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The study of pollution movement is an important basis for solving water quality problems, which is of vital importance in almost
every country. This research proposes the motion of flowing pollution by using a mathematical model in one-dimensional
advection-dispersion equation which includes terms of decay and enlargement process. We are assuming an added pollutant
sources along the river in two cases: uniformly and exponentially increasing terms. The unsteady state analytical solutions are
obtained by using the Laplace transformation, and the finite difference technique is utilized for numerical solutions. Solutions
are compared by relative error values. The result appears acceptable between the analytical and numerical solutions. Varying the
value of the rate of pollutant addition along the river (q) and the arbitrary constant of exponential pollution source term (λ) is
displayed to explain the behavior of the incremental concentration. It is shown that the concentration increases as q and λ
increase, and the exponentially increasing pollution source is a suitable model for the behavior of incremental pollution along
the river. The results are presented and discussed graphically. This work can be applied to other physical situations described by
advection-dispersion phenomena which are affected by the increase of those source concentrations.

1. Introduction

One of themajor problems for area-connected water resources
is water pollution. The source of this problem stems from the
expansion of the community, the increase of industrial plants,
and the increase of agricultural farms. Rivers carry water and
nutrients to areas all around them, which is why contaminated
water is having an impact on human health and is the leading
cause of disease worldwide. Sources of water pollution occur
due to the disposal of untreated point and nonpoint source
pollutants. Point-source pollution refers to the pollutants dis-
charged into a river from one discrete location or point, such
as industrial or residential wastewater. The indicator used
to measure the amount of pollution in water is biochemical
oxygen demand (BOD). In this study, it is assumed that pol-
lutants are largely biochemical waste and use the parameters
from the Tha Chin river, a particular river in Thailand, as per
Pimpunchat et al. (2007) [1, 2].

In Thailand, the Tha Chin river is one of the country’s
most polluted river. It has a continuously enlarged BOD.
Agriculture is, apparently, the most important source of
BOD loads affecting BOD concentrations along the river,
followed by aquaculture, swine farms, rice cultivation, and
agro-industry. Previous papers on the water quality of the
Tha Chin river found that the lower part of the river was
degraded, and that several major parameters exceeded the
National Surface Water Quality Standards and Classification
limits. The major water quality problems were low dissolved
oxygen (DO), high ammonia nitrogen, high fecal coliform
bacteria, high turbidity, and high organic matter (BOD).
The degradation of water quality in rivers has affected the
water quality and natural resources of the Gulf of Thailand.
[3–5]. Figure 1 shows the monitoring of BOD for the third
quarter of the year (April-June) between 2011 and 2018; it
plotted from raw data that obtained from the mobile applica-
tion developed by Regional Environmental Office 5 [6]. It
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indicates that BOD concentrations repeatedly exceeded
the Class 4 BOD standards (2-4mg/L) throughout the river
[7, 8]. Understanding the movement of pollution is useful
for controlling and predicting water quality in rivers. For
the assessment of the transport of contaminant changes in
water quality (e.g., BOD), an advection-dispersion equation
(ADE) is commonly used. ADE is a partial differential equa-
tion (PDE) derived from the mass balance applied to a mass
volume unit in a river. The solution includes both analytical
solutions and numerical solutions, based on the complica-
tions of the model. The Laplace transform technique has
been widely applied to develop analytical solutions to
ADE. Previous works in which ADE has been used in anal-
ysis include M.Th. Van Genuchten and W.J. Alves (1982),
who presented analytical solutions of a one-dimensional
convective-dispersive solute transport equation under a vari-
ety of conditions [9]; Kumar et al. (2010), who obtained ana-
lytical solutions for temporally and spatially dependent
solute dispersion in a one-dimensional semi-infinite porous
medium by using Laplace transform technique [10]; S. Savo-
vic’ and A. Djordjevich (2012), who described numerical
solution by using the finite difference method for the 1-D
advection diffusion partial differential equation with variable
coefficients in semi-infinite media [11]; and Pimpunchat
et al., who studied a mathematical model of pollution in river,
presenting a simple model and providing some analytical
solutions at steady state flows [1, 2].

