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Our work is aimed at modeling the American option price by combining the dynamic programming and the optimal stopping
time under two asset price models. In doing so, we attempt to control the theoretical error and illustrate the asymptotic
characteristics of each model; thus, using a numerical illustration of the convergence of the option price to an equilibrium
price, we can notice its behavior when the number of paths tends to be a large number; therefore, we construct a simple
estimator on each slice of the number of paths according to an upper and lower bound to control our error. Finally, to
highlight our approach, we test it on different asset pricing models, in particular, the exponential Lévy model compared to
the simple Black and Scholes model, and we will show how the latter outperforms the former in the real market
(Microsoft “MSFT” put option as an example).

1. Introduction

The first academic work on pricing options, in particular
that of Black and Scholes [1], has allowed the development
of derivatives markets. But the use of this theory or those
which followed for the evaluation of negotiated financial
contracts and related hedging strategies deduced could not
be done in practice without the choice of a model and its
estimate. Today, it is admitted, on the basis of numerous
empirical studies, that the Gaussian hypothesis for the log
return on financial assets has reduced validity (see Section
2.3.1). The reader will find examples in the article [2] as well
as in [3]. The first alternative models to the Gaussian model
were the stable model proposed by [4, 5], and within the
framework of option valuation, Merton [6] is the first author
to have developed a non-Gaussian model; let us note that for
a long time, evaluating American option has been consid-
ered inadequate with the traditional forward Monte Carlo
simulations; hence, the binomial tree model [7] and finite
difference [8] methods were used as the only numerical
method before the mid-1990s when new methods appeared.

The most popular method was proposed by Carriere [9]
using optimal stopping times and then developed, improved,
and popularized by Longstaff and Schwartz [10] by combin-
ing between least square regression and Monte Carlo simu-
lation; for a more comprehensive review of the literature,
the reader may profitably consult the works of Tankov
et al. [11]. In this paper, we compare between the models
of Black and Scholes in 1973 [1] and an exponential
diffusion-jump model, but when using a modeling process
using discontinuous trajectories, a delicate problem arises,
which is the incompleteness of markets, and the risk-
neutral measure is not unique. Numerous works such as
those of Fujiwara and Miyahara [12] or Tankov et al. [11]
have been devoted to this subject. Here, we adopt a more
direct point of considering view that the dynamic followed
by the price of financial assets is given in a risk-neutral
universe.

The main advantage of Monte Carlo simulation resides
in its convergence rate which does not depend on the num-
ber of the underlying, and it is useful thanks to its ease of
handling a large range of models. However, Monte Carlo
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simulations stay slow and their standard form is not suitable
for American options; the reason comes from the fact that
their trajectories dissociate (date of execution of the option
is independent of each trajectory); in fact, the possibility of
exercising at any time requires calculating on each trajectory
the expected value of the option which is a conditional
expectation. [10] proposes an algorithm that requires rejec-
tion of certain trajectories (trajectories that are out of the
money) and compares the intrinsic value (discounted pay-
off) to be able to decide whether to execute the option or
keep it. This practical term is not feasible even if we limit
ourselves to a finite number of possible exercise dates in
order to solve a dynamic programming of the optimal exer-
cise policy that requires backward simulations.

In Section 1, we present the theoretical framework of the
Longstaff and Schwartz algorithm and we show the effective-
ness of this approach compared to the dynamic algorithm of
Tsitsiklis and van Roy. In Section 2, we focus on the numer-
ical implementation of the Longstaff and Schwartz algorithm
and compare the B&S model and Lévy jump-diffusion. We
also focus on the theoretical and asymptotic convergence
of this algorithm, and towards the end, we present our
method for controlling the error using a put option on
Microsoft “MSFT“ data as an example from “Yahoo
Finance” and we implement the validation of these models
in a real market.

2. Pricing American Option
Theoretical Framework

We consider an American option of value Uðt, YðtÞÞ which
depends on the time and m factors YðtÞ = Y1ðtÞ,⋯, YmðtÞ;
for example, an option in the B&S model depends on one fac-
tor Y1ðtÞ = SðtÞ; in the case of exponential Lévy jump-
diffusion model, the option depends, respectively, on the
underlying price, jump size, and number of jumps in ½0, T�Y
ðtÞ = ðY1ðtÞ = SðtÞ, Y2ðtÞ = Jt , Y3ðtÞ =NtÞ. We are looking
for the empirical distribution of the probability of Uðt, YðtÞÞ
or its moments, and we are interested in all values of Uðt, Y
ðtÞÞ in the meantime ½0, T� (American option).

