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The biggest challenge of treating HIV is rampant liver-related morbidity and mortality. This is, to some extent, attributed to
hepatocytes acting as viral reservoirs to both HIV and HBV. Viral reservoirs harbour latent provirus, rendering it inaccessible
by combinational antiretroviral therapy (cART) that is specific to actively proliferating virus. Latency reversal agents (LRA)
such as Shock and kill or lock and block, aiming at activating the latently infected cells, have been developed. However, they are
CD4+ cell-specific only. There is evidence that the low replication level of HIV in hepatocytes is mainly due to the latency of
the provirus in these cells. LRA are developed to reduce the number of latently infected cells; however, the impact of the
period viral latency in hepatocytes especially, during HIV/HBV coinfection, needs to be investigated. Viral coinfection coupled
with lifelong treatment of HIV/HBV necessitates investigation for the optimal control strategy. We propose a coinfection
mathematical model with delay and use optimal control theory to analyse the effect of viral latency in hepatocytes on the
dynamics of HIV/HBV coinfection. Analytical results indicate that HBV cannot take a competitive exclusion against HIV;
thus, the coinfection endemic equilibrium implies chronic HBV in HIV-infected patients. Numerical and analytical results
indicate that both HIV and HBV viral loads are higher with longer viral latency period in hepatocytes, which indicates the
need to upgrade LRA to other non-CD4+ cell viral reservoirs. Higher viral load caused by viral latency coupled with the effects
of cART partly explains why liver-related complications are the leading cause of mortality in HIV-infected persons.

1. Introduction

L.1. Background. Since the introduction of highly active
antiretroviral therapy (HAART) in 1980s, there has been
progressive improvement in pharmacologically managing
HIV to the extent that to date, the life expectancy of HIV-
infected people is very close to that of coinfected ones. HIV
ceased to be a deadly disease but rather a chronic one. World-
wide, there has been commendable use of combinational
antiretroviral therapy (cART), and to date, one could expect
that there is a cure to this epidemic that has been on the scene
for decades. The current cART is pharmacologically designed
to hinder viral progression in the viral replication cycle. This
cycle starts with binding onto the host cell and ends with
budding or viral replication [1]. One of the key bottlenecks,

which has slowed the therapeutic management of the disease,
is its ability to establish silent reservoirs within the patient.
Viral latency is the ability of a provirus that has successfully
integrated into a cell, to remain transcriptionally silent and
dormant within a host cell for some time, but capable of
producing viral copies upon stimulation [2, 3]. A cell that
hosts a dormant virus is called a latently infected cell or a
viral reservoir [4]. These reservoirs are predominantly
CD4+ cells [1, 4], but research has indicated that there are
so many other types of cells that harbour HIV infection [5].
When a cell is latently infected, then it cannot be cleared, nei-
ther therapeutically nor through immune killing by cytotoxic
T lymphocytes. It is thus asserted that HIV would have a
complete cure, if it were not for these viral reservoirs [2].
The challenges of the viral reservoirs stem from the fact that
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the current cART responds only to active virally replicating
host cells. Consequently, patients that are able to take their
cART effectively are able to have undetectable viral load for
some time, but due to latency, when the provirus rebound,
the patient is again overwhelmed with an influx of viral cop-
ies. The problem of viral reservoirs has been addressed by
numerous research. One major breakthrough was the intro-
duction of a shock and kill strategy [5]. This strategy operates
of the principle that a pharmacological agent, such as a cyto-
kine or a small molecule, shocks the virus in the reservoir into
transcription or activation [1]. A cell is reactivated the
moment it is recognised as an antigen bearing cell that is
eventually killed by cytotoxic T lymphocytes or therapeuti-
cally by cART. Since HIV reservoirs are predominantly
memory CD+4 cells [1, 2], all latency reversal agents are
CD4+ specific, implying that only CD4+ cells are activated.
Recent studies have indicated that due to the nature of mem-
ory CD4+ cells which are the majority HIV viral reservoirs,
some type of patients would require 70 years of therapy to
completely eradicate all the virus [1]. Viral reservoirs are sig-
nificantly complicating management of HIV, because the
current indicator of the therapeutic effect of cART is the
measure of viral copies per some capacity of blood. However,
in many cases, patients display very low viral copies and
sometimes undetectable during routine checks. Unfortu-
nately, the clinical results are not a sole indicator of the ther-
apeutic effect of cART, because low viral replication may be
due to high levels of latency. Most reservoirs are created dur-
ing acute stage of infection, and they are predominantly
CD4+ resting cells in the memory subsets [4]. These cells
remain in this state until they are stimulated either through
antigen recognition or by any other stimuli. In addition to
the shock and kill strategy, pharmacologists have developed
the block and lock therapy [1]. This involves using latency-
promoting agents that would target all viral reservoirs to cre-
ate an irreversible state, such that a cell that is latently
infected will never have a chance to rebound and produce
viral genomes [1]. It has been stated that, if it was not for
these viral reservoirs, HIV would be cured to date [1, 4]. A
good example to justify this assertion is the “Berlin” patient,
who recovered from HIV just because he had a bone marrow
replacement, in which all resting CD4+ cells that were con-
taining the latent provirus were removed [4]. A number of
latency reversal agents such as histone deacetylase inhibitors,
valproic acid, DNA methylation inhibitors, and protein
kinase C agonists have been used [1, 4]. However, in addition
to their undesired effects such as blocking the activity of
HIV-specific cytotoxic T lymphocytes, there has been little
success in cell activation and total clearance of provirus
reservoirs [4].