In this study, the objective is to propose unsteady state
solutions of the pollutant concentration by considering
advection-dispersion equations in one dimension which
includes terms of decay and increasing sources. Increasing
sources were analysed by assuming the rate of pollutant addi-
tion along the river: q in two cases and uniformly increasing

and exponentially increasing forms. We approximate the
arbitrary constants: λ of exponentially increasing pollution
source terms for predicting the behavior of concentration
movement. Analytical solutions are obtained by using the
Laplace transform technique and comparing the results by
relative error with the numerical solution by using the
explicit finite difference technique.

2. Materials and Methods

2.1. The Governing Equation. The unsteady flow in the river
is modeled as 1-D using a single spatial xðmÞ to describe
the distance down the river from its source. Quantities, such
as pollutants or oxygen concentrations, are only allowed to
vary along the length of the river and are treated as homoge-
neous across the river cross-section. This assumption is justi-
fied by fulfilling Dobbin’s criterion [12]. We use a single
quantity to measure water pollution; the concentration of
the pollutant Pðx, tÞ (kgm-3) is assumed to vary with time t
(day). This is in the same form as a water pollution equation,
2.1, presented by Pimpunchat et al. [2]. The rate of change of
the concentration with position x and time t are expressed as

∂ APð Þ
∂t

=Dp
∂2 APð Þ
∂x2

−
∂ vAPð Þ
∂x

− K1
X

X + k
AP

+ qH xð Þ, 0 ≤ x < L ≤∞, t > 0ð Þ,
ð1Þ

where HðxÞ is the Heaviside function

H xð Þ =
1, 0 < x < L,
0, otherwise,

(
ð2Þ
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Figure 1: BOD status in the Tha Chin river (April-June) during 2011-2018. (Modified from raw data which is available from [6]).
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this equation is standard and was develop in Chapra [13]. We
consider a river where pollutants are discharged in the form
of wastes. It is assumed that these pollutants use dissolved
oxygen Xðx, tÞ for various biochemical and biodegradation
processes. The discharge of pollutants into the river is at
the constant rate q, A is the cross-section area of the river,
Dp is the dispersion coefficient of pollutant in the x direction,
v is the water velocity in the x direction, and K1 is the degra-
dation rate coefficient for pollutants. For convenience, all
parameters, such as A, Dp, v, K1, and q, hold constant values
over time and space. Analysis is considered by the case of
negligible k ðk ≈ 0Þ, and pollution sources are considered in
two cases, uniformly increasing P1ðx, tÞ and exponentially
increasing pollution sources P2ðx, tÞ, demonstrated by Equa-
tions (3) and (4), respectively

∂ AP1ð Þ
∂t

=Dp
∂2 AP1ð Þ
∂x2

−
∂ vAP1ð Þ

∂x
− K1AP1 + qH xð Þ, ð3Þ

∂ AP2ð Þ
∂t

=Dp
∂2 AP2ð Þ
∂x2

−
∂ vAP2ð Þ

∂x
− K1AP2

+ q 1 − exp −λxð Þð ÞH xð Þ,
ð4Þ

where λ is an arbitrary constant of exponential pollution
source terms. The exponentially increasing form of pollution
sources Equation (4) assumed by, the referred papers was
found that the downstream pollution of the Tha Chin river
is higher than the upstream, which is caused by geography,
including various contributions from branch river to river
and the increasing wastewater that comes from swine and
rice farming [4–6]. Figure 2 sketches the physical system of
the pollution sources described in Equations (3) and (7).

