
Research Article
Effects of Radiation Pressure on the Elliptic Restricted Four-
Body Problem

Sahar H. Younis,1 M. N. Ismail ,2 Ghada F. Mohamdien,3 and A. H. Ibrahiem2

1Mathematics Dep., Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt
2Astronomy and Meteorology Dep., Faculty of Science, Al-Azhar University, Cairo, Egypt
3National Research Institute of Astronomy and Geophysics (NRIAG), Cairo, Egypt

Correspondence should be addressed to M. N. Ismail; mnader_is@azhar.edu.eg

Received 28 August 2021; Revised 20 September 2021; Accepted 26 October 2021; Published 30 November 2021

Academic Editor: Waqar A. Khan

Copyright © 2021 Sahar H. Younis et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this paper, under the effects of the largest primary radiation pressure, the elliptic restricted four-body problem is formulated in
Hamiltonian form. Moreover, the canonical equations are obtained which are considered as the equations of motion. The
Lagrangian points within the frame of the elliptic restricted four-body problem are obtained. The true anomalies are
considered as independent variables. An analytical and numerical approach had been used. A code of Mathematica version 12
is constructed to truncate these considerations and is applied on the Earth-Moon-Sun system. In addition, the stability and
periodicity of the motion about the equilibrium points are studied by using the Poincare maps. The motion about the collinear
point L2 is presented as an example for the obtained results, and some families of periodic orbits are presented.

1. Introduction

Several systems in space dynamics such as two-body, three-
body, and four-body are considered. There are many
attempts to study the problem of these objects using classical
methods or Hamiltonian techniques which are good tech-
niques for solving it (see Budrikis [1] and Stone and Leigh
[2]). Many authors (Ershkov [3] and Ito [4]) have used these
models with various perturbations such as eccentricity, solar
radiation, the variable mass of primes, Coriolis and centrifu-
gal forces to checkpoints of vibration, linear stability, and
periodic orbits. Singh and Haruna [5] have studied the loca-
tions and linear stability of trigonometric points when two
primaries radiate, and they studied their heterogeneity. The
constrained two-circle four-body problem (4BP) is the sim-
plest model used in the four-body problem (4BP) field
Andreu [6]. In this model, the two primers move in circular
orbits around the center of mass while this center of mass
also moves in a circular orbit around the largest mass in the
same plane. Kumari and Kushvah [7] and Ismail et al. [8]

used Poincaré’s surface sections to examine the invariance
of the constrained four-body problem and applied their study
to the Sun-Earth-Moon system.

El-Saftawy and Abd El-Salam [9] obtained the solution
of the problem using the technique of Delva. Grebenikov
et al. [10] studied the problem of the four constrained bod-
ies, by building the Hamiltonian technique, and obtained
equilibrium solutions and found six possible equilibrium
configurations. Lakin [11] studied the elliptic restricted
three-body problem using different coordinate systems to
illustrate the stability. Assadian and Pourtakdoust [12] and
Chakraborty and Narayan [13] used the problem of the four
finite Belial bodies to examine the influence of the Sun on
the points of vibration of the Earth-Moon system. Chakra-
borty and Narayan [14] investigated the equilibrium points,
linear stability, zero velocity curves, and fractal trough of the
four-body constrained elliptic problem. The model cited in
Xu and Fu [15] is useful as a simple example of nonintegral
dynamical systems and is successful in understanding many
quasiperiodic phenomena in astronomy. Ibrahim [16]
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studied the effect of solar radiation pressure onto the motion
of many-body problem, and applied the study on the Sun-
Earth-Moon-spacecraft system.

In this paper, we study the problem of the four bodies
under the influence of the combined forces of gravity of
the elementary bodies that revolve in an elliptical orbit
around their center of mass and the pressure of radiation
of the largest primary. The problem is formulated in the
Hamiltonian form. Then, the canonical form is obtained.

The locations of the equilibrium points were determined
in terms of the mass ratio of the primaries μ and β the ratio
of the radiation strength to the gravitational force of the largest
mass. The stability of the motion about the points of vibration
under the forces of gravity and radiation is studied. Finally, the
canonical equations are applied to the Earth-Moon-Sun sys-
tem model to calculate the corresponding solutions for both
the trigonometric and linear equilibrium points. Finally, the
Poincare maps are presented to show these stabilities.

2. Description of the Problem

The elliptic restricted four-body problemmodels represent the
motion of the infinitesimal mass,m, under the influence of the
gravitational field of the three primaries m1, m2, and m3 and
radiation pressure of the third primary m3. The three pri-
maries and the infinitesimal mass m4 are moving in the same
plane, i.e., coplanar motion. The two smallest primaries m1
and m2 are moving in an elliptic orbit with ðe2, f2Þ about the
barycenter CM1 orbiting the largest primary m3 in an elliptic
orbit with ðe1, f1Þ, such that 0 < e1, and e2 < 1. CM is the bar-
ycenter between CM1 andm3. The distance between CM1 and
m3 is referred to by D, and the distance betweenm1 andm2 is
referred to by d as shown in Figure 1.