Given that HIV latency in host cells still prevails and
varies with respect to individual patients, the effect of the
period of latency on the dynamics of the infection needs to
be investigated. It is worth mentioning that in addition to
CD4+ cells, HIV infects other body cells. There is still a
debate on HIV infection in hepatocytes, despite evidence
from research that HIV productively infects hepatocytes
and other hepatoma cells in a CD4-independent way [6].
HIV has also a direct cytopathic effect on hepatocytes,
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primarily triggering apoptosis via the HIV gp120 protein-
receptor signalling pathway [7]. These directly cytotoxic
effects are enhanced in patients coinfected with HIV and
viral hepatitis B (HBV), with each virus having significant
effects on the others’ replication [8]. There has been a lot
of concern about high level of liver-related mortality in
HIV-infected people, and coinfection with HBV has been
mentioned out as one of the leading factors in addition to
hepatotoxicity associated cART. The current cART meant
to suppress viral replication is very ineffective in human
hepatocytes [9], and this has been attributed to the fact that
hepatocytes harbour both viruses. This study, therefore,
uses mathematical models to investigate the impact of the
latency period on the dynamics of HIV and HBV coinfec-
tion in the liver.

1.2. Mathematical Modelling. Mathematical models of
ordinary or partial differential equations have been used
for decades to help understand the within-host dynamics
of viral infections. Nowak et al. [10] introduced a basic
within-host viral infection model with three variables,
namely, target healthy cells, infectious cells, and viral popu-
lation. This model has been widely adopted and improved to
model various aspects and dynamics of viral infections, with
and without treatment [11, 12]. However, this basic model
failed to capture some vital aspect of immunopathogenesis.
It assumed that upon infection, cells instantly begin produc-
ing virus. Biologically, there is a time delay between viral
entry into a host cell and the time the cell begins to release
viral copies (intracellular delay) [13, 14].

The first intracellular delay model was introduced by
Herz et al. [13], to characterize the time between the initial
viral entry into a target cell and subsequent viral production.
Their study reveals that combining the intracellular delay
with less than 100% effective drug therapy results in
increased infected cell death as compared to the case of per-
fect drug therapy. They further report that including a delay
changes the estimated value of the viral clearance rate but
does not change the productively infected T cell loss rate.

Since Herz et al. [13] studied a number of viral dynamics
models, some have included one type of delay to cater for
time between viral entry and actual production of virus
[15, 16], while others have included more than one delay
to cater for the time between viral infection and the actual
time when cytotoxic T lymphocytes reach out to kill the
infectious cells [14, 16, 17]. Pharmacological delay in the
viral treatment has also been studied using mathematical
models with medication [18, 19]. Intracellular delay of
HIV infection dynamics in CD4+ cells [20-22], as well as
HBYV in hepatocytes [23, 24], has been studied. While some
researchers used the basic model of Nowak et al. [10] and
incorporated a delay similar to that of Herz et al. [13], others
included latency and two delays, on the assumption that once
a virus gains access to a host cell, the cell either becomes pro-
ductive or remains latent until activation [25, 26].

Both discrete time delay [22, 27] and continuous delay
described by gamma distribution [15, 28] have been studied.
There are some studies on HIV dynamics in macrophages
[26, 29, 30], but majority of within-host mathematical
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models on HIV consider viral infection in CD4+ cells. To
date, only our previous work in [30-33] considers the math-
ematical approach of HIV dynamics in hepatocytes. In this
study, we look at the dynamics of HIV/HBV coinfection in
human hepatocytes incorporating intracellular delay and
antiretroviral therapy.

2. Model Formulation

We define five variables in the model: healthy hepatocytes T,
HIV-infected hepatocytes I, HBV-infected hepatocytes I,
HIV viral load V;,, and HBV viral load V. Healthy hepato-
cytes proliferate at a constant rate A, are infected by HIV and
HBV at rates 3, and f,, respectively, and are cleared natu-
rally at rate d,. In order to incorporate the intracellular
phase of the virus life cycle, we assume that HIV production
delays by 7, and for HBV, it is 7,, behind the infection of a
hepatocyte. This implies that recruitment of HIV and HBV
virus-producing hepatocytes at time ¢ is not given by the
density T(¢)I,(¢) and T(t)I,(t) of newly infected cells. They
are rather given by the density of cells that were infected at
time t — 7, i=1,2, thatis, T(t —7,)V,,(t —7,) and T(t - 7,)
V,(t — 7,), given that they are still alive at time ¢ [13].

The probability that a healthy hepatocyte will survive
HIV and HBV latency and produce virions after activation
is e@7 and e, respectively. HIV- and HBV-infected
hepatocytes are cleared at rates d, and d,, whereas the num-
ber of HIV and HBV virions produced by one infectious
hepatocytes are n; and n,. Due to low HIV infection in
hepatocytes [34], we suppose that some of the infectious
HIV copies that come from other cells such as CD4+ cells
are moving freely in the liver. HIV viral copies are produced
from other cells and macrophages at a constant rate m. HIV
and HBV viral copies are cleared from the liver at rates ¢,
and c,, respectively. The system of equations describing
HIV/HBV dynamics in hepatocytes given the above consid-
erations can be stated as

dT(t)
dt
dar,(t
dt
dlsit) =B, T(t-1,)V,(t—1,) -
dv,(t)
dt

dv,(t
W) = (1) - V(o).

