: p is not an eigenvector of Λ and Λ2 < μQ
<Λ1 ⟶ Lemma 3

It should be noted that if a function is to be minimized over
B2, then the spectral factorization of given A and the
transformation of given p0 to p � UTp0 can be carried out
before the minimization in order to check Lemma 1,
Lemma 2, and Lemma 3, at what (26), (30)–(32) or (49) then
correspond toB2. .e minimization can then be carried out
at its peak efficiency over B2, if a minimum exists. A short
discussion of the existence of minima is given in Section 5.

3.2.Majorization of a Set ofMatrices. Consider the following
finite set of N given symmetric matrices

A � A(1), . . . , A(N)􏽮 􏽯 , A ∈Sn ∀A ∈A , (51)

and a given vector

p0 ∈R
n

. (52)

.e corresponding convex sets

B
(i)
2 � β1, β2( 􏼁 ∈R2

: A(i) ⪯ B
�

0
2􏽮 􏽯, (53)

are the majorant sets for each of the matrices of A. Denote
the respective spectral factorizations as

A(i) � U(i)Λ(i) U(i)􏼐 􏼑
T
, (54)

and define the corresponding vectors

p(i) � U(i)􏼐 􏼑
T
p0 . (55)

Since A(i) ⪯B
�

0
2⟺Λ

(i) ⪯B2| p�p(i) holds, the results of the
previous section describe the corresponding sets. .e in-
tersection of all setsB(i)

2 delivers the majorant set for the set
of matrices A, denoted as

B
A
2 � ∩

N

i�1
B

(i)
2 . (56)

Note that, due to β1, β2⟶∞ being admissible for any
bounded matrix, the setBA

2 is always nonempty and, due to
the intersection of convex sets, also convex.

3.3. Examples: Majorization of a Single Matrix. In the fol-
lowing, majorants for the matrix Λ are sought-after for three
different vectors p1, p2, and p3

Λ �

5/2 0 0
0 1 0
0 0 1/2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

p1 � (1, 0, 0)
T
,

p2 � (0, 1/
�
2

√
, 1/

�
2

√
)
T
,

p3 � (3/5, 4/5, 0)
T
,

(57)

leading to the aforementioned cases, see

demo1.m

in the provided software [22].
Consideration of p1 � e 1 induces an instance of Lemma 1,

in which p is contained in the eigenspace ofΛ, cf. (27). Figure 3
shows the parameter domain B2. .e boundary of B2 is
indicated by the black line in Figure 3(a) defined by β2 �

μP − β1, μP � Λ1 and by the vertical line corresponding to
β1 � μQ � Λ2. .e value of the quadratic forms xT Λ x and
xTB2 x for normalized vectors || x || � 1 within the (1,2)-plane
are shown as contours in Figure 3(b). It is readily seen that all
parameters β1, β2 on the boundary ofB2 imply the existence of
tangential contact points of the contours of themajorant and of
the original matrix. .e shown contours correspond to the
black points in Figure 3(a).
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Consideration of p2 yields an instance of Lemma 2 (p is
not an eigenvector of Λ, mΛ1 � 1, and pTe 1 � 0, i.e.,
μQ � Λ1)..e corresponding results are depicted in Figure 4.
It should be noted that, for β1 � μQ � Λ1, the pseudoinverse
of D is required and cQ is evaluated, while for β1 > μQ, the
inverse of D is computed. In Figure 4(b), the region around
β1 � Λ1 is shown more clearly. .e contour plots in
Figures 4(c) and 4(d) indicate the difference between the
majorant and the original matrix, with the second plot
showing that all contours of Figure 4(c) in fact have a contact
point with the original hypersurface (drawn as dashed line)
outside of the (1,2)-plane, cf. Figure 4(d).

Lastly, p3 is an instance of Lemma 3 (p is not an ei-
genvector of Λ and Λ2 < μQ <Λ1), with corresponding re-
sults depicted in Figure 5. Most notably, the value β1 � μQ
marks the asymptote of the boundary of B2 since for
β1 � μQ, no β2 exists yielding a point on zB2, cf. case 4 of the
proof of Lemma 3.

3.4. Example: Majorization of a Set ofMatrices. Consider the
finite set of symmetric matrices

A � A(1), A(2)􏽮 􏽯,

A(1) �

2 0 0

0 0 0

0 0 − 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A(2) �
1
9

− 4 14 − 16

14 5 2

− 16 2 − 10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(58)

and the vector

p0 � (1, 0, 0)
T

. (59)

.e border of the corresponding set B(1)
2 (an instance of

Lemma 1) is depicted in Figure 6 by the straight lines. .e
border of the corresponding B

(2)
2 (an instance of Lemma

3) is depicted by the curved black line in Figure 6. .e
majorant setBA

2 defined in (56) is depicted in Figure 6 by
the gray region. .e depicted region can be reproduced
with the file

demo2.m

using the provided MATLAB software, cf. [22].
Next, a set of N � 10 random symmetric matrices of

dimension n � 100 is generated. .e intersection of the
critical domains is shown in Figure 7 as well as the
curves denoting the boundaries of the critical domain
for each matrix A(i) of the set. Close inspection of the
graph shows that there are multiple intersections of
these lines which generate the boundary of the overall
critical domain BA

2 .