Then, we assume the following two hypotheses: (1) m3
≫m1 +m2 ≫m2 and (2) D≫ d. Then, the distance between
m3 and CM1 from CM is D1 and D2, respectively, and that of
m1 and m2 from CM1 is d1 and d2, respectively. We have to
keep in our minds that the above hypotheses are in case that
the movement of the infinitesimal mass m4 takes place in
space as a spatial elliptic restricted four-body problem [17].

The main idea in this research is to study the effect of
radiation pressure from the more massive body m3 and to
identify the disturbance which will affect the smallest mass
m4, so that m3 is considered as perturbing body and the
formation of the Hamiltonian system is needed to obtain
the canonical form which is considered as the equations of
motion.

To introduce the dimensionless system, let the distance
between m1 and m2 equals the unity [18], that means

G m1 +m2ð Þ = 1,

μ = m2
m1 +m2

,

1 − μ = m1
m1 +m2

,

μ3 =
m3

m1 +m2
:

ð1Þ

Additionally, let the value of the orbital angular momen-
tum with respect to the motion of the primaries m1 and m2
as unity (see Zebehely [17] and Ismail et al. [18, 19]).

The coordinates of m1, m2, m3, and m4 are given as fol-
lows:

m1 : m1 ξ1, η1, ζ1ð Þ: D2 cos f1 − d1 cos f2,D2 sin f1 − d1 sin f2, 0ð Þ,
m2 : m2 ξ2, η2, ζ2ð Þ: D2 cos f1 + d1 cos f2,D2 sin f1 + d1 sin f2, 0ð Þ,

m4 : m4 ξ, η, ζð Þ: ξ, η, ζð Þ,
m3 : m3 ξ3, η3, ζ3ð Þ: −D1 cos f1,−D1 sin f1, 0ð Þ:

ð2Þ

Relative to the approximation involved in the assump-
tion of elliptic motion, the distances D and d are defined by

D = a1 1 − e21
� �

1 + e1 cos f1
, d = a2 1 − e22

� �
1 + e2 cos f2

, ð3Þ

where a1 and a2 are the semimajor axis of the elliptic orbits;
thus, D1= a1m3,D2 = d1ðm1 +m2Þ, and D =D1 +D2. Simi-
larly, d1 = a2m1, d2 = a2m2, and d = d1 + d2 and f1, f2 are
the true anomalies of the bodies m3 and m1, respectively.

Now, the system (ξ, η, ζ) will be transformed to the
system (x, y, z). The new coordinates of m1, m2, m3, and
m4 become

m1 : m1 x1, y1, z1ð Þ: −d1, 0, 0ð Þ,
m2 : m2 x2, y2, z2ð Þ: d2, 0, 0ð Þ,

m3 m3 x3, y3, z3ð Þ: −Ds cos f2 − f1ð Þ,−Ds sin f2 − f1ð Þ, 0ð Þ,
ð4Þ

where Ds = ðRsð1 − e21ÞÞ/ð1 + e1 cos f1Þ.

3. The Hamiltonian of the Problem

The equations of motion of the small particle m4 are formu-
lated in Hamiltonian form under the effects of the gravita-
tional potential of small primaries m1 and m2 taking into
consideration the perturbing gravitational and radiation of
the third large primary m3. The system has a Lagrangian
function represented by

L x, y, z, _x2, _y2, _z2
� �

= T −V , ð5Þ

where T is the total kinetic energy and V is the total poten-
tial energy of the system. The potential is defined as

V = 1 − μ

r1 + μ

r2 + 1 − βð Þμ3
r3

, ð6Þ
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where

r1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x + μð Þ2++y2 + z2

q
,

r2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − 1 + μð Þ2 + y2 + z2

q
,

r3 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x −Ds cos f1 − f2ð Þð Þ2 + y −Ds sin f1 − f2ð Þð Þ2 + z2

q
:

ð7Þ

β is the radiation pressure coefficient of the third body.

Then,

L = 1
2 _x − yð Þ2 + _y + xð Þ2 + _z2 + 1 − μ

r1
+ μ

r2
+ 1 − βð Þμ3

r3
:

ð8Þ

The Hamiltonian function defined as

H = PT _X − L, ð9Þ

P = ∂ L
_X
: ð10Þ

m4

𝜉

𝜁

CMm3

m1

CM1

m2

Figure 1: Present the motion of m1, m2, m3, and m4.
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Figure 2: Poincare map about Lx2 with f1 = 10°.
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Figure 3: Poincare map about Lx2 with f1 = 170°.
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Figure 4: Poincare map about Lx2 with f1 = 10° in three dimensions.
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Figure 5: Poincare map about Lx2 with F = 30 .
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Figure 6: Poincare map about Lx2 with F = 150 .