Monte Carlo simulation is a probabilistic method used in
the case where the distribution law Uðt, YðtÞÞ or the first
moments are not defined analytically. This simulation con-
sists in generating a large number of possible trajectories
Stjt=t1⋯t=tN ; therefore, we build an empirical distribution of
SðtÞ.

2.1. Characterization of the Optimal Stopping Time Policy by
the Snell Envelope. In this section, we aim to explain how the
Snell envelope provides an introduction of optimal stopping
time theory for pricing an American option.

Definition 1. Let ðΩ, F, ðF tÞÞt∈f0,⋯,Tg
, PÞ be a filtered probabil-

ity space, which means we discretize the time space ½0, T�
into n pieces and we consider Ω the measure space of the
universe of possible values and F ⊂Ω is a σ-algebra of the
set’s events; P is the probability measure on F; F t is the nat-
ural filtration on ðΩ, FÞ; i.e., ∀ti, t j ∈ f0,⋯, Tg, F ti

is a σ

-algebra and if i < j, F ti
⊂F t j

; T is the time horizon, and
the underlying ðStÞt∈f0,⋯,Tg is defined on the filtered proba-
bility space with a finite time horizon T .

Let ðOtk
Þ
k=0⋯n

be an adapted and integrable random var-
iable. The Snell envelope of the process ðOtk

Þ
k=1⋯n

is defined
as

Utj
= ess sup

τ∈Γt j

E Oτ ∣F t j

� �
, j = 1⋯ n, ð1Þ

where Γt j
is the set of all stopping time in ft j,⋯, Tg.

Proposition 2. The Snell envelope ðUtk
Þ
tk=0⋯,tn=T

of

ðOtk
Þ
tk=0⋯tn=T

fulfills these properties:

(1) UT =OT

(2) Utk
=max fOtk

, EðUtk+1
∣ Ftk

Þg such that k = 0,⋯, n

(3) ðUtk
Þ
k=1⋯n

is the smallest supermartingale dominat-
ing ðOtk

Þ
k=1⋯n

Proof. See Appendix A.☐☐

The optimal time is defined as follows:

Definition 3. τ is an optimal time iff
E½Oτ ∣F0� = supτ′∈Γ0E½Oτ ∣F0�.

Using the Snell envelope, we can characterize the opti-
mal stopping time policy to evaluate an American option.

Theorem 4. A stopping time τ is optimal if and only if

(i) Uτ =Oτ

(ii) Uτ∧t j is a martingale

Proof. See Appendix B.☐☐

Proposition 5. Let τ =min fk ≥ 0 ∣Uk =Okg; hence, τ is an
optimal stopping time.

Proof. See Appendix C.☐☐

2.2. Effectiveness of Longstaff and Schwartz Policy Iteration
Approach. We consider the same filtered probability space
ðΩ, F, ðF tÞ0≤t≤T ,ℙÞ, T ≥ 0, and Wt = ðW1

t ,⋯,Wd
t Þ, a Brow-

nian motion of d dimension. We notice ðOtk
Þ
k=1⋯N

as the
payoff process and ðUtk

Þ
k=1⋯N

as the discounted value of
the option (Snell envelope) Utk

= ess supτ∈Γtk
E½Oτ ∣F tk

� such
that Γtk

is the set of all F t-stopping time in t ∈ ftk,⋯, tN
= Tg; we aim to approximate U0.

The Longstaff and Schwartz algorithm uses the same tra-
jectories for each step due to its dynamic programming that
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depends on the stopping time instead of the value function
as in the case of Tsitsiklis and van Roy [13]. This approach
is very advantageous because it is robust, has low computa-
tional burden, and saves time.

τN = tN ,
τk = tk1Otk

≥E Otk+1 ∣Ftk½ � + τk+11Otk
≤E Otk+1 ∣Ftk½ �,

(
ð2Þ

such that τk is the smallest optimal stopping time after tk;
the first line of the system (2) highlights the fact that the
Snell envelope is equal to the payoff at time T . The second
line is a comparison between the payoff at time tk and the
conditional expectation of the payoff at time tk+1 on F tk

that
we design by continuation value. Now, the main challenge
that arises is to approximate conditional expectation.