Let the domain be supposedly initially solute free, thus,
initial conditions are

P x, tð Þ = 0, x ≥ 0, t = 0: ð5Þ

Boundary conditions at the origin of domain are consid-
ered by the uniformly increasing source concentration. The
concentration gradient at the infinity is assumed to be zero.
Then, boundary conditions associated with Equation (3) in
a semi-infinite domain are as follows;

P x, tð Þ = P0, x = 0, t > 0, ð6Þ

∂P
∂x

x, tð Þ = 0, x⟶∞, t > 0, ð7Þ

where P0 is source concentration at the origin.

2.2. Analytical Technique. Given a function Pðx, tÞ defined
for all t > 0 and assumed to be bounded, the Laplace trans-
form in t considering x as parameter can be applied to Equa-
tion (8) [14, 15];

�P x, sð Þ = L P x, sð Þ ; t⟶ sf g =
ð∞
0
e−stP x, tð Þdt, ð8Þ

where s is called the transform variable. Applying Laplace
transformation to Equations (3) and (4) then, we get

DpA
d2P1 x, sð Þ

dx2
− vA

dP1 x, sð Þ
dx

− K1A�P x, sð Þ

− A sP1 x, sð Þ − P1 x, 0ð Þ� �
+ q

s
= 0, x ≥ 0, s > 0,

ð9Þ
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Figure 2: Physical system of the rate of pollutant addition q.
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DpA
d2P2 x, sð Þ

dx2
− vA

dP2 x, sð Þ
dx

− K1AP2 x, sð Þ

− A sP2 x, sð Þ − P2 x, 0ð Þ� �
+ q

s
1 − exp −λxð Þð Þ

= 0, x ≥ 0, s > 0:

ð10Þ

Transformed initial and boundary conditions on Equa-
tions (5), (6), and (7) give

�P x, 0ð Þ = 0, ð11Þ

�P 0, sð Þ = P0
s
, ð12Þ

and

d�P
dx

x, sð Þ = 0 as x⟶∞: ð13Þ

Evaluating the solutions of Equations (9) and (10) by
using initial and boundary conditions. Equations (11), (12),
and (13) provide their solutions in the Laplace domain,
which may be written as

�P1 x, sð Þ = P0
s

−
q

As s + K1ð Þ
� �

exp γ −

ffiffiffiffiffiffiffiffiffiffiffi
s + β2

Dp

s !
x

 !

+ q
As s + K1ð Þ ,

ð14Þ

�P2 x, sð Þ = P0
s

−
q

As s + K1ð Þ + q
As s + K3ð Þ

� �
exp

� γ −

ffiffiffiffiffiffiffiffiffiffiffi
s + β2

Dp

s !
x

 !
+ q
As s + K1ð Þ

−
q exp −λxð Þ
As s + K3ð Þ ,

ð15Þ

where γ = v/2Dp, β = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2/4Dp + K1

p
, and K3 = K1 − vλ −

Dpλ
2.

2.3. Numerical Technique. In this section, we present the
numerical technique, in order to use the explicit finite differ-
ence technique by using the forward differences scheme for
the time and the central derivatives for the space. Thus,
Equations (3) and (7) in the finite difference form can be
written as

P1
n+1
m − P1

n
m

Δt
=

Dp

Δx2
Pn
1m+1 − 2P1

n
m + P1

n
m−1ð Þ

−
v

2Δx P1
n
m+1 − P1

n
m−1ð Þ − K1P1

n
m

+ q
A

+ 0 Δx2, Δt
� �

,

ð16Þ

P2
n+1
m − P2

n
m

Δt
=

Dp

Δx2
P2

n
m+1 − 2P2

n
m + P2

n
m−1ð Þ

−
v

2Δx P2
n
m+1 − P2

n
m−1ð Þ − K1P2

n
m

+ q
A

1 − exp −λxnmð Þð Þ + 0

Δx2, Δt
� �

,

ð17Þ

where indexes m and n refer to the discrete step size Δx and
the time step size Δt, respectively. The initial condition (4)
and boundary conditions (5) and (6) for Equations (3) and
(7) can be expressed in the finite difference form as;

Pm,0 = 0, x ≥ 0,
P0,n = P0, t > 0,
PM,n = PM−1,n, x⟶∞,t ≥ 0:

ð18Þ

3. Results and Discussions

3.1. Analytical Solutions. The solutions of the Equations (14)
and (15) are found by inverting the Laplace transform
denoted by the complex variable Equation (16).