=A=(d =B V(1) = BV (D)) T(1),

) et B (= 1)V (- 7y) - T (1),

dsly(t)s (1)

=nydy 1y (1) + m—c, V(1)

2.1. Nonnegativity and Boundedness of Solutions. For initial
conditions, let X =C(|-7,0];R*) be the Banach space of
continuous mapping from [-7,0] to R® supplied by the
sup-norm Q] = sup {Q(s)}, where Q(s) = {Qy(5), Qy(s),
Q5(5), Q4(s), Qs(s)} for -t <s<0 and 7=max {7}, 7, }.

Then, the initial function of the system (1) is given by
()= Qs T(5)= Qs 1,(5) = Qu(s)s V4(s) = Qu(s),
and V,(s) = Qs(s), where

(Qu(8) Qa(5)> Qs(s), Qus), Qs(s)) € X (2)

and Q,(s), Qy(s), Q5(s), Qu(s), and Qs(s) are all nonnega-
tive. Thus

Theorem 1. For any nonnegative initial values T(s), 1,(s),
I,(s), V(s), and V(s), in (3), all solutions to (1) are nonneg-
ative for all t > 0.

Proof. By the fundamental theory of functional differential
equations [14], we suppose that there is a unique local solu-
tion T(¢), I,,(t), I,(t), V;,(¢), and V,(t), for the given initial
conditions in (3), to system (1) in [0, Tf], where Tisa finite
number. Using the constant of variation formula, we get the
following solutions to system (1):

T(t) — T(O)e_f; (di+B, Vi (v)+B, Vi (v))dv + Jt <A€_J; (dy+B, Vh(”)*ﬁzvh("))d") d{,
0

L(t) =1,(0)e %" + J't (e*dm B TE-7)Vy(E- Tl)e—dm—f)) dE,

-~ o

1,(6) = 1,(0)e ™ + j

=0

V(1) [ (nydsI, (&
0

(e rz)vb<e—rz>e*”"‘f)>df’

(nydyT,,(§ Ye =g,

~ o

Lz (t=%) df
(4)

System (4) shows that the solutions of (1) are positive for
all £ >0. O

Lemma 2. The closed set Q= {T(t),1,(t),1,(t
eR’:}: T(t)20,1,(t)=0,1,(t) >0, V,(t) >
bounded with respect to (1).

) Viu(£), Vi (1)
0,V,(t)=0 is

Proof. We show that the solutions are bounded on interval
t € [0, 7], for r=max {7,,7,}.
We assume a functional

F(t)= (nldze_le + nzdSe_dlf) T(t) +ndyI,(t+71)
(5)

+n,d3 I, (t+7) + dz Vi(t+1)+ %Vb(t+r)

Differentiating Equation (5) and incorporation system
(1) result in



% = e (nydy + nydy) (A —d  T(t) = B T(E) V(1)
= BVy(T(1)) + mds (e 4B T() V(1) ~ ol (1))
+mydy (4B T(Vy (1) - Ty (1))
+ %(nldzlh(t+r) +m— e Vy(t+1))
+ %(n2d3lh(t +7) =6V, (t+71))
%: (nyd, + nyd;)Ae™™ + dZTm — (mydy + nyny)e DB, T(1) V(1)

- {dlnldze’d'TT(t) +dymydye (1)
2 2
+ andth(t +T)+ nszﬁb(t +T)+ % Vi(t+71)

dsc
+ %Vb(t+‘r)}.

It is indicated that

dF(t d
() < (myd, + n2d3)/\e_d‘T + el OF(1), (7)
dt 2
where
. d, d
0 = min {dl,f,f,cl,g}. (8)
Therefore

P = Fope (20 radhe ) (1-e%).
©)

Thus, F(t) is bounded and so are the functions T(¢),
I(t), I(t), V,,(t) and V,(t). O

2.2. Steady States of the System. For steady states, it is
assumed that there is no delay dependence, that is

lim, |, T(t-7)— lim,__T(t),lim,_,  V},(t-7)—lim,__ V()

lim, |V, (t-7) —lim,_ V(1) (10)

2.2.1. Local Stability and Disease-Free Equilibrium. System
(1) has a disease-free steady state defined as D, = (A/d, 0,
0,0,0). The local stability of D, is governed by the basic
reproduction number R, which is the number of secondary
viral infections resulting from one virally infected cell in a
wholly susceptible cell population. R, is established using
the next generation operator method as in [35]. It can be
shown that the spectral radius of the next generation matrix,
which defines the R, is given by

Ry = max {R;, Ry }, (11)
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where
R, nlﬁl/\e‘dlfl
h= c,d ’
191
(12)
R = nzﬁz)te’dlfz
b= c,d
20

R, and R, are the numbers of secondary infections
resulting from one HIV and HBV infectious hepatocyte,
respectively. Each HIV and HBV productive hepatocyte
infects 8, A/d, and f,A/d, target hepatocytes for a viral life-
span of n,/c, and n,/c,. This is conditioned on that when a
cell is infected by HIV and HBYV, it will survive for the time
period of 7, and 7,, with a probability e~»™ and e ™,

From Theorem 3 of Van den Driessche and Watmough
[35], we deduce the following theorem.