2.3. Longstaff and Schwartz Approach and Monte Carlo
Simulation

Theorem 6. Assume that ðXtÞt=0⋯T is a Markovian process
and ϕk is a F t measurable function; then,

E Otk+1
∣F tk

� �
= E Otk+1

∣ Xtk

� �
= ϕk Xtk

� �
: ð3Þ

Remark 7. Because of the orthogonality of conditional expec-
tation in L2, we can compute ϕk by the least square:

ϕk = inf
ϕ∈Φ

E Otk+1 − ϕ Xtk

� ��� ��2h i
, ð4Þ

where Φ is the set of L2ðσðXtk
ÞÞ functions.

The classical numerical (LS) algorithm is based on the
approximation of conditional expectation by a finite p
-dimensional vector (polynomial basis, logistic.) in the L2

space. We notice ðφkÞk=1,⋯,p this finite vector such that it is

an L2 basis and ϕpkðXtk
, θkÞ =∑p

n=1θnφnðXtk
Þ.

(i) Let fSðmÞ
t0

,⋯, SðmÞ
tN

g be the price paths and fOðmÞ
t0

,⋯,
OðmÞ

tN
g the payoff paths, such that m ∈ f1,⋯,Mg. We

present the LS algorithm with Monte Carlo approxi-
mation policy as

bτp, mð Þ
N = tN ,bτp, mð Þ
k = tk1

O mð Þ
tk

≥ϕpk S mð Þ
tk

,bθp,M
k

� � + τk+11
O mð Þ
tk

≤ϕpk S mð Þ
tk

,bθ p,M
k

� �,
8><>: ð5Þ

such that bτp,ðmÞ
k is the smallest optimal stopping time

after tk on the mth path for the p-dimensional approxima-
tion. Hence, the conditional expectation E½Otk+1

∣F tk
� is

computed by the following minimization problem:

θpk = arg inf
θ∈Θ

E Obτ p

k+1
− ϕpk Stk , θ

� ���� ���2	 

, ð6Þ

or in another way by its Monte Carlo approximation:

bθp,Mk = arg inf
θ∈Θ

1
M

〠
M

m=1
ϕpk S mð Þ

tk
, θ

� �
−O mð Þbτ p, mð Þ

k+1

���� ����2, ð7Þ

such that Θ is a finite set in ℝ. The coefficients ðbθp,Mk Þk=1,⋯,N
give us convenient multiplicators of basis vectors in L2 for
determining the optimal policy of the system (2). Thus, the
option price at time 0 is obtained as Up

0 = EðObτ p

1
Þ with τ1

= inf fk ∈ f1,⋯,Ng ∣Ok =Ukg. Therefore, the Monte
Carlo approximation is

Up,M
0 = 〠

M

m=1
O mð Þbτ p, mð Þ

1
: ð8Þ

2.3.1. The Inadequacy of the Model B&S with the Real
Financial Market. We break down the interval ½0, T� in N
periods of equal duration Δt = T/N with N large enough
which makes it possible to discretize the interval in t0 = 0,
⋯tN =N .

log
S t j
� �

S t j−1
� � = r −

1
2σ

2
	 


Δt + σWΔt : ð9Þ

This formula shows us that the log returns of the asset
price follow a normal distribution, but as we can see in
Figure 1, the empirical distribution of Microsoft’s weekly
log returns between 14/03/2016 and 17/03/2021 (https://fr
.finance.yahoo.com/quote/MSFT/history?p=MSFT) has an
excess kurtosis (i.e., density function of log ðSðt jÞ/Sðt j−1ÞÞ
has a bigger pick around mean and heavy tails compared
to the normal distribution, which means that log ðSðt jÞ/Sð
t j−1ÞÞ values are more clustered around its mean and the
probability that a jump occurs is more considerably pre-
sented) and negative skewness (i.e., the tails are shifted to
the left compared to a symmetric normal distribution, which
means that the decrease in the stock price outweighs the cor-
responding increase in Microsoft’s log returns).

We can highlight other inconsistencies with the B&S
model like stochastic volatility with mean-reverting phe-
nomena; indeed, in the real market volatility, it is not con-
stant and we can also emphasize what is called “volatility
clustering” (i.e., an uptick in volatility can be followed by
higher volatility) (see [14]). In this paper, we content our-
selves with constant volatility models.

2.4. Forward Simulation for Pricing Asset Price

Theorem 8 (first fundamental theorem of asset pricing). We
price on a complete market if only if there exists a unique
equivalent measure ℚ.

In a complete market, the existence and uniqueness are
satisfied. For further explanations, see [15]. In the Black
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and Scholes model under the unique equivalent martingale
(risk-neutral measure), the asset price follows the dynamics:

dSt = rStdt + σStdBt , ð10Þ

where dBt is the increment of the Brownian motion, r the
risk-free rate, and volatility σ.