4. Four-Parametric Majorant

4.1. Construction of Four-Parametric Majorant for a Single
Matrix. In addition to the two-parametric majorant of Section
3, a four-parametric majorant is examined in this section. A
given A 4 ∈Sn+1 is considered and partitioned as follows:

A4 �
A a

aT a0

⎛⎝ ⎞⎠ ∈Sn+1, A ∈Sn a ∈Rn
, a0 ∈R. (60)

From all majorants of A4, we are interested in this section in
the parametrization

B
�

0
4 �

β1 I +β2p0p
T

0 β4p0

β4pT

0 β3
⎛⎝ ⎞⎠ ∈Sn+1, (61)

with given normalized p0. .is four-parametric form arises in
linear thermo-elasticity and corresponding isotropic zeroth-
order bounds, cf. [19]..e upper left block of B

�
0
4 corresponds to

–8

–6

–4

–2

0

2

4

0 2 4 6 8 10
β1

β2

ℬ2; p = e1

(a)

xTΛ=x

β1 = 1

β1 = 1.5

β1 = 4

β 1
=

8

β1 = Λ1

 p = e1 x1

x2

(b)

Figure 3: (a) Parameter regionB2 for Λ and p1; (b) isolines of the quadratic forms xT Λ x and xTB 2 x in the (1,2)-plane for all normalized
x for the marked black points of (a).
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B
�

0
2, cf. (8). A short inspection of B4 shows that it may be

represented as a rank-two perturbed scaled identity. As in
Section 3, we perform a change of basis with the orthogonal
matrix

U4 �
U o

oT 1
􏼠 􏼡, (62)

diagonalizing the upper left block of A4, i.e., we define

–8

–6

–4

–2

0

2

2 4 6 8
β1

β2

ℬ2; p = (e2 + e3)/√2

(a)

–1.85

–1.80

–1.75

–1.70

–1.65

2.45 2.50 2.55 2.60
β1

β2

(b)

xTΛ=x

β1 = 2.5
β1 = 4

β1 = 6

p x1

x2

(c)

β1 = 2.5

β1 = 4

β
1 =

6

p
x2

x3

(d)

Figure 4: (a) Parameter regionB2 forΛ and p2; (b) zoomed region around β1 � Λ1 � 5/2marked with the black rectangle in (a); (c) isolines
of the quadratic forms xT Λ x and xTB2 x in the (1,2)-plane for all normalized x for the marked black points of (a); (d) evaluation of the
quadratic forms in the (2,3)-plane.
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β2

ℬ2; p = (3e1 + 4e2)/5

(a)

xTΛ=x

β 1
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3
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=
4

β
1 =

8β 1
=
30

β 1=
Λ 1
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(b)

xTΛ=x

β
1 = 2.25

β
1 = 2.1

β1 = 2.0
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1 = Λ

1

p
x1

x2

(c)

Figure 5: (a) Parameter regionB2 forΛ and p3; (b) isolines of the quadratic forms xT Λ x and xTB2 x in the (1,2)-plane for all normalized x

for the marked black points of (a) for Λ1 � 5/2≤ β1; (c) evaluation of corresponding points for μQ < β1 ≤Λ1 � 5/2.
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Λ4 � U
�

T
4 A4U4 �

Λ l

lT l0
􏼠 􏼡, l � U

T

�
a, l0 � a0, (63)

B4 � U
�

T
4 B
�

0
4 U4 �

B2 β4 p

β4pT β3
⎛⎝ ⎞⎠, p � U

T

�
p0. (64)

In this section, B4 is examined, i.e., we seek the parameter
conditions describing the set

B4 � β ∈R4
: Λ4 ⪯ B4􏽮 􏽯. (65)

As in Section 3.1, the present section is organized as follows:

(i) Preparations: introduction of several expressions
and relations needed for all the following results

(ii) Lemma 4: description of B4 based on (β1, β2)
∈ zB2

(iii) Lemma 5: description of B4 based on (β1, β2) ∈
B2\zB2

(iv) Corollary 2: recapitulation of the admissible regions
for (β3, β4) for (β1, β2) ∈B2 and μQ < β1 based on
the results of Lemma 4 and Lemma 5

(v) Remark 5: remarks on an additional constraint for a
simplification of implementation based on a nu-
merical point of view and Corollary 2

Preparations. For the sake of a compact notation, we define
the difference matrix