P x, tð Þ = L−1 �P x, sð Þ ; s⟶ t
� �

= 1
2πi

ðc+i∞
c−i∞

�P x, sð Þe−stds, s > 0:
ð19Þ

Applying the shift theorem and the convolution theorem
[16], then the analytical solution with uniformly increasing
pollution source P1ðx, tÞ is

P1 x, tð Þ = q
AK1

1 − exp −K1tð Þð Þ + 1
2 P0 −

q
AK1

� �
exp

� βffiffiffiffiffiffi
Dp

p + γ

 !
x

 !
erfc x

2 ffiffiffiffiffiffiffi
Dpt

p + β
ffiffi
t

p !

+ exp −βffiffiffiffiffiffi
Dp

p + γ

 !
x

 !
erfc x

2 ffiffiffiffiffiffiffi
Dpt

p − β
ffiffi
t

p !

+ q
2AK1

exp v
Dp

x − K1t

 !
erfc

� x

2 ffiffiffiffiffiffiffi
Dpt

p + γ
ffiffiffiffiffiffiffi
Dpt

q !
+ exp −K1tð Þ erfc

� x

2 ffiffiffiffiffiffiffi
Dpt

p − γ
ffiffiffiffiffiffiffi
Dpt

q !
,

ð20Þ
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and for the analytical solution with exponentially increasing
pollution source P2ðx, tÞ is

P2 x, tð Þ = q
AK1

1 − exp −K1tð Þð Þ

−
q

AK3
exp −λxð Þ 1 − exp −K3tð Þð Þ

+ 1
2 Po −

q
AK1

+ q
AK3

� �
exp

� βffiffiffiffiffiffi
Dp

p + γ

 !
x

 !
erfc x

2 ffiffiffiffiffiffiffi
Dpt

p + β
ffiffi
t

p !

+ exp −βffiffiffiffiffiffi
Dp

p + γ

 !
x

 !
erfc x

2 ffiffiffiffiffiffiffi
Dpt

p − β
ffiffi
t

p !

+ q
2AK1

exp v
Dp

x − K1t

 !
erfc

� x

2 ffiffiffiffiffiffiffi
Dpt

p + γ
ffiffiffiffiffiffiffi
Dpt

q !
+ exp −K1tð Þ erfc

� x

2 ffiffiffiffiffiffiffi
Dpt

p − γ
ffiffiffiffiffiffiffi
Dpt

q !
−

q
2AK3

exp

� θffiffiffiffiffiffi
Dp

p + γ

 !
x − K3t

 !
erfc x

2 ffiffiffiffiffiffiffi
Dpt

p + θ
ffiffi
t

p !

+ exp −θffiffiffiffiffiffi
Dp

p + γ

 !
x − K3t

 !
erfc

� x

2 ffiffiffiffiffiffiffi
Dpt

p − θ
ffiffi
t

p !
,

ð21Þ

where θ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2/4Dp + vλ +Dpλ

2
q

.

3.2. The Steady State Solution. The steady solution is derived
from Equations (20) and (21) by taking limit t⟶∞.
Hence, pollutant concentrations in this state give

P1 xð Þ = q
AK1

+ P0 −
q

AK1

� �
exp γ −

βffiffiffiffiffiffi
Dp

p
 !

x

 !
,

P2 xð Þ = q
AK1

−
q

AK3
exp −λxð Þ +

�
P0 −

q
AK1

+ q
AK3

�
exp γ −

βffiffiffiffiffiffi
Dp

p
 !

x

 !
:

ð22Þ

The downstream pollutant concentration limit were
calculated by x⟶∞ therefore gives

P1 x⟶∞, t⟶∞ð Þ = P2 x⟶∞, t⟶∞ð Þ = q
AK1

:

ð23Þ

This limit is the same result which was obtained by
Pimpunchat et al. [1].