Merton [6] notes that the source of the jumps can generally
be caused by information specific to the firm or its industry,
and in this case, they have a negligible impact on the rest of
the market. The jump component then represents an unsys-
tematic risk and will be uncorrelated with the market. The
choice of the risk-neutral measure in the case of incomplete
markets remains an open problem, although several lines of
research have already been explored in this direction. In this
regard, the reader can refer to the different works carried out
by [11] or [16]. We will assume in the following that the
dynamics of the underlying condition follows a diffusive
model with jumps under a given risk-neutral measure Q.
This measurement is arbitrary, and we will adjust the
parameters; therefore, the evaluation obtained is as close as
possible to the prices of market (see Section 3.3).

We suppose that the asset follows a Lévy jump-diffusion
model:

dS = rdt + σdWt + JtdNt , ð11Þ

where r is the risk-free rate, σ is a constant volatility, and Jt
is the jump amplitude which flows an exponential law with
parameter λ1 = 1, and dNt is the increment of the compound
Poisson process, NT is the number of jumps in ½0, T�, and
Ti, i = 1,⋯,NT , is the time of jumps between 0 and T . We

break down the interval ½0, T� in N periods of equal duration
Δt = T/N to build the discretization t0 = 0,⋯, tN = T , and
therefore, we use the Euler schema to simulate SðtÞ and Uð
t, SðtÞÞ by discretizing equation (11) as

S t j+1
� �

− S t j
� �

= rΔt + σWΔt + 〠
Nt j

i=0
Ji, ð12Þ

where Wt is calculated from the cumulative of WΔt ~Nð0,
ΔtÞ; hence, a trajectory St jt=t1⋯t=tN is calculated from the
application step-by-step of equation (12) as follows: first of
all, we generate the Wiener process with a drift, and we
use exponential laws for the duration between jumps wi =
Ti+1 − Ti with its parameter λ2 (on the average, we have 1/
λ2 jumps in the meantime ½0, T�), and as the case may be,
we generate negative exponential law amplitudes for size
jumps Ji with its parameter λ1 (i.e., losses which follow
exponential laws) (see the example of Figure 2).

Theorem 9 (second fundamental theorem of asset pricing).
In a free arbitrary market and under an appropriate equiva-
lent measure ℚ, the price at time t is the conditional expected
payout at T , i.e.,

Ut = E e T−tð ÞrUT ∣F t

h i
: ð13Þ

Hence, e−rðT−tÞUt is a martingale under ℚ. Such an
equivalent martingale measure is also called a risk-neutral
measure because the return on the risk-free investment is
the same as the expected return on the asset.
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Figure 1: Kernel and normal estimator of Microsoft’s log returns.
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2.5. Least Square Regression (LS) Algorithm

2.5.1. Methodology. We assume that π = ft0 = 0,⋯, tN = Tg
is the set of possible exercise times, p is the number of
regressors or the dimension of the L2 basis, and M is the
number of paths. We aim to calculate the least square coef-
ficients β = ðα, β1, β2,⋯, βpÞ. Let φ = ðφ1, φ2,⋯, φpÞ be a

basis of nonzero vectors in the Hilbert space L2, and the
orthogonal projection of OðStN Þ on L2ðσðStN−1

ÞÞ is the vector:
α + β1φ1ðStN−1

Þ + β2φ2ðStN−1
Þ +⋯ + βpφpðStN−1

Þ. At time tN−1
, we use an ordinary least square backward to regress OðSNÞ
on the space generated by regressors φ1ðStN−1

Þ, φ2ðStN−1
Þ,⋯

, φpðStN−1
Þ by minimizing ðOðStN Þ − α − β1StN−1

− β2StN−1
Þ2;

in this case, the continuation value becomes

ϕptN−1
= E e−rΔtO SitN

� �
∣ StN−1

h i
≅ e−rΔt

�
α + β1φ1 StN−1

� �
+ β2φ2 StN−1

� �
+⋯+βpφp StN−1

� ��
:

ð14Þ

On each trajectory from M ′ in the money paths at time

tN−1, we obtain the least square coefficients bβ tN−1
by the least

square estimator:

bβ tN−1
=

αtN−1

β1,tN−1

⋮

βp,tN−1

0BBBBB@

1CCCCCA = STS
� �−1

ST O S1T
� �

⋯O SMT′
� �� �

, ð15Þ

with

S =

φ1 S1tN−1

� �
⋯ φ1 SMtN−1

′
� �

⋮ ⋱ ⋮

φp S1tN−1

� �
⋯ φp SMtN−1

′
� �

0BBB@
1CCCA: ð16Þ

Thus, we apply the equation (14) backward for ttN−2
,

tN−3,⋯, t0 = 0.