Theorem 3. The disease-free equilibrium D; is locally asymp-
totically stable when R, < 1, and unstable otherwise.

In order to establish other conditions that determine the
stability of Dy, we use the Jacobian matrix of system (1).

i —piA PA T
—d 0 0
' d, d,
_ﬁlke_dlrl
0 d, 0 7{11 0
]D = >
f _/)’ZAe*dlfl
0 0 —d, 0 T
0 md, O - 0
L 0 0 m,d, 0 -

(13)

from which it is seen that trace(J D/) <0 and

n,d, B,Ae "0 Mnydyehn
det (]Df) - _d, (Czds _ %) <d2c1 - 1811+)
1 1

(14)
We establish that det (J Df) <0 only if

nzﬁz/\e’dlf
dc,

n piAe
dic

<1,

<1.

We thus deduce the following theorem.

Theorem 4. The disease-free equilibrium Dy is locally asymp-
totically stable when R, < 1 given that R, < 1 and R, < 1.
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Figure 1 shows higher level of R, and compared to R,
which is an indication that HBV is more aggressive in hepa-
tocytes than HIV is. Both reproduction numbers grow with
respective increasing infection rates and are inversely pro-
portional to delay in viral production.

To further ascertain the influence of one virus on the
other, we express R, in terms of R, to have

R di (1,-15)
b= hclnzﬁze ) (16)
My
For strictly positive parameters, dR,/dR;, > 0 and dR,/0R,

> 0, implying that the presence of HIV in the liver influences
the increase of HBV and vice versa [36, 37].

2.2.2. Global Stability of Disease-Free Equilibrium. The
global stability is of system (1) is derived using a theorem
by Castillo-Chavez [38] as shown in Appendix A.

Theorem 5. Castillo-Chavez et al. [38]. We write system (1)
in the form

‘Z_X - F(X, Z),
d; (17)
o =G(X.2),G(X,0)=0.

where X = (T)' and Z = (1,,1,,V,,V,)'. We derive M =D,
G(X*,0) called the Metzler matrix, whose off-diagonal ele-
ments are nonnegative, as

[ e |
d 0 ——- 0
2 dl
Bohe i
= 0 -d 0 -
M 3 dl >
nd, 0 - 0
0 nyds 0 -, (18)
0
G(X,Z)=MZ-G(X,Z) =
m
0

Since G= 0 for all (X,Z) in the region where the model
makes biological meaning, then Dy is globally asymptotically

stable.

2.3. Existence of Boundary and Interior Equilibria with
Possible Competitive Exclusion. System (1) is expected to
have three nontrivial equilibria as follows:

(i) HIV-only boundary equilibrium E,(T*,I;,0, V},0)
(ii) HBV-only boundary equilibrium Ez(T*, 0, I}}, 0, V})

FiGure 1: HIV and HBV basic reproduction numbers with varying
infection rates (3, 3,) and latency period 7.

(iii) The coinfection equilibrium Ez(T**1;*.I;*, V)",
Vo).

Solving system (1) by equating the left-hand side to zero
results in two equilibria, that is, HIV-only and coinfection
equilibria, indicating that Ez(T",0,1},0, V), do not exist.
The absence of HBV-only endemic equilibrium is an indica-
tion that, given the proliferation of HIV from other cells
other than hepatocytes, it is not likely that HBV will take
competitive exclusion over HIV in the liver. The HIV-only
endemic equilibrium E, (T, I}, 0, V}, 0) is given by

A+en(B+C)- \/((A +ehmi (B +C))* —4D)

T* >
2d,m B,
ehn (A —eh™(B+C) + \/((A +ehm(B+C))* - 4D))
I = ,
" 2d,m B,
ehn (A +eh™(-B+C) + \/((A +ehm (B+C))* - 4D))
V= ,
" 2¢, B,

(19)

where A = An,B,, B=c,d;, C=mp,,and D =" Ac,dn,f,.
It is analytically cumbersome to deduce the conditions
under which this steady state exists.

Assessing the endemicity of either infection under the
circumstance that HIV viral copies that infect hepatocytes
are only proliferated in hepatic cells, it is assumed that m
=0. In this case, we have both HIV-only (E;,) and HBV-
only (E,) endemic equilibria.

For the case of HIV-only, the endemic equilibrium, the
point under the assumption that m =0, is given by

BT 1,0, V;,0)=( A (Ry-Ddie (Rh—l)d1>_

leh’ Bimd, o B,
(20)

We can then derive the following result.



Lemma 6. If HIV that infects liver cells proliferates only in
hepatic cells, then HIV-only endemic equilibrium will exist
when R, > 1.

2.3.1. Local Stability of E,. Assuming that E, exists when
(Vy,I,) — (0,0) as t — 0o, the Jacobian matrix of sys-
tem (1) is derived as

—d, 0 0 BT —B, T T
0 -d, 0 pehnr 0

Je,=| 0 0 -, 0 Be i
0 md, O - 0

L 0 0 n,d, 0 -6

(21)

The determinant of J; is given by

g, | =md, <eid11' 7B, - dz) (ViBi +dy) (d3c2 - Vlzdsﬁzeﬂ;llr2 Tﬁ)

n,d B ) ] ]
= —dllRi (ViB, +4dy) (Aﬁle dty _ dleRh) <d3c2 —n,d,B,e Aty )
=d(VyBy +dy) (e —dymy) (dSCZ - nzd3ﬁzeidlrz T7>
_ dydsc

2 (Vi + ) — dory)(Ry ~ Ry).
h

(22)
Given that trace(Jp, ) <0, we deduce the following.

