
Research Article
A Discrete Mathematical Modeling of the Influence of Alcohol
Treatment Centers on the Drinking Dynamics Using
Optimal Control

Bouchaib Khajji ,1 Abderrahim Labzai ,1 Abdelfatah Kouidere ,1 Omar Balatif ,2

and Mostafa Rachik1

1Laboratory of Analysis Modeling and Simulation, Department of Mathematics and Computer Science,
Faculty of Sciences Ben M’Sik, Hassan II University, Sidi Othman, Casablanca, Morocco
2Mathematical Engineering Team (INMA), Laboratory of Dynamical Systems, Department of Mathematics,
Faculty of Sciences El Jadida, Chouaib Doukkali University, El Jadida, Morocco

Correspondence should be addressed to Bouchaib Khajji; khajjibouchaib@gmail.com

Received 12 November 2019; Revised 5 January 2020; Accepted 23 January 2020; Published 19 February 2020

Academic Editor: Fernando Simões

Copyright © 2020 Bouchaib Khajji et al. ,is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this paper, we propose a discrete mathematical model that describes the interaction between the classes of drinkers, namely,
potential drinkers (P), moderate drinkers (M), heavy drinkers (H), poor heavy drinkers (Tp), rich heavy drinkers (Tr), and
quitters of drinking (Q). We also focus on the importance of treatment within addiction treatment centers aiming to find the
optimal strategies to minimize the number of drinkers and maximize the number of heavy drinkers who join addiction treatment
centers. We use three controls which represent awareness programs through media and education for the potential drinkers,
efforts to encourage the heavy drinkers to join addiction treatment centers, and psychological support with follow-up for the
individuals who quit drinking. We use Pontryagin’s maximum principle in discrete time to characterize these optimal controls.
,e resulting optimality system is solved numerically by Matlab. Consequently, the obtained results confirm the performance of
the optimization strategy.

1. Introduction

Addiction is a social phenomenon and a psychological
scourge that all societies suffer from. It affects all social
classes and all people with different educational levels and
age groups. ,ere are many types of addiction such as
addiction to smoking, addiction to eating, sugar addiction,
addiction to video games, addiction to social networking
sites, mobile phone addiction, addiction to sleep, and ad-
diction to drinking. In this work, we will investigate the
phenomenon of addiction to drinking alcohol which is a
problem that has received the attention of several re-
searchers and scholars in many fields including psychology,
sociology, psychiatry, and mathematics, in an attempt to
highlight the reasons behind this phenomenon and identify

effective methods of prevention and treatment to this
problem.

According to the World Health Organization (WHO)
report in 2016, alcohol addiction causes the death of more
than 3 million people annually, which represents about 6
percent of all deaths worldwide. In spite of its fatal harm,
global consumption of alcohol is expected to increase in the
next 10 years [1]. Currently, about 2.3 billion people are
drinking alcohol, including 237 million men and 46 million
women around the world who drink excessively or badly
according to the World Health Organization in its Health
Report in 2018 [1]. In some places, drinking alcohol is more
common such as in Europe and the Americas which come at
the top of the list followed by Russia according to the same
organization. Alcohol-induced disorders exist in richer

Hindawi
Journal of Applied Mathematics
Volume 2020, Article ID 9284698, 13 pages
https://doi.org/10.1155/2020/9284698

mailto:khajjibouchaib@gmail.com
https://orcid.org/0000-0001-7758-2844
https://orcid.org/0000-0002-4417-8893
https://orcid.org/0000-0002-8660-2090
https://orcid.org/0000-0003-1887-5350
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9284698


countries more than the poor ones. In some countries like
Russia, the annual consumption of alcohol (measured in
liters of pure ethanol) per capita is decreasing yearly as it
moved from 18.7 liters in 2005 to 11.7 liters in 2016. ,is
“dramatic decrease” can be explained by the implementation
of measures recommended byWHO such as the prohibition
of the sale of alcoholic beverages at service stations. Yet,
WHO in its report expects that the global alcohol con-
sumption will rise over the next decade, especially in the
Southeast Asia, Western Pacific, and the Americas, and this
increase will surely affect the number of deaths all over the
world [1].

In Morocco, according to the WHO Global Status Re-
port on Alcohol and Health 2018, Moroccans are following
the global trend in alcohol consumption. ,us, we note that
the consumption of alcohol has decreased from 1.8 liter per
individual in 2010 to 1.1 liter in 2016 for men and 0.2 liter in
2010 to 0.1 liter in 2016 for women [2].