2.6. Convergence of Monte Carlo Simulation

Theorem 10. Let 0 ≤ j ≤N , and we assume that φpðSt jÞ =
ðφ1ðSt jÞ,⋯, φpðSt jÞÞ be a total basis in L2ðσðSt jÞÞ; then,

lim
p⟶+∞

E Oτ
p
j
∣F t j

� �
= E Oτ j

∣F t j

� �
in L2: ð17Þ

Proof. See [17].
This result can be proven theoretically but cannot be

proven numerically, unlike the following convergence
result.☐☐

Theorem 11. Assume that for 0 ≤ j ≤N , PðβjφðSt jÞ =Otj
Þ = 0

and the simulated M paths are independent; then, lim
M⟶+∞

Up,M
0 =Up

0 almost surely.

Proof. First of all, we prove that for 0 ≤ j ≤N , ð1/MÞ∑M
k=1

Ok
τk,p,Mj

⟶Oτpj
whenM⟶ +∞ almost surely and then con-

clude our result (see [17]). The numerical illustration of this
theorem is shown in Figures 3 and 4.☐☐

3. Numerical Implementation

3.1. Specific Example of the Least Square Regression
Algorithm. We consider the case of p = 2 to highlight the
ordinary least square regression algorithm at time tN−1; for
example, we choose the following form of regressor functions:
φ1ðStN−1

Þ = StN−1
, φ1ðStN−1

Þ = S2tN−1
, and β = ðαtN−1

, β1,tN−1
,

β2,tN−1
Þ, an estimator of the three least square coefficients
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Trajectories of the underlying price modeled under a jump-diffusion process

Figure 2: Modeling asset price paths under Lévy jump-diffusion λ1 = 1 and λ2 = 1/4.
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Figure 3: Numerical convergence of Monte Carlo simulation in the least square algorithm under the B&S asset price model. Confidence
level in order of 95% (the estimated value of the American option in blue, upper bound in red, and lower bound in green).
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Figure 4: Continued.
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which minimize the least square error:

〠
M

i=1
′ O SitN

� �
− α − β1S

i
tN−1

− β2S
i2
tN−1

h i2
: ð18Þ

At each trajectory, the terminal value OðSitN Þ equals to
the terminal payoff of the option; as of date tN−1, we esti-
mate the continuation value if the trajectory is in the money
and we reject if the trajectory is out of the money, so on
each trajectory, we have M ′ couple ðSitN−1

,OðSitN ÞÞ among M

which will explain OðSitN−1
Þ using the following regressors:

1, φ1ðStN−1
Þ = StN−1

, φ2ðStN−1
Þ = ðStN−1

Þ2. According to equa-
tion (14) at tN−1 on trajectory i, the continuation value is

ϕpk tN−1, SitN−1

� �
= E e−rΔtO SitN

� �
∣ SitN−1

= StN−1

h i
≅ e−rΔt αtN−1

− β1,tN−1
SitN−1

− β2,tN−1
SitN−1

� �2
	 


:

ð19Þ

We notice that the intrinsic value e−rΔtOðSitN Þ repre-
sents the discounted cash flows earned at time tN in the
case where the option is not exercised at time tN−1. Thus,
we make a comparison between the payoff OðSitN Þ and

ϕpkðtN−1, SitN−1
Þ on each trajectory if OðSitN Þ ≥ ϕpkðtN−1, SitN−1

Þ
; the early exercise of the option has therefore taken place
at that time if it has not taken place previously. Hence,
the value of option at date tN−1 on trajectory i is

U2,i
tN−1

= max O SitN−1

� ��
,ϕpk SitN−1

� �� �
: ð20Þ

We do the same for all dates tN−2,⋯, t0. Finally, an
updated payoff is assigned to each trajectory i: exp ð−rτiÞ
Oi

τ or equals to 0 in the case of no exercise. Note that τ ∈ ft0
= 0,⋯, tN = Tg is the first time when OðSitN Þ ≥ ϕpkðtN−1,
SitN−1

Þ, and as previously proven, this is an optimal exercis-
ing time; in the same logic as Section 2.3, we estimate the
final price of the option at time t0 by

U2,M
0 = 〠

M

i=1
exp −rτið ÞO Siτi

� �
: ð21Þ

3.2. Example of Pricing American Put and Validation on the
Real Market with the Microsoft Stock Option as an Example.
We consider an American put with the following parame-
ters: σ = 0:2 the stock volatility, S0 = 80 the price at time
t0, T = 1 year of the maturity, K = 100 the strike, and r =
2% the interest rate. For the Lévy jump-diffusion model,
we model the duration between jumps with exponential
laws and its parameter which is λ1 = 1/4, i.e., four jumps
per one year. We also model the size of jumps with a neg-
ative exponential law with parameter λ2 = 1; i.e., the size of
asset price negatively jumps by 1 dollar.