Result 1. HIV-only endemic equilibrium is locally asymptot-
ically stable only if (i) ¢,/n, >d, and R, > R, or (ii) ¢;/n; <
d, and R, >R,

Considering the HBV-only endemic equilibrium when
m=0, E, exists when (V,,I,) — (0,0) as t — oo and is
given by

A R, —1)d R, - 1)d
Eb(T',O,Ib',O,Vb,)= ,O,( p— 1) 152, )( p— 1d, ]
d,R, Bynyds B,

(23)

Thus, E, exists when R, > 1. Using the same method as
above, the conditions for local stability of of E, can be
established.

2.3.2. Existence of the Interior Equilibrium Eyz when m # 0.
Coinfection endemic equilibrium Epp(T**,1;*,1;*, V5, V™)
is defined as

(24)

It (25)
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c16d; (R, = Ry)(R, — 1) + c;mB| R,

I = , (26)
’ d3ny Py (R, — Ry)
mRb
Vit ———2 (27)
" (R —Ry)
VZ* — Cldl (Rb - 1) + mﬁl mCZﬁIRh (28)

apB, ! Byci (R, = Ry)

It is not likely that both virus exist in same magnitude over
the infection period. As t — o0, either HIV or HBV will
dominate the liver. HIV dominates when R, > R;,. In this case,
if R, > 1, then I;, and V, will exist (Equations (26) and (28)),
but I}, and V, will not lie within a biologically feasible solution
set, as seen in Equations (25) and (27). Thus, the coinfection
endemic equilibrium E;; will not exist when the liver is dom-
inated by HIV. On the other hand, when hepatitis dominates
the liver at endemicity of the coinfection, that is, R, > R,
together with R, >1 (of course, HBV can only become
endemic when R, > 1), then only I;, and V;, will surely exist
with respect to Equations (25) and (27). We investigate the
parametric conditions that allow for the feasibility of I,
and V.

Using Equation (26), if R, > Ry, then I, > 0 only if

szﬁle + C1C2d1 (Rh - Rb)(Rb - ].) <0. (29)

Using Equation (28), if R, > R, then V; > 0 only if

(R = Ry)(c1dy (R, = 1) + mPBy) + me, By R, < 0. (30)

Rearranging (29) gives

cmpPi R,
R,-R _— 31
(Ry h)>C1C2d1(Rb_l) (31)
and rearranging (30) gives
mc, 3, R
R,-R,)> 2P0 . (32)
(R~ Ry) ¢ d; (R, = 1) +mp,
Thus, for a biologically feasible solution, we have
; cmpiR, me, B\ R, }
R, —R},) > min , .
(R =) {Clczdl(Rb_l) ¢ dy (R, = 1) +mp,
(33)

We therefore deduce the following result.

Result 2. Whenever R, > 1, the coinfection endemic equilib-
rium state E; exists anywhere in the biologically feasible region



Journal of Applied Mathematics 7
TaBLE 1: Parameters values used in simulations.

Par Description Value Ref

A Rate of creation of hepatocytes from within the body 1.2x10* [25]
B, Rate of transmission of HIV in hepatocytes 1.0x1078 [32]
d, Natural death rate of uninfected hepatocytes 0.0039 [39]
B, Rate of transmission of HBV in hepatocytes 1.67x 1078 [19, 40]
d, Death rate of HIV-infected hepatocytes 0.05 [31]
dy Death rate of HBV-infected hepatocytes 0.0693 [39]
1y Burst size of HIV-infected hepatocytes 200 Estimate
n, Burst size of HBV-infected hepatocytes 200 [19]
m Number of viral copies from CD4+ cells 50000 Estimate
o Rate of clearance of HIV 1.5 [10]

cy Rate of clearance of HBV 0.67 [19]

T Intracellular delay 5 [19]

defined by (R, - R;,) > min {(c,mpB,Ry/c,c,d; (R, — 1)), (mc,
BiRylcydy (R, = 1) + mp,)}.

2.4. Numerical Results of the Model. In this section, we pres-
ent the numerical results of system (1), with parameter
values as indicated in Table 1. Due to lack of previous studies
on the dynamics of HIV in hepatocytes, we assume that HIV
and HBV have the same period of latency in hepatocytes.
This indicates the probability that an HIV or HBV produc-
ing hepatocyte surviving through the time period 7, =7, is
theoretically equal. Biologically, according to Alshorman
et al. [25], the initial value of healthy cells (T'(0)), prolifera-
tion rate A, and clearance rate d, are related by A =d, T(0);
thus, initial values are as follows:

T(0) =3.0769 x 10, 1,(0)
=10,1,(0)
=10, V,(0) (34)
=100, V,,(0)
= 100.

Numerical results of system (1) are shown in Figure 2.
Variables approach an infected steady state, because param-
eter values as shown in Table 1 satisfy the condition in
Result 2. Comparing the dynamics with and without delay,
Figure 3 shows that the peak times of both virus as well as
the decay time of healthy hepatocytes are longer with delay
than without. We summarise the peak values and times as
presented in Table 2.