3.3. Analytical and Numerical Simulation. Numerical solu-
tions are obtained by rearranging Equations (16) and (17);
then, the numerical solutions must satisfy

Pn+1
m = BPn

m+1 + CPn
m + EPn

m−1 +Q, ð24Þ

where B =DPΔt/Δx2 − vΔt/2Δx, C = 1 − 2DPΔt/Δx2 − K1Δt,
E =DPΔt/Δx2 + vΔt/2Δx, Q1 = qΔt/A for uniformly increas-
ing pollution source, and Q2 = qð1 − exp ð−λxnmÞÞΔt/A for
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Figure 3: Analysis of pollutant concentrations P1 and P2 of various values of the rate of pollutant addition (q) at t = 1 day and 0:06 ≤ q ≤ 0:48:

5Journal of Applied Mathematics



exponentially increasing pollution source. The x and t meshes
must be chosen DpΔt/ðΔxÞ2 ≤ 1/2 in order to ensure stability.

Relative error =
Panalytical − Pnumerical

Panalytical

					
					: ð25Þ

The parameter values used in this study are the same as
per Pimpunchat et al. [1]: Dp = 3:456 × 106 (m2day-1), v =
4:32 × 104 (mday-1), A = 2:1 × 103 (m2), K1 = 8:27 (day-1),
and P0 = 1 × 10−9 (kgm-3). Figure 3 shows pollutant concen-
trations with various rates of pollutant addition along the
river by various distance steps x at time t = 1 day. It starting
from q = 0:06 to q = 0:48 (kgm-1day-1), the subfigure on the
left-hand side shows q in the form of uniform increase by
Equation (20), and the right-hand side shows q in the form
of exponential increase from Equation (21). The arbitrary
constant of the exponential pollution source term (λ =
0:06289day-1) is assumed by the total rate of pollutant addi-
tion q being reduced by 5% along the river (L = 318 km),
approximately. At the same position x, the result of adding
pollutants by different terms makes it clear that the concen-
tration in the right subfigure is less than the concentration
in the left subfigure. The concentrations increasingly vary
obviously with q; P increases as q increases. The rate of both
concentrations increases rapidly near the origin pollution
source and slowly far away. By Equation (6), the concentra-
tion gradient at infinity is assumed to be zero; when the dis-
tance is long enough, the pollutant concentrations converge
to a positive constant. The range of distance at which the con-
centration is unchanged happens downstream; addition by
uniformly increasing pollution source is shorter than addition
by exponentially increasing pollution source.

The comparison between the analytical and numerical
solutions obtained by the Laplace transform technique and
finite different technique is illustrated in Figure 4 by step size

Δx = 0:1 and Δt = 0:001. The concentration values are shown
in the longitudinal region 0 ≤ x ≤ 50 km at different time
t = 0:01 (blue line), t = 0:1 (green line), and t = 1 (red line),
respectively. The relative errors which are calculated by
Equation (25) are provided in Table 1. The relative error is
high near the origin and then decreases into a positive value.
The maximum percentage relative error is excellent agree-
ment between the analytical and the numerical solutions; it
is less than 0.07% when x ≤ 1 km and less than 0.05% when
1 < x ≤ 5 km, approximately. When the distance is long
enough, the concentration values converge into a positive
constant, causing the relative errors to gradually decrease
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Figure 4: Analytical and numerical solutions of pollutant concentrations P1 and P2 at t = 0:01, 0.1, and 1 day.