Addiction to drinking alcohol has many health and
social consequences including chronic diseases, gastroin-
testinal disorders, increased risk of pancreatitis and ulcers,
severe damage to the liver, damage to the brain and the
nervous system, muddled thinking and loss of memory,
harmful hormonal performance, increased risk of heart
disease and stroke, family problems, work problems, social
marginalization, poverty, road accidents, and undesirable
morals [1].

Alcohol can be prevented through a number of measures
such as regulating and limiting its sales, increasing its cost,
and offering inexpensive treatment. ,e treatment can pass
through several steps due to medical issues that may arise
during the period of quitting alcohol; therefore, careful
control must be exercised on the drinkers to help them stop
alcohol consumption. Some medications can be given to the
addict while he/she is in a health facility or from time to time
while the person lives within the community under close
supervision. Psychological disorders or other addictions can
complicate the treatment, so, after quitting alcohol, support
and follow-up are used in group therapy or support groups
to help the person quit drinking again. ,e most common
types of support are given by psychiatrists and alcoholics
who gave up alcohol also by giving medicaments such as
Acamprosate, Disulfiram, or Naltrexone.

Some researchers in mathematics draw a comparison
between the spread of the drinking phenomenon and the
spread of infectious diseases. Accordingly, several mathe-
maticians did a lot of work in order to understand the
dynamics of drinking and reduce its harm on the drinker
and society as well as minimizing the number of addicted
drinkers. For example, Huo and Wang [3] developed a
nonlinear mathematical model with the effect of awareness
programs on the binge drinking where they show that
awareness programs are an effective measure in reducing
alcohol problems. Ma et al. [4] modeled alcoholism as a
contagious disease and used an optimal control to study
their mathematical model with awareness programs and
time delay. Wang et al. [5] proposed and analyzed a non-
linear alcoholism model and used optimal control for the
purpose of hindering interaction between susceptible

individuals and infected individuals. Huo et al. [6] proposed
a new social epidemic model to depict alcoholism with
media coverage which was proven to be an effective way in
pushing people to quit drinking. Huo and Song [7] divided
heavy drinkers in their study into two types: those who
confess drinking and those who do not, and they proposed a
two-stage model for binge drinking problem taking into
consideration the transition of drinkers from the class of
susceptible individuals towards the class of admitting
drinkers. Adu et al. [8] used a nonlinear SHTRmathematical
model to study the dynamics of drinking epidemic; they
divided their population into four classes: nondrinkers (S),
heavy drinkers (H), drinkers receiving treatment (T), and
recovered drinkers (R). ,ey discussed the existence and
stability of drinking-free and endemic equilibrium. Other
mathematical models have also been widely used to study
this phenomenon (for example, [5, 9–12]).

In addition, most of these previous researches have fo-
cused on continuous-time modeling. In this research, we will
adopt the discrete-time modeling as the statistical data are
collected at discrete time (day, week, month, and year) and the
treatment and vaccination of some patients are done in
discrete time. So, it is more direct, more convenient, andmore
accurate to describe the phenomena by using the discrete-
time modeling than the continuous-time modeling and the
use of discrete-time models may avoid some mathematical
complexities such as the choice of a function space and
regularity of the solution. Hence, difference equations appear
as a more natural way to describe the epidemic models.
Moreover, numerical solutions of differential equations use
discretization and this encourages us to employ difference
equations directly.,e numerical exploration of discrete-time
models is rather straightforward and therefore can be easily
implemented by nonmathematicians.

Besides these works, we will study the dynamics of a
mathematical alcohol model PMHTrTpQ which contains
the following additions:

(i) A discrete-time mathematical modeling
(ii) A compartment Tp that represents the number of

the poor heavy drinkers who join public addiction
treatment centers which may not afford sophisti-
cated equipment and high-quality treatment serv-
ices—especially in the developing countries—and
those individuals who do not have the financial
capacity to go to private centers

(iii) A compartment Tr that represents the number of
the rich heavy drinkers who join private addiction
treatment centers which have special facilities that
provide advanced treatment and individuals who
have sufficient financial capacity to join these
centers

(iv) ,e death rate induced by the heavy drinkers δ

,e drinkers classes of this model are divided into six
compartments: potential drinkers (P), moderate drinkers
(M), heavy drinkers (H), the rich heavy drinkers who join
private addiction treatment centers (Tr), the poor heavy
drinkers who join public addiction treatment centers (Tp),
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and quitters of drinking (Q). ,roughout this research, we
seek to find the optimal strategies to minimize the number of
drinkers and maximize the number of rich and poor heavy
drinkers who join addiction treatment centers.