With the same initial values for infectious classes and
viral copies, despite the influx of HIV from cells other
than hepatocytes, HBV peak values are a hundred-fold
higher than HIV. Additionally, HBV peaks later than
HIV, which also seems to support another study [3] that
indicates that the presence of HIV changes the natural his-

tory of HBV, with the progression of liver-related diseases
17 times more in the coinfected than in HBV monoin-
fected individuals. With varying delay period, Figure 4
shows that the longer it takes for HIV and HBV to repli-
cate in hepatocytes, the more the HIV and the less the
HBV virus multiplies.

3. Optimal Control Problem

The optimal control method has been studied widely in a
number of settings including analysis of control strategies
in infectious diseases. In within-host viral dynamics particu-
larly, controls are antiretroviral drugs used to suppress the
progression of a pathogen. In some studies, controls are
instantaneous [41, 42], while in others, a pharmacodynamics
delay is incorporated [18, 43]. HIV and HBV combinational
antiretroviral therapy (cART) consists of infusion, integrase,
reverse transcriptase, and protease inhibitors, all aiming at
blocking viral replication in vivo [16]. In HIV/HBV-coin-
fected persons, cART is supposed to suppress replication
rate of both virus in all body cells. It has been reported that,
generally, cART is not as effective in hepatocytes as com-
pared in CD4+ cells, possibly because of high level of HIV
latency in this type of cells [3].

Different classes of antiretroviral drugs serve different
purposes and act at different stages of viral progression.
Most of the drugs are enzyme inhibitors, and they inca-
pacitate different enzymes that aid viral multiplication
within a host cell. In order to monitor effectiveness of
cART in HIV- or HIV/HBV-coinfected patients, fre-
quent viral load testing, regulated by WHO [44], is
carried out.

Time-dependent resultant efficacy ¢(t), for 0 < ¢(t) <1,
is considered. It is assumed that in the case of two enzyme
inhibitors, whose efficacies are ¢, () and ¢, (1), we have ¢(¢)
= ¢, (t) + ¢,(t) = ¢, (£)¢,(1). Thus, 1-¢(t)=(1-¢,(t))(1
- ¢,(t)), which indicates that the two drugs act independently
with additive efficacy. The same argument can be used even
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TABLE 2: Peak values and time for HIV and HBV, with and without
delay.

HIV peak HBV peak HIV peak  HBV peak
time time value value
With delay 87 100 512,600 12,940,000
Without 49 54 275400 15,950,000
delay

when three types of enzyme inhibitors are used. Considering
an instantaneous control efficacy, the optimal control problem
is given as

T r— a0 BTV - BTOVA(0),

— e—dm/ng(t 1) Vi(t=1,) = dy I, (1),

=B, T(t—1,)Vy(t—T,) — dsI, (1),

dar (1= ¢(1))mydy I, (t) + (1= ¢(t))m =,V (1),

5o = (1= g(0)mds (1) = & Vi (8).
(35)

It is worth noting that Equation (35) is similar to Equation
(1), with all parameters taking the same descriptions as indi-
cated in Section 2. However, the resultant efficacy ¢(¢) is
expected to reduce the number of viral copies in a coinfected
person. Thus, the number of HIV (1,d,I,,(t) + m) and HBV
(nyd,I,(t)) copies generated are reduced to (1 — ¢(t))n,d,1,
() + (1 —¢(t))m and (1 — ¢(¢))n,d;1,(¢), respectively. This
indicated that the higher the value of ¢(¢), the fewer the viral
copies, and when the cART is 100% efficacious (¢(¢) = 1), then
no viral copies will be produced.

Treatment strategy ¢(¢) that minimises the number of
HIV and HBYV viral load in the liver and consequently max-
imises healthy hepatocytes for the entire treatment duration
T; is investigated. The strategy ¢() should minimise the

viral load, as well as the cost of treatment and the corre-
sponding side effects of the medication that result in reduced
density of the pathogen. The objective function is defined as

T

VL) V() + A ¢22(t) dt. (36

T =|

Parameter A is established by combining the benefits
and costs of the treatment such that it equalises the size of
the term ¢(t) and reflects the severity of the side effects of
the drugs. The cost function is quadratic because it should
be nonlinear at the optimal controls ¢*(¢). However, there
is no linear relationship between the effect of the therapy
on hepatocytes and viral load [45, 46]. We seek an optimal
control strategy ¢*(t) such that

J(¢7) =min {J(¢(1)): ¢(t) € U}, (37)
where U is the control set defined by

U= {¢: ¢isLebesgue measurable,v0 < ¢(t) <1, t € [0, T(] }.
(38)

3.1. Existence of an Optimal Control. The existence of an
optimal control ¢*(¢) can be proved by the results of
Fleming and Rishe in [47].

Theorem 7. Consider the control problem with system (35).
There exists an optimal control ¢* € U such that

J(9°) =min {J($(t)): $(t) € U}. (39)

Proof. To use an existence result in Fleming and Rishe in
[47], we must check the following properties.

(1) The set of controls and corresponding state variables
is nonempty

(2) The control set U is convex and closed

(3) The right-hand side of the state system is bounded
by a linear function in the state and control variables

(4) The integrand of the objective functional is convex
on U

(5) There exist constants c;,¢, >0 and 3> 1 such that
the integrand L(V,,V,,¢) of the objective func-
tional satisfies

LV Vi) 2+ (o). (40)

O

The control ¢(t) from (38) and state variables T(¢),
I,(t), I,(t), V},(t), and V,(¢) from (4) are nonnegative and
nonempty which satisfy condition (1). The control set is con-
vex and closed by definition in (38). Since the state system
(35) is linear in ¢(¢), the right-hand side satisfies condition
(3). Using the boundedness of solution as indicated in
Section 2.1, the integrand in the objective function (36) is
convex on U (because its quadratic in ¢(t)); thus, condition
(4) is satisfied. Finally, we can easily see that there exists a
constant $>1 and positive numbers ¢; and ¢, satisfying
Equation (40).