C4 � B4 − Λ4 �
C c

cT c0
􏼠 􏼡,

C � B2 − Λ,
c � β4 p − l,

c0 � β3 − l0,

(66)

at what positive semidefinitness of C4

0≤yTC4 y ∀y �
x

x0
􏼠 􏼡 ∈Rn+1, (67)

is equivalent to Λ4 ⪯ B4. More explicitly, (67) can also be
expressed as

0≤xT C x +2x0x
T c +c0x

2
0, ∀x ∈Rn, x0 ∈R , (68)

which allows to obtain the equivalence relation

O ⪯C4⟺ O ⪯ C ∧ c ⊥ ker C􏼐 􏼑∧ cTC+ c ≤ c0, (69)

where C+ denotes the Moore–Penrose inverse of C, see, e.g.,
[25] for a derivation based on the Schur complement.
It should be noted that for positive semidefinite C, C+ is also
positive semidefinite such that c0 necessarily has to be
nonnegative. .e condition O ⪯ C is fulfilled for the cor-
responding (β1, β2) ∈B2 of Section 3. We consider, there-
fore, the following cases for singular positive semidefinite
and positive definite C, i.e., based on Section 3, for
(β1, β2) ∈ zB2 and (β1, β2) ∈B2\zB2, respectively.

Lemma 4. If (β1, β2) ∈ zB2 holds, then the parameter setB4
is described by

B4 � 􏼨 β ∈R4
:

β1, β2( 􏼁 ∈ zB2 ∧ β4 p − l􏼐 􏼑⊥ ker B2 − Λ􏼐 􏼑

∧ β3 ≥ l0 + β4 p − l􏼐 􏼑
T

B2 − Λ􏼐 􏼑
+
β4 p − l􏼐 􏼑􏼩.

(70)

Proof. For a better overview of the following proof, the
reader should consider Figure 8 along the following argu-
ments. For (β1, β2) ∈ zB2, C is positive semidefinite and
det(C) � 0 holds such that the kernel ker(C) is nonempty.
For sharp majorants B4 to exist, c ⊥ ker(C), cf. (69), de-
scribes the critical condition. We notice the following cases:

(1) κ � 1: the kernel of C is one-dimensional, i.e.,
ker(C) � span n􏼈 􏼉

(i) In Lemma 1, cf. Remark 1, for

(a) (28) with n ⊥ p (left border without corner
of B2 ) or

–5

0

5

10

15

0 1 2 3 4 5
β1

β2 ℬ

2 = ℬ2

(1) 
∩ ℬ2

(2)

∂ℬ2
(1)

∂ℬ2
(2)

Figure 6: .e straight lines depict the border of the set B(1)
2 , the

curved line represents the border of the set B(2)
2 , and the gray

region illustrates the set BA
2 .

–40

–30

–20

–10

0

30 35 40 45
β1

β2

ℬ

2 = ∩

N
i=1 ℬ2

(i)

Figure 7:.e gray region indicates the admissible domainBA
2 of a

set of 10 random matrices of dimension 100. Individual lines
represent βmin

2 (β1) values for each matrix.
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(b) (29) with n ⊥ p (lower border without
corner of B2 )

(ii) In Lemma 2, cf. Remark 2 and Figure 2, for

(a) (45) and (46) with n ⊥ p (left border
without corner of B2 for μQ � Λ1),

(b) (48) with n ⊥ p (left border without corner
of B2 for μQ � Λ2 <Λ1), or

(c) (44) and (47) with n ⊥ p (lower border
without corner of B2 )

(iii) In Lemma 3, cf. Remark 3, with n ⊥ p on the
whole border of B2

If ker(C) is one-dimensional, for majorants B4 to exist

0 � nT c � β4nT p − nT l, (71)

needs to hold, cf. (69). .e condition (71) may or
may not be fulfilled in a number of exotic cases since
some portions of zB2, as, e.g., in (28), have a one-
dimensional kernel but with p ⊥ n.

(a) If p ⊥ n holds, cf. Figure 8, then β4 loses in-
fluence in (71) such that (71) can be fulfilled iff
n ⊥ l holds, which is not controllable by the
parameters β but solely dictated by the given
data A4 and p0, with resulting p � UTp0 and

l � UT a. If additionally n ⊥ l holds, then (71)
is fulfilled for all β4 such that, according to
(69), majorants B4 exist if for given
(β1, β2) ∈ zB2, the remaining parameters β3
and β4 are chosen such that

cTC+ c � β4 p − l􏼐 􏼑
T

B2 − Λ􏼐 􏼑
+
β4 p − l􏼐 􏼑

≤ c0 � β3 − l0,
(72)

holds. For instance, the left-hand side term
cTC+ c of (72) is quadratic in β4 and is minimized
for

zcTC+ c

zβ4
� 2pTC+ c � 0⟹ β4 �

pTC+ l

pTC+ p
, (73)

which then yields in (72) the lowest possible c0
and corresponding β3, cf. Figure 8. Naturally, if
n ⊥ l holds, then (71) is not fulfilled and no
majorants exist under the current assumptions for
(β1, β2) ∈ zB2, cf. Figure 8.