In order to achieve this purpose, we use optimal control
strategies associated with three types of controls: the first
represents awareness programs for potential drinkers, the
second is the effort to encourage the rich to go to private
treatment centers and the poor heavy drinkers to go to public
treatment centers, and the third represents follow-up and the
psychological support for temporary quitters of drinking.

,e paper is organized as follows. In Section 3, we
present our PMHTrTpQ discrete mathematical model that
describes the classes of drinkers. In Sections 4 and 5, we
present the optimal control problem for the proposed model
where we give some results concerning the existence of the
optimal controls and we characterize these optimal controls
using Pontryagin’s maximum principle in discrete time.
Numerical simulations are given in Section 6. Finally, we
conclude the paper in Section 6.

2. Model Formulation

We propose a discrete model PMHTrTpQ to describe the
dynamics of population and the transmission of drinking.
,e population is divided into six compartments denoted by
P, M, H, Tr, Tp, and Q.

,e graphical representation of the proposed model is
shown in Figure 1.

,e mathematical representation of the model consists
of a system of nonlinear difference equations:

Pk+1 � b − β1
PkMk

Nk

+(1 − μ)Pk,

Mk+1 � β1
PkMk

Nk

+ θQk + 1 − μ − β2( 􏼁Mk,

Hk+1 � β2Mk + 1 − μ − δ − α1 − α2 − α3( 􏼁Hk,

Tr
k+1 � α1Hk + 1 − μ − c1( 􏼁Tr

k,

T
p

k+1 � α2Hk + 1 − μ − c2( 􏼁T
p

k ,

Qk+1 � c1T
r
k + c2T

p

k + α3Hk +(1 − μ − θ)Qk,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where P0 ≥ 0, M0 ≥ 0, H0 ≥ 0, Tr
0 ≥ 0, T

p
0 ≥ 0, and Q0 ≥ 0.

,e compartment P contains the potential drinkers who
represent individuals whose age is over adolescence and
adulthood and may become drinkers. ,is compartment is
increased by the recruitment rate denoted by b and decreased
by an effective contact with the moderate drinkers at β1 rate
and natural death μ. It is assumed that potential drinkers can
acquire drinking behavior and can becomemoderate drinkers
through effective contact with moderate drinkers in some
social occasions like weddings, celebrating graduation cere-
monies, weekend parties, and end of the year celebration. In
other words, it is assumed that the acquisition of a drinking
behavior is analogous to acquiring disease infection.

,e compartment M is composed of the moderate
drinkers who drink alcohol in a controlled manner during
some events and occasions or in a way that is unapparent to
their social environment. It is increased by potential drinkers
who turn to be moderate drinkers at β1 rate and those who
quit addiction to alcohol temporarily at a rate θ. ,is
compartment is decreased when moderate drinkers become
heavy drinkers at a rate β2 and also by natural death at rate μ.

,e compartment H comprises the heavy drinkers. ,is
compartment becomes larger as the number of heavy
drinkers increases by the rate β2 and decreases when some of
them give up drinking at a rate α3 and decreases also by the
rate α1 (α1 is a rate the heavy drinkers join private treatment
centers) and decreases also by the rate α2 (α2 is a rate the
heavy drinkers join public treatment centers). In addition,
this compartment decreases by natural death μ and due to
deaths caused by diseases resulted from excessive alcohol
intake at a rate δ.

,e compartment Tp represents the number of heavy
drinkers who join public treatment centers of alcohol ad-
diction which may not provide advanced treatment and that
are marked by a shortage of equipment and low-quality
services—especially in the developing countries—and it also
contains individuals who do not have the financial capacity
to join the private centers. ,is compartment is increased by
the rate α2 and decreased by the rate c2which represents
individuals who have been treated in the public treatment
centers and also by natural death at rate μ.