3.2. Characterization of the Optimal Control. In order to
derive the necessary condition for the optimal control, Pon-
tryagin’s maximum principle with delay given by Gollmann
et al. [18] is used. First, we define the Lagrangian for the
optimal control problem (35) as

LV Vi, ¢) =V () + Vi () +A@. (41)
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The principle converts the system (35), the objective
function (36), and the optimal control (39) into a problem
of minimising the Hamiltonian given by

5

LV Vi ) + Zfi/\i’ (42)

i=1

(T Ih’Ib’ Vh’ Vh’¢ /‘ )

where A, for i =1, ---, 5 are the adjoint functions and f are the
right hand side of the system of state variables in (35). Using
the principle in [18], we arrive at the following theorem.

Theorem 8. Given an optimal control ¢* € U and solutions
T*, Ij, I, V;, and V} of the corresponding state system
(35), there exist adjoint functions A,, ---, As which satisfy

D i+ BV + BV ) ~ Ko,
_ (e*dITJﬁIVZ(t)M(”TI))
- X[O,Tf—‘rz] (B, V3 (1)A5(t +75)),

, .

— = daha(0) = (1= () mdaA (1),

i, .

5 = d(0) - (14 () mad (1),

Ay

c;_t:]+c1)\4() A(O)B, T (1) = X[oT-7]
. (e—dmlng*(t)AZ(t+11),

dAs

W_1+c2/\5( )+ A (BB T () - X[or,-.] (43)

(BT (DAt + ).

with transversality conditions A,(T) =0, fori=1,---,5, and

the corresponding optimal control given by

¢ (£) = min (1) max (0’ (n,d I (t) + m))tz(t) + nZdSI;(t))LS)))

(44)

and Xjo.1,~] is the characteristic function on interval
[0, Ty —7;] defined by

1, i a, bl,
xwmn{ yrelet (45)

0, otherwise.

Proof. Using Pontryagin’s maximum principle with delay in
state [18], we can obtain the adjoint equations and transvers-
ality conditions as

11
A O o) . (1) =0
d%t(t) - ‘g—i’ 4 (Ty) =0,
dkgt(t) - —g—Z} A5(Ty) =0,
% - _E?\I/i ~ Afory-r] W’AS( 7)=0.
(46)

For i =1, 2, the optimal control ¢* can be solved using the
optimality condition

oH

— =0, 47

“ (47)
and by the bounds of ¢(t) defined in (38), it is easy to show
that Equation (44) holds. O

Combining the state variables in Equation (35), the sys-
tem of adjoint variables (44), and the optimal control (44),
the optimality system is derived as

T h-ar -, Vi - BT (Vi)
dI‘;flft) _ e*d”l/j’lT*(t—Tl)VZ(t —1)) = dy (1),

dlglgt) =R T (t—1,) Vi (t - Ty) — ds I} (1),
déﬁ”=U—¢%ﬂwﬁﬂﬂﬂ+0—¢mﬁf‘ﬁvﬂ”
dVdZt(t) = (1= ¢*(1))myds I (1) — &, Vi (D),

da, (t)

5= (dy 4 BV () + BV () () = Ko, o)
ACR AAGINEES)
~X[o.1,-1,) (B, V5 (5)As(t +15)),

””Zf ) - dydy (1) = (1= ¢" (1))mdyA4(1),
dAc;t( ) - d3A5(t) = (1= @7 (£))mydyAs (1),
dAy(t) _
g = Lt adO+ MOBT (1) ~ Xor,-]
(BT (A4,
d’\;t(t) =1+6As(t) + A (1) B, T (t) - Xor.]

(48)
(BT (O (1 7y),

where ¢*(t) is given by Equation (44).
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3.3. Numerical Results of the Optimal Control System.
Numerical results of the optimality system (48) are
obtained by finite difference approximation method [40],
between =0 and T;=400 days. Parameter values are as
shown in Table 1, and the initial values are as shown in
(34). Figures 5 and 6 show that medication is able to con-
trol either infection. This is in support to the objective of the
control strategy, which is aimed at minimising the viral load.
However, the reduction in viral load seems not to imply
significant growth in healthy hepatocytes as also shown in
Figure 5. Nonetheless, it is the opposite when compared
to Figure 6.

With initial viral copies of both infections set as 10,
numerical results indicate that at the end of control period,
there are 3141 copies of HIV and 1918 copies of HBV. Com-
paring with 45820 and 3.094 x 10° copies of HIV and HBV,
respectively, without control, is a clear indication that ther-
apy is more effective in reducing HBV load. The control pro-
file in Figure 7 shows the treatment administration schedule
over the period of 300 days. The control should be applied at
maximum effectiveness during the first two weeks because of
the high viral load in the patient. There is periodicity in con-
trol application for the next 4 months before a steady upper
bound, but the control does not go below 80%. This indi-
cates that considering all the assumptions taken in this
study, if efficacy is maintained beyond 80%, it is possible to
reduce the HIV/HBYV load in coinfected patients and the sys-
temic cost.