(b) If p ⊥ n holds, which is the case, e.g., on the
lower border of B2 in Lemma 1 and Lemma 2
(up to β1 � μQ) and on the whole border of B2
in Lemma 3, then (71) can be solved uniquely
for β4, yielding

Lemma 4
(β1, β2) ∈ ∂ℬ2

β1

β2

∂ℬ2

κ = 1 κ ≥ 2

p ⊥ n p ⊥/ n

n ⊥ l n ⊥/ l

β3

β4
β ∉ ℬ4

β3

β4 Further possible branches

Figure 8: Illustration of cases occurring in Lemma 4.
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β4 �
nT l

nT p
. (74)

From (74), one can obtain based on (69), i.e.,
c0 � β3 − l0 ≥ cTC+ c, the minimum β3

β3 ≥ l0 +
nT l

nT p
p − l⎛⎝ ⎞⎠

T

C+ nT l

nT p
p − l⎛⎝ ⎞⎠ , (75)

cf. Figure 8.

(2) κ≥ 2: if the dimension of ker(C) is greater than one,
then the kernel is described as

ker C􏼐 􏼑 � span n1, . . . , nκ􏼈 􏼉, (76)

at what we choose, without loss of generality, the
kernel basis vectors ni such than at maximum only
one, say n1, is not perpendicular to p, i.e.,

n
T
i p � 0, ∀i � 2, . . . , κ. (77)

.e condition c ⊥ ker(C) is then equivalent to

0 � β4n
T
1 p − n

T
1 l ∧ 0 � n

T
i l, ∀i � 2, . . . , κ. (78)

.erefore, (78) makes clear that, for (β1, β2) ∈ zB2
and κ≥ 2, the provided data A4 and p0 inducing p

and l decide on the existence of majorants under the
current assumptions. If l ⊥ ni for i � 2, . . . , κ holds,
then the remaining condition 0 � β4nT

1 p − nT
1 l in

(78) can be analyzed as in case 1, yielding analogous
results. □

Lemma 5. If (β1, β2) ∈B2\zB2 holds, then the parameter
set B4 is described by

B4 � β ∈R4
:􏼚

β1, β2( 􏼁 ∈B2\zB2

∧ β3 ≥ l0 + β4 p − l􏼐 􏼑
T

B2 − Λ􏼐 􏼑
− 1

β4 p − l􏼐 􏼑􏼛.

(79)

Proof. For β1 and β2 chosen according to the results of
Section 3 truly inside of B2, cf. Figure 9, the difference
matrix C � B2 − Λ is positive definite. For C4 to be sin-
gular, its determinant must vanish. Based on the
decomposition

C4 � C0 + U V
T

, C0 �
C o

oT 1
⎛⎝ ⎞⎠ ,

U �
c o

c0 − 1 1
⎛⎝ ⎞⎠ , V �

o c

1 0
⎛⎝ ⎞⎠,

(80)

the matrix determinant lemma yields

0 � det C4􏼐 􏼑

� det C0 + U VT􏼐 􏼑

� det C0􏼐 􏼑det I2 + VTC
�

− 1
0 U􏼐 􏼑

� det C􏼐 􏼑 c0 − cTC− 1 c􏼐 􏼑,

(81)

which, for c0 � β3 − l0 is fulfilled iff

β3 � l0 + cTC− 1 c. (82)

.is result is in accordance with (69) and delivers a singular
positive semidefinite C4. .e parameter β4 is free and coupled
to theminimum β3 given in (82) through the positive quadratic
term cTC− 1 c, where c � β4 p − l, cf. (66). By demanding sta-
tionarity of cTC− 1 c in respect to β4, one obtains

zcTC− 1 c

zβ4
� 2pTC− 1 c � 0⟹ β4 �

pTC− 1 l

pTC− 1 p
. (83)

Due to the positive definiteness of C, the choice (83)
pTC− 1 c � 0 induces a minimum of β3 in (82):

β3 � l0 + β4 p − l􏼐 􏼑
T
C− 1 c � l0 − lTC− 1 c, (84)

cf. Figure 9. □

Corollary 2. For any point (􏽢β1, 􏽢β2) ∈ zB2 with μQ < 􏽢β1, the
family of admissible (β3, β4) points generated with
(􏽢β1, β2) ∈B2\zB2 and β2 > 􏽢β2 is described by parabolas with
common minimum and argument of it. ?e argument of the
minimum of all parabolas is given by the unique admissible
value β4 at (􏽢β1, 􏽢β2) ∈ zB2.

Proof. Consider Figure 10. For any (􏽢β1, 􏽢β2) ∈ zB2, e.g., the
point depicted in Figure 10 marked with a triangle, based on
Remark 1, Remark 2, and Remark 3, we know that, for
β1 > μQ on the lower boundary of B2, the relations κ � 1,
ker(C) � span n􏼈 􏼉, n � D− 1 p, and n ⊥ p hold. Based on the
proof of Lemma 4, admissible (β3, β4) are described by the
unique admissible βLemma 4

4 given in (74) and inequality (75),
cf. the branch for κ � 1 and n ⊥ p in Figure 8. For points
(􏽢β1, β2) ∈B2\zB2 with β2 > 􏽢β2, the corresponding

Lemma 5
(β1, β2) ∈ ℬ2\∂ℬ2

β1

β2

ℬ2\∂ℬ2

β3

β4

Figure 9: Illustration of Lemma 5.
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admissible domains for (β3, β4) are described through
Lemma 5, at what the stationary point of these parabolas is
given at βLemma 5