,e compartment Tr contains the number of heavy
drinkers who take advantage of their financial potentials to join
private treatment centers of alcohol addiction that are very
often well-equipped and provide good-quality services. ,is
compartment is increased by the rate α1 and decreased by the
rate c1 which represents individuals who have been treated in
the private treatment centers and also by natural death at rate μ.

,e compartment Q encompasses the individuals who
quit drinking temporarily and permanently. It is increased
with the recruitment of individuals who have been treated in
treatment centers of alcohol addiction at rates c1 and c2. It
also increases at the rate α3 by those who quit alcohol
without resorting to treatment centers and decreases at the
rate μ due to natural deaths and at rate θ (which represents
drinkers who quit drinking temporarily and revert back to
moderate drinking). We note that θQk is the proportion of

b
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Figure 1: Schematic diagram of the six drinking classes in the
model.
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the temporary quitters of drinking who moved to moderate
drinking at time step k.

,e total population size at time k is denoted by Nk with
Nk � Pk + Mk + Hk + Tr

k + T
p

k + Qk, and it is supposed to be
constant.

3. The Optimal Control Problem

,e objective of the proposed control strategy is to minimize
the number of heavy drinkers (H) and maximize the
number of the rich heavy drinkers (Tr) and the poor heavy
drinkers (Tp), who join private or public treatment centers
of alcohol addiction, and the number of the permanent
quitters of drinking (Q) in the community during the time
steps k � 0 to k � T. ,e cost spent in the awareness pro-
grams is also to be minimized.

In order to achieve these objectives, we introduce three
control variables. ,e first control u1 represents the effort of
the awareness programs to protect the potential drinkers not
to be drinkers. ,e second control u2 measures the effort
made to make the heavy drinkers know private and public
treatment centers of alcohol addiction and to encourage them
to join those centers. We note that the control function ϵu2
represents the fraction of the heavy drinkers who will be
treated in private addiction treatment centers and the fraction
(1 − ϵ)u2 of those leaving the heavy drinkers class who will
receive treatment in public addiction treatment centers. ,e
third control u3 represents the effort of the follow-up and the
psychological support for the temporary quitters of drinking
with a purpose of protecting them to not go back to drinking.

So, the controlled mathematical system is given by the
following system of difference equations:

Pk+1 � b − β1
PkMk

Nk

+(1 − μ)Pk − u1,kPk,

Mk+1 � β1
PkMk

Nk

+ 1 − u3,k􏼐 􏼑θQk + 1 − μ − β2( 􏼁Mk,

Hk+1 � β2Mk + 1 − μ − δ − α1 − α2 − α3( 􏼁Hk − u2,kHk,

Tr
k+1 � α1Hk + 1 − μ − c1( 􏼁Tr

k + ϵu2,kHk,

T
p

k+1 � α2Hk + 1 − μ − c2( 􏼁T
p

k +(1 − ϵ)u2,kHk,

Qk+1 � c1T
r
k + α3Hk + c2T

p

k +(1 − μ)Qk + u1,kPk − 1 − u3,k􏼐 􏼑θQk,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where P0 ≥ 0, M0 ≥ 0, H0 ≥ 0, Tr
0 ≥ 0, T

p
0 ≥ 0, and Q0 ≥ 0.

,e optimal control problem to minimize the objective
functional is given by

J u1, u2, u3( 􏼁 � HT − T
r
T − T

p

T − QT

+ 􏽘

T− 1

k�0
Hk − T

r
k − T

p

k − Qk􏼐

+
Aku2

1,k

2
+

Bku2
2,k

2
+

Cku2
3,k

2
􏼡,

(3)

where the parameters Ak > 0; Bk > 0; and Ck > 0 are selected
to weigh the relative importance of the cost of awareness
programs, encouragement programs, and follow-up and
psychological support, respectively.

,e aim is to find an optimal control, u∗1 , u∗2 , and u∗3 -,
such that

J u
∗
1 , u
∗
2 , u
∗
3( 􏼁 � min

u1 ,u2 ,u3( )∈Uad

J u1, u2, u3( 􏼁, (4)

where Uad is the set of admissible controls defined by

Uad �
uj � uj,0, uj,1, . . . , uj,T− 1􏼐 􏼑

0≤ ujmin ≤ uj,k ≤ ujmax ≤ 1
;

⎧⎨

⎩

for j � 1, 2, 3, k � 0, 1, . . . , T − 1􏼩.