Control profile
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Ficure 7: Control profile of delayed HIV/HBV model. Parameter
values are as shown in Table 1. Horizontal axes represent time in
days.

Figure 8 shows that there is an increase in both HIV and
HBV copies with increase in delay period. We have seen that
without the control presented in Section 2.4, the delay only
increases HIV copies and not HBV. This suggests that the
longer the virus hides in a host cell, the less effective the
therapy and consequently the more viral load in the patient
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is. We can also observe from unlike in Figure 6, where HBV is
tens of thousands more than HIV, that when control is
applied, HBV load becomes less than HIV load, which is an
indication that therapy is more effective in controlling HBV.

4. Discussion and Conclusion

This study proposed a mathematical model representing
coinfection of HBV and HIV in human hepatocytes. The
model included a time delay to represent the time between
viral entry into a host cell and the actual time when the cell
is able to replicate viral copies. When the virus gain entry
into a host cell, the integrated provirus may remain latent
for a number of years without replication. The cell hosting
a provirus is regarded as a viral reservoir. The reservoir is
not able to attract cytotoxic killing from the virus-specific
lymphocyte, neither can it be cleared using cART. The effect
of latency period on the dynamics of HIV/HBV infection
was investigated. Analytically, model solutions were found
to be positive and bounded. The disease-free equilibrium
Dy was computed and the basic reproduction number R,
deduced. It was established that Dy is locally asymptotically
stable, when R, <1 and unstable when R, > 1. Results indi-
cate that HBV cannot gain competitive exclusiveness over
HIV given the influx of HIV from other cells; thus, there is
no HBV-only endemic equilibrium point. Coinfection
endemic exists with some parametric conditions indicated

in Result 2. Failure to have a possible HBV-only endemic
equilibrium, but rather an HIV-only and coinfection
endemic equilibria, is an indication that HBV becomes
chronic in HIV-infected patients [3].

Assuming equal intracellular delay for both HIV and
HBYV of 5 days, numerical results show that there is higher
HIV load with viral latency than without. However, the
effect of latency period on the number of viral copies is not
seen at the start of the infection. This is an indication that
the influx of HIV viremia is the one that has an impact on
the HBV viral load that consequently shoot up. This could
signify that hepatocytes acting as HIV reservoirs have a
greater impact on HIV dynamics, which consequently influ-
ences HBV. It has been previously reported that HIV alters
the dynamics of HBV in a manner that is not yet known [3].

With parameter values used in simulations, it was found
that R; = R, where R, is the number of secondary infections
resulting from one HBV infectious hepatocyte. This is evi-
denced by higher HBV viral load as compared to HIV in
numerical simulations and is in line with study by Parvez
[3], who reports that HIV coinfection significantly alters
the natural history of hepatitis B and therefore complicates
the disease management. They further assert that, in HIV-
coinfected individuals, liver-related mortality is over 17
times higher than those with HBV monoinfection. Even
though the use of cART has changed the overall outcome
of HIV in infected patients, from a fatal to a chronic one,
pharmacologists are still trying to find an absolute cure to
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the disease. Their efforts have been hindered by viral reser-
voirs that harbour the provirus for a long time making cART
inefficient, since it targets only actively replicating virus.
Given both challenges of viral latency and lifelong treatment,
optimal therapy that minimises active viral load and cost of
treatment, combined with side effects, needed to be investi-
gated. By using Pontryagin’s maximum principle of delayed
models, the optimal control problem was characterized and
the expression of the optimal control was computed. Using
the finite difference approximation method, simulation
results show that the resultant control strategy is effective
in reducing the active viral load of either infection. The opti-
mal efficacy that minimises the viral load for the entire con-
trol period of 400 days is over 80%. It is important to note
that as latency reversal agents are manufactured, there is also
a need to ensure that the current cART is highly efficacious
in eliminating all actively replicating virus.

Numerical results from the optimal control model with
varying delay periods indicate that the longer the delay is,
the more HIV and HBV viral load builds up. An increase
in HIV and HBV copies with increase in latency period, in
the presence of cART, is an indication that viral latency hin-
ders drug management and control [3, 9]. Generally, latent
reversal agents should not only be CD4+ cell-specific since
there is evidence that CD4+ cells are not the only viral reser-
voirs. For the liver specifically and in HIV/HBV-coinfected
patients, HIV latency does not only lead to higher HIV load
and hinder drug management, but it also implicates higher
HBYV viral load in the liver.

Appendices
A. Castillo-Chavez Theorem [38]

‘;_X - F(X, Z)
d; (A1)
= =G(X.2),G(X,0) =0.

where the components of the column-vector X € R™ denotes
the number of uninfected individuals and the components of
vector Z € R" denotes the number of infected individuals.
Let Uy =(X*,0) denote the disease-free equilibrium of this
system. The fixed point U, = (X*, 0) is a globally asymptot-
ically stable equilibrium for this system provided that R; < 1
(locally asymptotically stable) and the following two condi-
tions satisfied:

Theorem 9. For a system

(H1): For dX/dT = F(X, 0), X* is globally asymptotically
stable

(H1): G(X,Z) =MZ - UG(X, Z) = 0 for (X, Z) € Q where
M=D,G(X*,0) is a Metzler matrix (the off-diagonal
elements of M are nonnegative), and () is the region where
the model makes biological meaning,
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