4 fulfilling (83). .e unique admissible
βLemma 4
4 given in (74) and the stationary point βLemma 5

4 given
in (83) are identical for (􏽢β1, 􏽢β2) ∈ zB2 and
(􏽢β1, β2) ∈B2\zB2 with β2 > 􏽢β2. .is is shown as follows.
Based on the kernel vector n � D− 1 p for the regular
D � 􏽢β1 I − Λ, the inverse of the difference matrix C is
expressed with the Sherman–Morrison formula as

C− 1 � D +β2 p pT􏼐 􏼑
− 1

� D− 1 − β2
D− 1 p pTD− 1

1 + β2pTD− 1 p

� D− 1 − β2
n nT

1 + β2pT n
.

(85)

It should be emphasized again that, in (85), β2 is chosen truly
in the interior ofB2, but C− 1 can always be represented with
the kernel vector n � D− 1 p obtained at (􏽢β1, 􏽢β2) ∈ zB2. .e
relation (85) implies for the stationary point βLemma 5

4 given in
(83)

βLemma 5
4 �

lTC− 1 p

pTC− 1 p
�

lT n 1 − β2 pT n / 1 + β2pT n􏼐 􏼑􏼐 􏼑􏽨 􏽩

pT n 1 − β2 pT n / 1 + β2pT n􏼐 􏼑􏼐 􏼑􏽨 􏽩

�
lT n

pT n
� βLemma 4

4 ,

(86)

such that βLemma 4
4 , cf. (74), and βLemma 5

4 are identical, as
depicted in Figure 10. .e corresponding values of the
minima βLemma 5

3 � l0 − lTC− 1 c given in (84) of the
parabolas are identical to the minimum βLemma 4

3 �

l0 + cTC+ c of (75). .is is shown as follows. First, the
minimum of the parabolas βLemma 5

3 � l0 − lTC− 1 c requires
the computation of C− 1 c. Hereby, it is useful to note that
since βLemma4

4 � βLemma 5
4 holds, the vector c � βLemma 5

4 p − l �

βLemma4
4 p − l is orthogonal to n, i.e., cT n � 0, cf. (71) cor-

responding to Lemma 4. Based on the Sherman–Morrison

formula for C− 1 (85) and the property c ⊥ n, the minimum
βLemma 5
3 , cf. (84), is simplified as follows:

βLemma 5
3 � l0 − lTC− 1 c � l0 − lTD− 1 c. (87)

Now, concerning the minimum βLemma 4
3 � l0 + cTC+ c for

(􏽢β1, 􏽢β2) ∈ zB2 and βLemma 4
4 , cf. (75), the Moore–Penrose

inverse C+ � (D +β2 p pT)+ is required. Based on [26] (cf.
.eorem 6 therein), C+ can be expressed as

D +β2 p pT􏼐 􏼑
+

� D− 1 −
1

nT n
n nTD− 1 + D− 1 n nT − nT p􏼐 􏼑 n nT􏼐 􏼑.

(88)

Consideration of c ⊥ n, cf. Lemma 4, yields

βLemma 4
3 � l0 + cTC+ c � l0 + cTD− 1 c

� l0 + cT βLemma 4
4 n − D− 1 l􏼐 􏼑 � l0 − lTD− 1 c,

(89)

such that the minima of the parabolas (87) and (89) are
identical, as depicted in Figure 10. □

Remark 5. It should be noted that in view of future opti-
mization problems overB4, from a numerical point of view,
all tedious cases on the left border of B2 with P⊥ ker(C)

and κ≥ 2 for Lemma 1 and Lemma 2 can be avoided easily.
.is is achieved through Corollary 2 and by imposing the
additional constraint

μs
Q ≤ β1, μs

Q � μQ + δ , 0< δ≪ 1, (90)

in standard numerical optimization procedures as a limit
constraint for β1 with a shifted constant μs

Q slightly greater
than μQ for some user-defined δ. .e shifted condition (90)
and Corollary 2 allow for a straightforward and simple
implementation of the corresponding results of Lemma 4
and Lemma 5. .is approach has been considered for the
implementation offered in [22].

4.2. Majorization of a Set of Matrices. As in the two-para-
metric case, for a given vector p0 ∈R

n and a given matrix set

A � A
�

(1)
4 , . . . , A

�

(N)

4􏽮 􏽯, A4 ∈Sn+1 ∀A4 ∈A, (91)

with as in (60) partitioned matrices, we define the sets

B
(i)
4 � β ∈R4

: A
�

(i)
4 ⪯ B

�

0
4􏽮 􏽯. (92)

.emajorant set ofA is the corresponding intersection of all
B

(i)
4 :

B
A
4 � ∩

N

i�1
B

(i)
4 . (93)

5. Application to Semidefinite Programming

For a given finite matrix set

A � A(1), . . . , A(N)􏽮 􏽯, A ∈S] ∀A ∈A , (94)

(β1, β2) ∈ ℬ2
β1 > μ

β1

β2

μ

ℬ2

β3

β4

Figure 10: Illustration of Corollary 2.
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consider the majorant set BA
d of A for some parametrized