Table 1: Relative error of pollutant concentrations by Δx = 0:1 and
Δt = 0:001 at t = 1 day.

Distance (km)
Analytical
solutions

Numerical
solutions

Relative errors

Uniformly increasing pollution source P1

5 2:10964 × 10−6 2:10957 × 10−6 3:48535 × 10−5

10 2:93091 × 10−6 2:93085 × 10−6 1:95423 × 10−5

15 3:25077 × 10−6 3:25074 × 10−6 1:02938 × 10−5

20 3:37535 × 10−6 3:37534 × 10−6 5:14846 × 10−6

25 3:42387 × 10−6 3:42387 × 10−6 2:47106 × 10−6

30 3:44277 × 10−6 3:442277 × 10−6 1:14859 × 10−6

Exponentially increasing pollution source P2

5 3:52318 × 10−7 3:52349 × 10−7 8:67962 × 10−5

10 9:63291 × 10−7 9:63313 × 10−7 2:27143 × 10−5

15 1:54747 × 10−6 1:54748 × 10−6 7:10092 × 10−6

20 2:02779 × 10−6 2:02779 × 10−6 2:07408 × 10−6

25 2:39946 × 10−6 2:39946 × 10−6 3:55824 × 10−7

30 2:67901 × 10−6 2:67900 × 10−6 1:95815 × 10−7
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into a positive constant value. In addition, pollutant concen-
tration with 100 mesh points is depicted in Figure 5. The
graph shows the different levels of increasing concentrations
by surface shading.

3.4. Capacity Approximation. The daily load of contamina-
tion depends on the term of added pollutant q and the
length of river L. Certainly, that in case q increases the
concentration increases, as depicted by Figure 3. Figure 6
illustrates the behavior of pollutant concentrations (P2/P0)
by vary λ (0:25 × 10−5 ≤ λ ≤ 0:46667 × 10−5) compared with
the observed data between water quality sampling stations
TC 15 and TC 13. These stations were chosen because they
were separated between the middle and lower parts of rivers
and the BOD standard esteem multiplied (2-4mg/L). In this
manner, λ is simulated by the concentration at the end to
extend by one time. After that, we utilize these values for esti-
mated assessing the capacity load of pollutant per day
between the two stations by L = 36 km, q = 60, load is about
2,160 kg per day by uniformly incremental but the daily load
of the exponentially is less than up to 90% which appeared

approximation computation these values by Table 2. By this
simulation, we can offer at the same rate q the analytical solu-
tion with exponentially increasing pollution source as a suit-
able model for illustrating the behavior of incremental
pollution along the river.

3.5. Variable Coefficients. In our model, the medium of trans-
port has a uniform dispersion and velocity. To apply our
model to the case of spatially temporally dependent coeffi-
cients, it can therefore be modeled with variable coefficients as

∂ APð Þ
∂t

= ∂
∂x

Dp x, tð Þ ∂ APð Þ
∂x

− v x, tð ÞAP

 �

− K1AP + qH xð Þ,

ð26Þ

let Dpðx, tÞ =Dpf1ðx, tÞ, vðx, tÞ = v0 f2ðx, tÞ, f1ðx, tÞ = f
ðmtÞ, and f2ðx, tÞ = 1 [10]. This model applies to temporally
dependent dispersion along a uniform flow. By these trans-
formations, dX/dx = −1/f1ðx, tÞ or X =

Ð
dx/f1ðx, tÞ and T =

1
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Figure 5: Pollutant concentrations P1ðx, tÞ and P2ðx, tÞ with 100 mesh points by Δx = 0:1 and Δt = 0:01.
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Ð t
0dt/f ðmtÞ (Crank (1975)); then, Equation (26) reduces to

our model Equation (3) ∂ðAPÞ/∂T =Dpð∂2ðAPÞ/∂X2Þ + v0
ð∂ðAPÞ/∂XÞ − K1AP + q, where Dp and v0 are constants in
which the analytical solution can be obtained by using the
Laplace transform technique the same with this work.