(5)

,e sufficient condition for the existence of an optimal
control (u∗1 , u∗2 , u∗3 ) for problems (2) and (3) comes from the
following theorem.

Theorem 1. 5ere exists the optimal control (u∗1 , u∗2 , u∗3 )

such that

J u
∗
1 , u
∗
2 , u
∗
3( 􏼁 � min

u1 ,u2 ,u3( )∈Uad

J u1, u2, u3( 􏼁, (6)

subject to the control system (2) with initial conditions.

Proof. Since the coefficients of the state equations are
bounded and there are a finite number of time steps,
P � (P0, P1, P2, . . . , PT), M � (M0, M1, M2, . . . , MT), H �

(H0, H1, H2, . . . , HT), Tr � (Tr
0, Tr

1, Tr
2, . . . , Tr

T), Tp �

(T
p
0 , T

p
1 , T

p
2 , . . . , T

p

T), and Q � (Q0, Q1, Q2, . . . , QT) are
uniformly bounded for all (u1, u2, u3) in the control set Uad;
thus J(u1, u2, u3) is bounded for all (u1, u2, u3) ∈ Uad. Since
J(u1, u2, u3) is bounded, inf(u1 ,u2 ,u3)∈Uad

J(u1, u2, u3) is finite,
and there exists a sequence (u

j
1, u

j
2, u

j
3) ∈ Uad such that

limj⟶+∞(u
j
1, u

j
2, u

j
3) � inf(u1 ,u2,u3)∈Uad

J(u1, u2, u3) and cor-
responding sequences of states Pj, Mj, Hj, Trj, Tpj, and Qj.
Since there are a finite number of uniformly bounded se-
quences, there exist (u∗1 , u∗2 , u∗3 ) ∈ Uad and P∗, M∗, H∗,

Tr∗, Tp∗ and Q∗ ∈ IRT+1 such that, on a subsequence,
limj⟶+∞(u

j
1, u

j
2, u

j
3) � (u∗1 , u∗2 , u∗3 ), limj⟶+∞Pj � P∗,

limj⟶+∞Mj � M∗, limj⟶+∞Hj � H∗, limj⟶+∞Trj �

Tr∗, limj⟶+∞Tpj � Tp∗, and limj⟶+∞Qj � Q∗. Finally,
due to the finite dimensional structure of system (2) and the
objective function J(u1, u2, u3), (u∗1 , u∗2 , u∗3 ) is an optimal
control with corresponding states P∗, M∗, H∗, Tr∗, Tp∗, and
Q∗. ,erefore inf(u1 ,u2 ,u3)∈Uad

J(u1, u2, u3) is achieved. □

4. Characterization of the Optimal Controls

We apply the discrete version of Pontryagin’s maximum
principle [13–18]. ,e key idea is introducing the adjoint
function to attach the system of difference equations to the
objective functional resulting in the formation of a function
called the Hamiltonian. ,is principle converts the problem
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of finding the control to optimize the objective functional
subject to the state difference equation with initial condition
to find the control to optimize Hamiltonian pointwise (with
respect to the control).

Now we have the Hamiltonian 􏽢H at time step k, defined
by

􏽢Hk � Hk − T
r
k − T

p

k − Qk +
Aku2

1,k

2
+

Bku2
2,k

2
+

Cku2
3,k

2

+ 􏽘
6

i�1
λi,k+1fi;k+1,

(7)

where fi;k+1 is the right-hand side of the system of difference
equation (2) of the ith state variable at time step k + 1.

Theorem 2. Given an optimal control (u∗1 , u∗2 , u∗3 ) ∈ Uad
and solutions P∗k ,M

∗
k ,H
∗
k ,T

r∗
k ,Tp∗

k , and Q∗k of corresponding
state system [13], there exist adjoint functions λ1, λ2, λ3, λ4, λ5,
and λ6 satisfying the following equations:

λ1,k �
z 􏽢Hk

zPk

� λ2,k+1 − λ1,k+1􏼐 􏼑β1
Mk

Nk

+ λ6,k+1 − λ1,k+1􏼐 􏼑u1,k + λ1,k+1(1 − μ),

λ2,k �
z 􏽢Hk

zMk

� λ2,k+1 − λ1,k+1􏼐 􏼑β1
Pk

Nk

+ β2λ3,k+1 + λ2,k+1 1 − μ − β2( 􏼁,

λ3,k �
z 􏽢Hk

zHk

� 1 + λ3,k+1 1 − μ − δ − α1 − α2 − α3 − u2,k􏼐 􏼑 + λ4,k+1 α1 + ϵu2,k􏼐 􏼑 + λ5,k+1 α2 +(1 − ϵ)u2,kHk􏽨 􏽩 + α3λ6,k+1,