According to the number of simulated paths, we illus-
trate the numerical convergence of the option price and we
notice the asymptotic behavior whenM tends to have a large
number. For the same algorithm “least square regression,”
we compare asymptotically the convergence between the
B&S model and the exponential Lévy jump-diffusion model
(see Figure 5). We notice for this example that the B&S
model already stabilizes the size of the confidence interval
when the M tends to have M = 5000, while the Lévy jump-
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Convergence du modèle Longstaff Shwatrz, sous-jacent modélisé avec un processus de saut-diffusion

(c) M from 100 to 10000 by 10 steps

Figure 4: Numerical convergence of Monte Carlo simulation in the least square algorithm under the Lévy jump-diffusion model.
Confidence level in order of 95% (the estimated value of the American option in blue, upper bound in red, and lower bound in green).
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diffusion started to stabilize the confidence interval around
M = 8000; we come back to this phenomenon of the robust-
ness of B&S in terms of stabilization of the size of the confi-
dence interval in an early number of simulated paths
compared to the Lévy jump-diffusion model (see Table 1).
Table 2 shows the speed of convergence in terms of time.
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(a) Equilibrium price option under B&S U2,M
0 = 19:8$
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(b) Equilibrium price option under the Lévy jump-diffusion process U2,M
0 = 21:82$

Figure 5: Asymptotic convergence of the least square algorithmM from 100 to 10000. Confidence level in order of 95% (the estimated value
of the American option in blue, upper bound in red, and lower bound in green).

Table 1: Confidence interval according to the number of sampling.

Trajectories Mean BS Min BS Max BS Mean jump-dif Min jump-dif Max jump-dif

M = 1000 19.8883 19.8103 19.9663 21.7427 21.6420 21.8433

M = 5000 19.8414 19.8061 19.8768 21.8000 21.7546 21.8454

M = 8000 19.8514 19.8011 19.8721 21.8000 21.77746 21.8401

M = 10000 19.8528 19.8079 19.8711 21.8270 21.7950 21.8390

Table 2: Time consumption (MATLAB R2019a program).

Number of sampling B&S Jump-diffusion

100 to 1000 by 10 steps 24.542 s 40.544 s

100 to 5000 by 10 steps 597.303 s 1163.004 s

100 to 10000 by 10 steps 16305.825 s 57092.476 s
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According to the central limit theorem and because of
the independence of trajectories, the sum of the option price
of each path in the Monte Carlo approximation can be esti-
mated by a normal distribution N ð0, σ/ ffiffiffiffiffi

M
p Þ (Monte Carlo

estimator unbiased); hence, ðUM
0 /ðσ/

ffiffiffiffiffi
M

p ÞÞ ~N ð0, 1Þ.
We propose an estimator of the theoretical tolerance

range with a confidence level of 95% by subtracting the
upper and lower bounds of the confidence interval according
to M.

Îmodel =
upperMmodel − lowerMmodel

2 = 2 ∗ 1:96 ∗ σffiffiffiffiffi
M

p : ð22Þ

For example, M = 10000Îlevy = ð21:8390 − 21:7950Þ/2 =
0:022 which is a very small range error, so theoretically the
price option belongs to ½21:82 − 0:022,21:849 + 0:022� with
a confidence level of 95%.

Now, the question that arises is whether B&S or expo-
nential Lévy is more effective in predicting prices in the real
market.