In addition, the model can apply to spatially dependent
dispersion along a nonuniform flow by Dpðx, tÞ is consid-
ered proportional to the square of vðx, tÞ instead of propor-
tion to vðx, tÞ. Both terms in Equation (26) are obtained as
follows: f1ðx, tÞ = ð1 + axÞ2 and f2ðx, tÞ = ð1 + axÞ, where ax
is nondimensional and a is nonzero real constant accounting
for the variations in velocity and dispersion due to inhomo-
geneity [10]. From previous transformation, we will have
another spatial variable X = 1/að1 + axÞ then Equation (26)
reduces to

∂ APð Þ
∂t

= a2DpX
2 ∂

2 APð Þ
∂X2 + av0X

∂ APð Þ
∂X

− av0X + K1ð ÞAP + q:

ð27Þ

To evaluate the analytical solution of Equation (27),
additional studies can be conducted in this work and the
previous work [10]. Another case for the cross-section area
in Equation (3) vary with position x, and we may get the
desired equation as

∂P
∂t

=Dp
∂2P
∂x2

− v
∂P
∂x

− K1P + q
A xð Þ , ð28Þ

in which the analytical solutions can be obtained by using
Laplace transformation techniques in this work as well.

4. Concluding Remarks

The unsteady state solutions of pollutant concentration by
considering advection-dispersion equations in 1-D are pro-
posed by using the Laplace transform technique and the
explicit finite difference technique, for analytical and numer-
ical solutions, respectively. The model is presented by consid-
ering the rate of pollutant addition along the river by
uniformly increasing and exponentially increasing forms.
The trend of concentrations is expanded with time and space,
which is affected by the rate of pollutant addition along the
river q. It is obviously found that the limits of the down-
stream concentrations that are increased q by the exponen-
tially increasing form are less than the increased q by the
uniformly increasing form, which is the result of the behavior
of added pollutant sources. In reality, this model is suitable
for the river which has pollution source that varies with

2
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1P
2 

/P
0

0.5

0
118 Distance from river mount (km) 82

2016
2015

2013, 2017
2014

𝜆 = 4.16667 × 10−5

𝜆 = 2.5 × 10−5

𝜆 = 4.16667 × 10−5

𝜆 = 2.5 × 10−5

Figure 6: Behaviors of pollutant concentration (P2/P0) at t = 1 day by various arbitrary constants of exponentially increasing pollution source
terms (0:25 × 10−5 ≤ λ ≤ 0:46667 × 10−5 day-1) with q = 60 kg/km day.

Table 2: Various λ of exponentially increasing pollution source for
P2/P0 concentration and daily load difference.

Exponentially increasing pollution source L = 36 km and q = 60
λ

P2/P0 at the end
numerical solutions

Daily load (kg/day)
difference (%)

2:5 × 10−5 1.32439 99.95501%

2:63889 × 10−5 1.39788 99.52516%

2:77778 × 10−5 1.47136 99.95002%

4:16667 × 10−5 2.20598 99.92504%
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position by the pollution sources in the downstream which is
higher than the downstream, as appeared within the Tha
Chin river and the Chao Praya River in Thailand. The source
of contamination of the case study river will be spread from
the center to the end, causing the concentration of contami-
nation will continuously increment. The arbitrary constant λ
was presented and illustrated to significantly compare the
behavior of exponential increasing form of sources. The solu-
tions of this study can be used to predict the effect of added
pollutants on the maximum allowable loads of pollutants that
a river can have from all sources by changing the value of q
and λ. The results can be applied in many physical situations
described by advection-dispersion phenomena and in mak-
ing decisions to support the planning and managing of river
water quality issues.

Data Availability

The result of this study was from Analytical and Numerical
techniques. We did not use the raw data.
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