λ4,k �
z 􏽢Hk

zTr
k

� − 1 + c1λ6,k+1 + λ4,k+1 1 − μ − c1( 􏼁,

λ5,k �
z 􏽢Hk

zT
p

k

� − 1 + c2λ6,k+1 + λ5,k+1 1 − μ − c2( 􏼁,

λ6,k �
z 􏽢Hk

zQk

� − 1 + λ2,k+1 1 − u3,k􏼐 􏼑θ + λ6,k+1 1 − μ − θ + θu3,k􏼐 􏼑,

(8)

with the transversality conditions at time T:

λ1(T) � 0,

λ2(T) � 0,

λ3(T) � 1,

λ4(T) � − 1,

λ5(T) � − 1,

λ6(T) � − 1.

(9)

Furthermore, for k � 0, 1, . . . , T − 1, we obtain the opti-
mal control (u∗1,k, u∗2,k, u∗3,k) as

u
∗
1,k � min max

λ1,k+1 − λ6,k+1􏼐 􏼑Pk

Ak

, u1min
⎧⎨

⎩

⎫⎬

⎭, u1max
⎧⎨

⎩

⎫⎬

⎭,

u
∗
2,k � min max

λ3,k+1 − λ5,k+1􏼐 􏼑Hk + λ5,k+1 − λ4,k+1􏼐 􏼑ϵHk

Bk

, u2min
⎧⎨

⎩

⎫⎬

⎭, u2max
⎧⎨

⎩

⎫⎬

⎭,

u
∗
3,k � min max

λ2,k+1 − λ6,k+1􏼐 􏼑θQk

Ck

, u3min
⎧⎨

⎩

⎫⎬

⎭, u3max
⎧⎨

⎩

⎫⎬

⎭.

(10)
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Proof. ,e Hamiltonian 􏽢Hk at time step k is given by

􏽢Hk � Hk − T
r
k − T

p

k − Qk +
Aku2

1,k

2
+

Bku2
2,k

2
+

Cku2
3,k

2

+ λ1,k+1 b − β1
PkMk

Nk

+(1 − μ)Pk − u1,kPk􏼢 􏼣

+ λ2,k+1 β1
PkMk

Nk

+ 1 − u3,k􏼐 􏼑θQk + 1 − μ − β2( 􏼁Mk􏼢 􏼣

+ λ3,k+1 β2Mk + 1 − μ − δ − α1 − α2 − α3( 􏼁Hk − u2,kHk􏽨 􏽩

+ λ4,k+1 α1Hk + 1 − μ − c1( 􏼁T
r
k + ϵu2,kHk􏽨 􏽩

+ λ5,k+1 α2Hk + 1 − μ − c2( 􏼁T
p

k +(1 − ϵ)u2,kHk􏽨 􏽩

+ λ6,k+1 c1T
r
k + α3Hk + c2T

p

k +(1 − μ)Qk + u1,kPk − 1 − u3,k􏼐 􏼑θQk􏽨 􏽩.

(11)

For k � 0, 1, . . . , T − 1, the adjoint equations and
transversality conditions can be obtained by using Pon-
tryagin’s maximum principle, in discrete time, given in
[13–18] such that

λ1,k �
z 􏽢Hk

zPk

, λ1(T)

λ2,k �
z 􏽢Hk

zMk

, λ2(T)

λ3,k �
z 􏽢Hk

zHk

, λ3(T)

λ4,k �
z 􏽢Hk

zTr
k

, λ4(T)

λ5,k �
z 􏽢Hk

zT
p

k

, λ5(T)

λ6,k �
z 􏽢Hk

zQk

, λ6(T)

(12)

For k � 0, 1, . . . , T − 1, the optimal controls u∗1,k, u∗2,k,
and u∗3,k can be solved from the optimality condition

z 􏽢Hk

zu1,k

� Aku1,k − λ1,k+1Pk + λ6,k+1Pk � 0,

z 􏽢Hk

zu2,k

� Bku2,k − λ3,k+1Hk + λ4,k+1ϵHk + λ5,k+1(1 − ϵ)Hk � 0,

z 􏽢Hk

zu3,k

� Cku3,k − λ2,k+1θQk + λ6,k+1θQk � 0.