3.3. Validation of the B&S Model Compared to the
Exponential Lévy Model on a Real Market with the
Microsoft Option as an Example. We notice in Table 3 that
BS defaults below the spot 230 at time 0, B&S suppose that
all paths are out of the money in the meantime ½0, T�
throughout all strikes below 230 ½½80,230��, and this comes
from the fact that in a complete market, continuous asset
prices St with drift are unlikely to fall below 230 from S0 =
231:02; hence, the American put price is equal to 0. On the
other hand, jump-diffusion with negative jumps predicts
more efficiently than B&S from S0 = 80 up to S0 = 230, and
the prediction error remains around 1 dollar. In our case,

calibration of the parameters in this spot range is as follows:
λ1 = −8 which corresponds to the expectation of losses “fol-
lowing the exponential law” of the Microsoft share chosen as
the average of share losses between 2020 and 2021” and λ2
which represents the expectation of losses with jump occur-
rence, chosen equal to 1/3. From strike k = 255 to 275 with
some calibration (i.e., the assumption of a small positive
parameter of jump size “profit jumps” λ1 = 1) Lévy’s jump-
diffusion model outperforms B&S. For k = 305,355, B&S is
more precise, and it seems that the hypothesis of continuous
asset price’s market is more effective for these values. Gener-
ally, the mean error of the jump-diffusion model is in the
order of 2.8 dollars; on the other hand, B&S mean error is
equal to 11.7003, which shows that the Lévy jump-
diffusion model outperforms widely B&S to validate our
example on the real market.

Remark 12. The use of the improved exponential Lévy jump-
diffusion model with hybrid jumps “loss and profit jumps
like in Kou model jumps which follows a generalized Laplace
nonsymmetric law” [18] can slightly improve our results.

4. Conclusion

In this paper, we have presented a comparison between the
least square algorithm under B&S and exponential Lévy
jump-diffusion processes in terms of time-consuming and
asymptotic convergence properties depending on the num-
ber of simulated trajectories, and we pointed out that B&S
converges faster and its option price variance is less volatile
than that of Lévy’s jump-diffusion model which makes the
calculation more easier and faster, which is useful in the case
of multidimensional underlying assets. However, as we have
pointed out in Sections 2.3.1 and 3.3, the Lévy model stays

Table 3: MSFT put option traded on 19/03/2021 at a price of S0 = 231:02, expired on 18/03/2021 (r = 4%) (from https://fr.finance.yahoo
.com/quote/MSFT?p=MSFT).

Strike Option price Implied volatility B&S Error Jump-diffusion Error

80 0.63 25% 0 0.63 0.0338 0.592

100 1.1 12.5% 0 1.1 0.1557 0.9443

145 3.58 12.5% 0 3.58 1.2832 2.2968

150 4.05 6.25% 0 4.05 1.8354 2.2141

160 5.4 6.25% 0 5.4 3.0275 2.3725

185 9.81 6.25% 0 9.81 8.5283 1.2817

210 17.8 1.56% 0 17.8 21.7962 3.9962

215 19.8 1.56% 0 19.8 24.853 5.053

220 21.95 0.78% 0 21.95 21.5588 0.3912

225 24.25 0.78% 0 24.25 25.5089 1.2589

230 26.6 0.05% 0 26.6 27.7062 1.1062

255 41.48 0% 23.6801 17.7999 42.5198 5.4856

270 51.45 0% 38.6561 12.7939 56.9356 5.4856

275 55.2 0% 43.6481 11.5519 57.935 4.485

305 80.53 0% 73.6002 6.9298 71.3296 9.2004

355 126.68 0% 123.5202 3.1598 121.6777 5.0023

Mean error 11.7003 Mean error 2.8106
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more adequate than B&S in our validation example on
Microsoft’s put option. We have also proposed a simple
method to estimate theoretical tolerated range according to
the confidence level in Section 3.2. We also noted that by
varying the number of paths, we numerically highlighted
the equilibrium option price.

More calibrations can perform better our exponential
Lévy jump-diffusion model as done in the context European
option of the S&P100 index in this paper [16].

Recent work on machine learning and the parallelism
method for solving BSDEs opens a horizon as in [19] where
the author tried to cluster the computational method using
machine learning instead of using a brute force approximation
of the true solution, which is time-consuming as in [20, 21].

Appendix

A. Properties of the snell envelope

(1) At time t = T , it is obvious that UT =OT

(2) We consider t ∈ ft0 = 0,⋯, tn−1g; it is obvious that
Utj

≥Otj
because of the definition

Utj
≥ E½Otj

∣F t j
� because tk is the Ftk

stopping time; con-

sequently, Utj
≥Otj

.