B(β) ∈S] with parameter vector β ∈Rd

B
A
d � β ∈Rd

: A ⪯ B β􏼐 􏼑∀A ∈A􏽮 􏽯. (95)

.e objective is now the minimization of a function
φ: Rd⟼R over BA

d :

min
β ∈BA

d

φ β􏼐 􏼑 . (96)

If the function B(β) is linear in the parameter β, which is
assumed from this point on, then BA

d is nonempty, un-
bounded, and convex, and the minimization problem (96) is
a classical semidefinite programming problem (see, e.g., [7])
such that it may be tackled with several numerical ap-
proaches from literature (see, e.g., [8, 10, 12]). For con-
tinuous and convex φ, the minimum, if it exists, may be
located in the interior of BA

d or on its border zBA
d .

.erefore, an unconstrained optimization should always be
performed first. If its solution is not an element of the in-
terior ofBA

d , then a constrained optimization problem may
be considered to find the optimum on zBA

d , i.e., among the
sharp Löwner majorants. It should be remarked that convex
functions φ can be formulated for corresponding convex
BA

d such that nominimum exists. A clear example for such a
case is constructed based on the results of Section 3 for a
single matrix. Assume the two-parametric form B � B

�
0
2 of

Section 3 and choose A � A(2) and p0 as given in (58) and
(59) such that p0 is not an eigenvector of A and Λ2 < μQ <Λ2
holds. .is implies an instance of Lemma 3, yielding the
region BA

d � B2 as depicted in Figure 6 for B
(2)
2 . Now,

consider the linear function φ(β) � gT β with constant
gradient g ∈R2. An example is displayed in Figure 11(a)
with g � (3, 1)T.

Regarding Figure 11(a), it becomes immediately clear
that a minimum of the convex φ(β) exists in the currentB2.
But, this is not always the case for arbitrary g since, e.g., for
g � (0, 1)T values on the lower boundary of B2 continu-
ously decrease due to the unboundedness ofB2 emphasized
in Corollary 1 such that no minimum exists for g � (0, 1)T.
.erefore, in general, depending on the properties of the
convex set BA

d and on the properties of the convex φ(β), a
minimum may exist. For the rest of this section, we do not
consider such cases, i.e., we assume that the convex φ(β) is
formulated such that a global minimum exists in BA

d , as in
the examples shown in Figure 11. .ese examples can be
reproduced with

demo3.m

in [22]. .e global minimum for instances of Lemma 3, as
the examples depicted in Figure 11, is obtained by solving
the single nonlinear equation for β1

gT t|β2�βmin
2 β1( ) � 0,

g �
zφ
zβ1

,
zφ
zβ2

􏼠 􏼡

T

,

t � 1,
zβmin

2
zβ1

􏼠 􏼡

T

,

(97)

based on the orthogonality of the gradient g of φ and the
tangent t of the curve (β1, β

min
2 ) for β1 > μQ. An initial guess

can be generated with the trivial majorant, i.e., β1 � Λ1, such
that standard numerical approaches solving the nonlinear
equation for β1 can be used, independently of the dimension
of the given matrix A.

As mentioned in Section 1, the presented results can also
be used in the context of the zeroth-order bounds of elas-
ticity. .e upper zeroth-order bound of, e.g, graphite, see
[16], with stiffness matrix given in GPa (109N/m2) in
normalized Voigt notation, see, e.g., [27],

A �

1060 180 15 0 0 0

180 1060 15 0 0 0

15 15
73
2

0 0 0

0 0 0 9 0 0

0 0 0 0 9 0

0 0 0 0 0 880

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

GPa ∈R6×6
, (98)

and dimensionless vector p0 given by

p0 � (1/
�
3

√
, 1/

�
3

√
, 1/

�
3

√
, 0, 0, 0) ∈R6

, (99)

were defined in [16] through the minimization of
φ � tr(B

�
0
2) � 6β1 + β2, where β1 and β2 are also given in

GPa. In engineering, the bulk modulus K and the shear
modulus G are related to β1 and β2 by K � (β1 + β2)/3 and
G � β1/2. .e case for graphite yields

Λ1,Λ2,Λ3,Λ4,Λ5,Λ6􏼈 􏼉

�
1
4

(
�������
5800849

√
+ 2553), 880, 880,􏼚

·
1
4

(2553 −
�������
5800849

√
), 9, 9􏼛GPa ,

μQ � 880GPa, cQ � −
1387
912330

1
GPa

,

(100)

i.e., an instance of Lemma 2.2. .is shows that, in general,
Lemma 2.1 and Lemma 2.2 are also relevant for real-world
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problems and practical applications. In Lemma 2.2,
β1 ∈ [μQ,∞) is considered, and the corner point (β1, β2) �

(μQ, − (cQ)− 1) ∈ zB2 yields the global minimum for φ, see
Figure 12. .is result is the exact same upper zeroth-order
bound of graphite computed by [16] (cf. Table 3 of [16],
based on the relations for the bulk modulus
K � (β1 + β2)/3 � 2132890/4161GPa ≈ 512.591GPa and
shear modulus G � β1/2 � 440GPa). Compared to [16] and
the later development by [17, 19], the present work does not
require special treatment for the computation of the min-
imum of φ over B2 since the condensed explicit conditions
describing zB2 are now available for evaluation.