(13)

So, we have

u1,k �
λ1,k+1 − λ6,k+1􏼐 􏼑Pk

Ak

,

u2,k �
λ3,k+1 − λ5,k+1􏼐 􏼑Hk + λ5,k+1 − λ4,k+1􏼐 􏼑ϵHk

Bk

,

u3,k �
λ2,k+1 − λ6,k+1􏼐 􏼑θQk

Ck

.

(14)

By the bounds in Uad of the controls, it is easy to obtain
u∗1,k, u∗2,k, and u∗3,k in the form of (10). □

5. Numerical Simulation

In this section, we shall solve numerically the optimal
control problem for our PMHTrTpQ model. Here, we
obtain the optimality system from the state and adjoint
equations.,e proposed optimal control strategy is obtained
by solving the optimal system which consists of six differ-
ence equations and boundary conditions. ,e optimality
system can be solved by using an iterative method. Using an
initial guess for the control variables, u1,k ,u2,k, and u3,k, the
state variables, P, M, H, Tr, Tp, and Q, are solved forward
and the adjoint variables λi for i � 1, 2, 3, 4, 5, 6 are solved
backwards at time steps k � 0 and k � T. If the new values of
the state and adjoint variables differ from the previous
values, the new values are used to update u1,k, u2,k, and u3,k,
and the process is repeated until the system converges.

,e numerical solution of model (1) is executed using
Matlab with the following parameter values and initial values
of state variable in Table 1.

We begin by presenting the solution evolution of our
model (1) without controls that are represented in Figure 2.
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Figure 2(a) shows that the number of moderate drinkers
increases in the beginning but then decreases clearly. ,is
decrease leads to an increase in the number of heavy drinkers
from the beginning and approaches a given value of 462.30
as we see in Figure 2(b). Finally, Figure 2(c) and Figures 2(d)
and 2(e) show that the number of the rich and poor heavy
drinkers joining private and public centers for alcohol ad-
diction treatment and the quitters of drinking decreases and
approaches certain unacceptable values.

In order to display the influence of alcohol treatment
centers on the population drinking dynamics, we present
some figures about the effects of the parameters α1, α2, c1,
and c2 on system (1).

Figure 2(f ) shows that the number of heavy drinkers
increases when the number of the heavy drinkers who join
addiction treatment centers decreases. Also, we observe in
Figure 2(g) that the number of quitters of drinking increases
when the number of the heavy drinkers who join addiction
treatment centers increases.

From these two figures, the importance of addiction
treatment centers is clear in reducing the number of heavy
drinkers and thus increasing the number of quitters of
drinking. ,erefore, we need to make an effort to introduce
these centers to people and encourage heavy drinkers to join
them and this is shown through the following objectives.

5.1. First Objective: Protecting and Preventing Potential
Drinkers from Falling into Alcohol Addiction. To realize this
objective, we apply only the control u1, i.e., the imple-
mentation of awareness, information, and educational
programs on potential drinkers and making them know the
risks of this phenomenon and the resulting health and social
damages. Figure 3(a) shows that the number of moderate
drinkers decreases from 231.16 (without control u1) to
124.59 (with control u1) at the end of the proposed program
and the number of heavy drinkers decreases from 462.29
(without control u1) to 249.02 (with control u1) at the end of
the proposed control strategy (see Figure 3(b)). Also, we
observe in Figure 3(c) that the number of people who quit
drinking increases and has reached the value 429.78 (with
control u1) compared to the situation when there is no
control, 5.68, at the end of the proposed strategy. So, our
objective has been achieved.

5.2. Second Objective: Increasing the Number of Heavy
Drinkers Who Join Treatment Centers of Alcohol Addiction.
To achieve this objective, we only use the control u2, i.e.,
encouraging heavy drinkers to know and join public and
private treatment centers. In Figure 4(a) it is observed that
there is a significant decrease in the number of heavy
drinkers with control compared to a situation when there is
no control where the decrease reaches 41.20% at the end of
the proposed control strategy. Figure 4(b) shows that the
number of the poor heavy drinkers who join public treat-
ment centers increased from 6.91 (Tp without control u2) to
59.70 (Tp with control u2) and that the number of rich heavy
drinkers who join private treatment centers increased from
7.06 (without control u2) to 233.72 (with control u2) at the

end of the proposed control (see Figure 4(c)) and Figure 4(d)
shows that the number of people who quit drinking without
control u2 decreases and approaches a value of 5.68. After 5
days, a slight increase appears with control u2. ,is increase
is not enough as the number of people who quit drinking
becomes moderate drinkers. To improve this result, we can
add another control that represents follow-up for temporary
quitters of drinking.