On the other hand,

E Utj+1
∣F t j

h i
= E sup

τ∈Γt j+1

E Oτ ∣F t j+1

h i
∣F t j

" #
= sup

τ∈Γt j+1

E Oτ ∣F t j

h i
≤ sup

τ∈Γt j

E Oτ ∣F t j

h i
=Utk

:

ðA:1Þ

Hence, Utj
≥max ðOtj

, E½Utj+1
∣F t j

�Þ.
Conversely, E½Oτ ∣F t j

� =Otj
1τ=t j + E½Oτ ∣F t j

�1τ≥t j+1 .
By adding supτ∈Γt j

in both sides of the equation, we have

Utj
=Otj

1τ=t j + E sup
τ∈Γt j+1

E Oτ ∣F t j+1

h i
∣F t j

" #
1τ≥t j+1

=Otj
1τ=t j + E Utj+1

∣F t j

h i
1τ≥t j+1 :

ðA:2Þ

Then, Utj
=Otj

1τ=t j + E½Utj+1
∣F t j

�1τ≥t j+1 ≤max ðOtj
, E½

Utj+1
∣F t j

�Þ.

(3) It is obvious that U is a supermartingale. Assume
that W is another supermartingale which dominates
ðOtj

Þ; consequently,

Wtj
≥ E Wtj+1

∣F t j

h i
≥ E sup

τ∈Γt j+1

E Oτ ∣F t j+1

h i
∣F t j

" #
= E Utj+1

∣F t j

h i
,

ðA:3Þ

and Wtj
≥Otj

; hence, Wtj
≥max ðOtj

, E½Utj+1
∣F t j

�Þ
=Utj

.

B. Characterization of the optimal
stopping time

(i) Let τ be a stopping time such that Uτ∧t j is a martin-

gale t j ∈ ft0 = 0,⋯, tn = Tg and Uτ =Oτ; we aim to
prove that τ is optimal. Ut0

=Ut0∧τ = EðUT∧τ ∣F0Þ
= EðUτ ∣F0Þ = EðOτ ∣F0Þ.

Let τ ∈ Γ0 (i.e., the set of all stopping time in ft0 = 0,⋯,
tn = Tg) be an ordinary stopping time, sinceUτ is a supermar-
tingale which dominates O, so Ut0

≥ EðUT∧τ ∣F t0
Þ = EðUτ ∣

F t0
Þ = EðOτ ∣F t0

Þ.
Hence, Ut0

= supτ∈Γt0
EðOτ ∣F t0

Þ.
Conversely, assume that τ is an optimal stopping time:

Ut0
= sup

τ′∈Γt0

E Oτ′ ∣F t0

� �
= E Oτ ∣F t0

� �
≤ E Uτ ∣F t0

� �
≤Ut0

,

ðB:1Þ

because U is a supermartingale and U dominates O. So
EðOτ ∣F t0

Þ = EðUτ ∣F t0
Þ⇒ E½Oτ� = E½Uτ�⇒Oτ =Uτ

because the two random variables are continuous and
positive.

Furthermore, if t j > τ, then Ut0
≥ EðUtj∧τ ∣F t0

Þ ≥ EðUτ

∣F t0
Þ =Ut0

because Utj∧τ ≥ E½Uτ ∣F t j
�, since EðUτ ∣F t0

Þ
= EðEðUτ ∣F t j

Þ ∣F t0
Þ.

Therefore, EðUtj∧τ ∣F0Þ = EðEðUτ ∣F t0
Þ ∣F jÞ⇒Utj∧τ

= EðUτ ∣F t j
Þ. Thus, Utj∧τ is a martingale.

Otherwise, if t j < τ, Utj∧τ =Uτ, since E½Uτ ∣F t0
� = E½E½

Utj
∣Fτ� ∣F t0

�, so Uτ = E½Utj
∣Fτ�.

C. The optimal stopping time of the Longstaff
and Schwartz algorithm

(i) Is Uτ∧t j+1 a martingale?

E Uτ∧t j+1 ∣F t j

h i
= E Utj+1

∣F t j

h i
1τ≥t j+1 + E Uτ ∣F t j

h i
1τ<t j+1

=Utj
1τ>t j +Uτ1τ≤t j =Uτ∧t j ,

ðC:1Þ

because τ =min fk ≥ 0 ∣Uk =Okg, and for t j such
that τ > t j, we have Utj

= E½Utj+1
∣F t j

�, and in ft j ∣ τ
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≤ t jg, Uτ is F t j
measurable. Thus, Uτ∧t j is a

martingale.

(ii) Is τ =min fk ≥ 0 ∣Uk =Okg optimal?

As shown previously, Ut∧τ is a martingale, so U0 =
U0∧τ = EðUT∧τ ∣F0Þ = EðUτ ∣F0Þ = EðOτ ∣F0Þ, since U0 =
supτ′∈Γ0EðOτ′ ∣F0Þ. Hence, EðOτ ∣F0Þ = supτ′∈Γ0EðOτ′ ∣
F0Þ, and therefore, τ is optimal.
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