.e results of the present work may also be applied to
more complex semidefinite programming problems in
higher dimensions as follows. For a given vector p0 ∈R

n,
either the case for S] � Sn in (94) with

B � B
�

0
2⟹B

A
d � B

A
2 , (101)

or the case S] � Sn+1 with

B � B
�

0
4⟹B

A
d � B

A
4 , (102)

can be considered. For (101), minimizers on the border of
the convex setBA

d � BA
2 can be determined without much

effort based on the results of Section 3. For (102), mini-
mizers can be searched based on the results presented in
Section 4. .e definition of the majorant of a set of
symmetric matrices is nontrivial in the four-parametric
version. First, the set BA

2 should be identified. .en, three
options exist: (i) pick critical (β1, β2) ∈ zBA

2 and choose
β4 carefully (see Lemma 4) or (ii) select subcritical
(β1, β2) ∈B

A
2 \zBA

2 leading to unconstrained β4 ∈R and β3
constrained by the lower estimate (82) (see Lemma 5).
.ese constraints can be put into two scalar equations
which allow for efficient implementation and fast nu-
merical treatment (see the following examples and ac-
companying open-source software).

5.1. Example: Four-Parametric Optimization Majorizing a
Single Matrix. We consider the semidefinite programming
problem (96) for a single matrix A4 and the four-parametric
form B4 of Section 4. A matrix A4 ∈S11 and a vector p0 ∈R

10

with Λ11 ≈ − 11.3075, Λ1 ≈ 4.7144, and μQ ≈ 4.206 are
considered in order to optimize the Frobenius norm

φ β􏼐 􏼑 � ‖B4 β􏼐 􏼑‖F �

����������������

n β21 + β22 + β23 + 2β24
􏽱

, n � 10.

(103)

Note that the unconstrained minimum of this function is
obtained at β � o ∉B4. Hence, the constrained minimum

φ = 3β1 + β2

5
β1

β2 β2

100 5
β1

100

φ = √(3β1
2 + β2

2)
5

0
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0
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0

Figure 11: Examples for linear and nonlinear function φ overB2: φ � 3β1 + β2 (a); φ �

�������

3β21 + β22
􏽱

(b). .e gradient of φ and the tangent of
the curve (β1, β

min
2 (β1)) at the global minimum (black point) are depicted by the corresponding black arrows, while the dashed line

represents φ(β) � minβ ∈B2
φ.
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Figure 12: Computation of upper zeroth-order bound of [16]
based on φ � tr(B

�
0
2) � 6β1 + β2 for graphite (instance of Lemma

2.2): zB2 (black line), minimum of φ over B2 at (β1, β2) � (μQ, −

(cQ)− 1) ∈ zB2 (black point), and φ � min(β1 ,β2) ∈B2
φ (dashed

lined).
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will be found on the boundary zB4. .e explicit data of the
current problem can recovered based on

demo4.m

in the provided software [22].
.e results of Lemma 1–Lemma 4 for the explicit

construction of sharp majorants may be applied as follows
for the generation of an initial guess for the future opti-
mization over B4 for a single matrix:

(1) Generate a discrete point set Ih
1 from the interval I1 �

[μs
Q, βmax

1 ] with μs
Q as in (90) (e.g., through an

equidistant discretization of I1 )
(2) Compute the corresponding 􏽥β2(β1) � βmin

2 (β1) for
each β1 ∈ Ih

1

(3) Use Lemma 4 noting κ � 1∧P⊥ ker(C)∀β1 ∈ Ih
1:

(a) Compute the corresponding 􏽥β4(β1) � β4(β1,
􏽥β2(β1)) with (74)

(b) Compute the corresponding 􏽥β3(β1) �minimum
β3 in (75)

(4) Evaluate objective function 􏽥φ(β1) � φ(β(β1)) ac-
cordingly, and return critical βc

1 yielding the mini-
mum value for β1 ∈ Ih

1

Execution of the just described simple approach yields a
critical βc

1 � 4.6028 implying

βc � (4.6028, − 4.1089, 4.5598, − 2.4422) ∈ zB4 ,

􏽥φ βc
1( 􏼁 � φ βc

􏼐 􏼑 � 16.1697.

(104)

.e straightforward implementation of the results of Lemma
4 and Lemma 5 simplified through the additional constraint
of Remark 5 yields for the numerical minimization

β∗ � (4.6302, 0.3030, 4.6269, − 1.1840) ∈ zB4,

φ β∗􏼐 􏼑 � 15.4495<φ βc
􏼐 􏼑.

(105)

Notably, βc induces two zero eigenvalues in C4, while β
∗ leads

to a one-dimensional kernel. Algorithmically, the optimization
gets away with two nonlinear inequality constraints inde-
pendently of the dimension n of the problem, see

demo4.m

in [22] for details and reproduction of the results of this
example.