5.3. 5ird Objective: Encouraging Heavy Drinkers to Join
Treatment Centers of Alcohol Addiction and Following Up the
Quitters of Drinking. In order to accomplish this aim, we
use the controls u2 and u3, i.e., encouraging heavy
drinkers to know and join public and private treatment
centers and following up the temporary quitters of
drinking. ,e number of the poor heavy drinkers who join
public treatment centers increases from 6.91 (without
controls) to 32.17 (with controls) at the end of the pro-
posed strategy (see Figure 5(c)). Figure 5(d) demonstrates
that the number of the rich heavy drinkers who join
private treatment centers increases from 7.06 (without
controls) to 125.92 (with controls) at the end of the
proposed strategy. ,e number of the quitters of drinking
in Figure 5(e) increases significantly from 5.68 (without
controls) to 430.11 (with controls). ,rough the use of
those controls, the abovementioned objective has been
achieved.

5.4. Fourth Objective: Prevention, Treatment, and Follow-Up
for the Addicted Individuals. To meet this objective, we use
the controls u1, u2, and u3, i.e., awareness programs for the
potential drinkers, encouraging heavy drinkers to know and
join public and private treatment centers, and follow-up for
the quitters of drinking. Figure 6(a) shows that the number
of the moderate drinkers decreases starting from the early
days by 34.60%. Also, Figure 6(b) shows that the number of
the heavy drinkers increases starting from the early days but
then decreases from 462.29 (without controls) to 65.81 (with
controls). ,e number of the rich and poor heavy drinkers
who join private and public treatment centers increases by
11.45% and 2.98 %, respectively (see Figures 6(c) and 6(d)).
Figure 6(e) depicts clearly an increase in the number of the
quitters of drinking from 5.68 (without controls) to 550.63
(with controls). As a result, the objective set before has been
achieved.

We remark that the numbers of the rich and poor heavy
drinkers (Tr and Tp) decrease when we applied three
controls (u1, u2, u3) compared to using only the control
(u2). ,is decrease is due to the positive effect of the control
u1 on the compartment P and the control u3 on θQ (tem-
porary quitters) which prevents temporary quitters of

Table 1: ,e parameters used for model (1).

P0 M0 H0 Tr
0 T

p
0 Q0 b N δ

500 300 100 60 30 10 65 1000 0.002
μ β1 β2 α1 α2 α3 c1 c2 θ
0.065 0.75 0.14 0.001 0.001 0.001 0.001 0.002 0.02
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Figure 2: Continued.
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Figure 2: Representing the drinkers class without control.
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Figure 3: Representing the drinkers class with and without control u1.
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Figure 4: Representing the drinkers class with and without control u2.
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Figure 5: Continued.
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Figure 5: Representing the drinkers class with controls u2 and u3 and without controls.
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Figure 6: Continued.
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drinking from returning to drinking. So, the number of
individuals that enter the compartment, Tr and Tp, de-
creases. ,erefore, applying a combination of the three
controls is more effective than one control.

6. Conclusion

In this research paper, we introduced a discrete modeling
of drinking for the purpose of minimizing the number of
drinkers and maximizing the number of the rich and poor
heavy drinkers who join private and public treatment
centers of alcohol addiction and subsequently the number
of quitters of drinking. Unlike some other previous
models, we have taken into account the impact of private
and public addiction treatment centers on alcoholics. ,e
results showed that those centers have substantial influ-
ence on the dynamics of alcoholism and can greatly
impact the spread of drinking. ,us, it is crucial to urge
people to know and join private and public addiction
treatment centers to quit drinking. We also presented
three controls which, respectively, represent awareness
programs, encouragement, and follow-up. We applied the
results of the control theory and we managed to obtain the
characterizations of the optimal controls. ,e numerical
simulation of the obtained results showed the effective-
ness of the proposed control strategies.
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