5.2. Example: Four-Parametric Optimizations Majorizing a
Set of Matrices. Next, we consider the semidefinite pro-
gramming problem (96) for a finite matrix set
A � A

�
(1)
4 , . . . , A

�
(N)
4􏽮 􏽯 with N � 5 and n � 10, B4 and the

Frobenius norm given in (103). .e explicit data of the
current problem can be recovered based on

demo5.m

in the provided software [22].

.e results of Lemma 1–Lemma 5 for the explicit
construction of sharp majorants may be used in order to
generate an initial guess as follows:

(1) Generate a discrete point set Ih
1 from the inter-

val I1 � [μs
Q, βmax1 ] with μs

Q >maxi�1,...,N μQ􏼈

corresponding toA
�

(i)
4 } (e.g., through an equidistant dis-

cretization of I1 )
(2) Compute 􏽥β2(β1) � maxi�1,...,N􏼚βmin

2 (β1)

corresponding toA
�

(i)
4 􏼛 for β1 ∈ Ih

1 and build dis-

cretized curve C � (β1, β2) ∈B
A
2 : β1 ∈ Ih

1 , β2 �􏽮

􏽥β2(β1)􏽯
(3) Shift C by some small positive Δ into the interior of

BA
2 and rewrite C � 􏼚(β1, β2) ∈B

A
2 \ zBA

2 : (β1, β2)

� (β1′ + Δ, β2′ + Δ), (β1′, β2′) ∈C􏼛

(4) Use Lemma 5:

(a) Set 􏽥β4(β1) � 0∀β1 ∈ Ih
1

(b) Compute corresponding 􏽥β3(β1) � maxi�1,...,N􏼈β3

according to (82) for A
� 4

(i) with (β1, β2) ∈C􏼉

(5) Evaluate φ((β1, 􏽥β2(β1), 􏽥β3(β1), 􏽥β4(β1))) for all β1 ∈ Ih
1

and determine minimum
(6) Go to 3 (i.e., shiftC again by Δ), execute 4 and 5, and

if the new minimum is lower, repeat 3–5; otherwise,
return minimum

Execution of this simple approach yields for the considered
data, the critical value βc

1 � 8.2100, and accordingly,

βc � (8.2100, 1.9358, 3.8857, 0), φ βc
􏼐 􏼑 � 26.3229.

(106)

.e straightforward implementation of the results of Lemma
4 and Lemma 5 simplified through the additional constraint

μs
Q ≤ β1, μs

Q � δ + max
i�1,...,N

μQ corresponding toA
�

(i)

4􏽮 􏽯,

(107)

as motivated in Remark 5, yields the minimum of the nu-
merical minimization

β∗ � (7.3810, 0.7335, 6.5763, − 2.1962),

φ β∗􏼐 􏼑 � 24.4586<φ βc
􏼐 􏼑.

(108)

Both βc and β∗ yielded a difference matrix C with only one
vanishing eigenvalue. As in the previous example, the op-
timization gets away with two nonlinear inequality con-
straints per matrix A ∈A independently of the dimension n
of the matrices A ∈A, see

demo5.m

in [22] for details and reproduction of the results of this
example.
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6. Conclusions

Closed form expressions for the representation of two-
parametric Löwener majorants based on a rank-one per-
turbed scaled identity matrix are presented in Section 3.
Different scenarios accounting for the multiplicity of ei-
genvalues and for the inclination of the vector p with respect
to the eigenbasis of the matrix under consideration are
formulated. .e majorization of a set of symmetric matrices
A, yielding the global majorant set BA

2 , is then obtained by
an intersection of the individual admissibility domains. Most
importantly, the intersection is always unbounded, and thus,
nonempty. Analogous results are obtained for the four-
parametric case illustrated in Section 4, at what the explicit
conditions defining the majorant set, with β3 and β4 chosen
accordingly, allow for efficient algorithms, cf. Corollary 2
and Remark 5. Examples have been presented for the two-
and four-parametric cases..e application of these results in
semidefinite programming problems has been sketched in
Section 5. .e results of the present work also find appli-
cation in materials science and engineering in the field of
materials design of linear elastic and linear thermo-elastic
properties. So-called zeroth-order bounds of linear material
properties are determined through optimization problems as
the one described in Section 5, see, e.g., [17] or [19], such that
the results of the present work substantially simplify the
computation of the zeroth-order bounds and the related
automated selection of material of large material databases.
.e data and the software for reproduction of the results are
available via GitHub, see [22].

Data Availability

Open-source MATLAB software is provided under the
terms of the GNU GPL v3. .e software is made available
through GitHub, cf. [22].
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[17] M. Lobos and T. Böhlke, “On optimal zeroth-order bounds of
linear elastic properties of multiphase materials and appli-
cation in materials design,” International Journal of Solids and
Structures, vol. 84, pp. 40–48, 2016.

[18] M. Lobos, T. Yuzbasioglu, and T. Böhlke, “Homogenization
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