5Journal of Applied Mathematics



1.0

0.5

0.0

–0.5

–1.0
–5 –4 –3 –2 –1 0 1

Figure 7: ZVC about Lx2 with f1 = 10°.
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Figure 8: ZVC about Lx2 with f1 = 30°.
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ðpx, py, pzÞ are the components of the momentum P and

( _x, _y, _z) are the components of the velocity _X ̇;since the
motion is in the plane x − y, then _z = 0 and pz = 0; from
Equations (8), (9), and (10), the Hamiltonian is given by

H = 1
2 px

2 + py
2

� �
− pxy − pyx
� �

−
1 − μ

r1
+ μ

r2
+ 1 − βð Þμ3

r3
ð11Þ

4. The Equations of Motion and
Libration Points

The equations of motions are obtained by considering the
canonical form of the Hamiltonian which are

_X = ∂H
∂ P

, ð12Þ

_P = −
∂H
∂X

: ð13Þ

Now, the libration points are obtained by applying the
following conditions:

_x = 0, ð14Þ

_y = 0, ð15Þ
_px = 0, ð16Þ
_py = 0: ð17Þ

For collinear libration points, Equations (12), (13), and

(14) and (15), (16), and (17) are solved together for x and
y = 0, while for the nonlinear libration points, Equations
(12), (13), and (14) and (15), (16), and (17) are solved
together for ðx, yÞ.

5. Results and Discussion

5.1. Stability about Equilibrium Points. Since the primaries
are moving in elliptical orbits, then to study the motion
about any of the libration points and its stability, it is more
convenient to introduce the independent variable f2 instead
of the independent variable t, so that let

∈ = 1 − e2
2

1 + e2 cos f2
,

x = ∈�x,
y = ∈�y,
z = ∈�z,
px = ∈px,
py = ∈py,
pz = ∈pz ,
H = ∈�H:

ð18Þ

The new Hamiltonian is given by

�H = ϵ
1
2 px

2 + py
2

� �
− px�y − py�x
� �� �

−
1
ϵ2

1 − μ

�r1
+ μ

�r2
+ 1 − βð Þμ3

�r3

� �
:

ð19Þ
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Figure 9: ZVC about Lx2 with f1 = 150°.
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Then, the equations of motion in the new coordinates
are given by

where

_f = 1 + e2 cos f 2ð Þ2
1 − e22ð Þ3/2

,

∈́ = d ∈
d f

= e2 sin f 2  1 − e2
2� �

1 + e2 cos f 2ð Þ2
,σ = 1

_f
,σ1 =

∈́
∈
:

ð21Þ

It is well known that the characteristic equation for the
linearized system is given by

λ4 + 4 −Vxx −Vyy

� �
λ2 +VxxVyy = 0, ð22Þ

where Vxx is the second derivative of V with respect to x and
Vyy is the second derivative of V with respect to y. The four
roots of Equation (22) illustrate the stability of motion which
depends on the kind of the root if it is real or imaginary or
complex numbers. This was treated in more details in many
pervious works. Now, in this work, the Poincare map is used
to illustrate the stability.

5.2. Poincare Map. To apply the obtained equations of
motion, some assumptions must be considered: (i) the rela-
tion between f1 and f2 and (ii) the method used to solve the
equations of motion. In this study, the numerical method is
used using the explicit Runge-Kutta method. A cod was con-
structed to do this, and the Poincare map is shown to illus-
trate the region of the stability of motion about any
libration. So that if the Sun-Earth-Moon system is chosen,
then it is known that for Sun Ds = ðRsð1 − e1

2ÞÞ/ð1 + e1 cos
f1Þ, Rs = 328900:48, e = 0:016, the true anomaly of orbit
Earth-Moon about Sun F takes the values 0 to 2π, μs =
328900:48, μ = 0:012, and e1 = 0:0549, the true anomaly of
the orbit of Earth-Moon f1 takes the values 0 to 2π. Notice
that when the Earth-Moon complete one revolution about
the Sun, the Earth-Moon system completes 12 revolutions
about their center of mass. That means the true anomaly
f2 is considered as a faster variable, so that the change in

the Sun’s true anomaly f1 is so slow in comparison with
the change in the Earth-Moon true anomaly f2. These notes
are taken into consideration when the cod is truncated. β is
the radiation pressure coefficient of the Sun and is obtained
from β = Frad/Fgr, where Fgr is the gravitational force of the
Sun and Frad the radiation force of the Sun. Now, let f1 = 10°,
f2 truncated from 0 to 100π, and β = 10−6; these values are
used in the cod and are applied on the canonical system
(16) and (17), so Figure 2 illustrates the Poincare maps about
the libration point Lx2 = 1:06. In Figure 3, the Poincare map
is obtained with f1 = 170°, to compare the results with those
of f1 = 10° obtained in Figure 2, while Figure 4 illustrates the
three dimensions of the Poincare map which appears as
elliptical trajectories centered at the libration point Lx, and
many periodic trajectories about it are included. In
Figure 5, the Poincare map with F = 30° is compared with
that in Figure 6 f1 = 150°. It is noticed that the change in
the value of the true anomaly f1 does not affect the stability
of motion about the libration point just changing the phase
of map by2π. The same was done for the zero velocity
curves which are shown in Figures 7–9 with f1 = 30°, f1 =
30°, and f1 = 150°, respectively. It is noted that the regions
about Lx are still unchanged while the energy levels out of
these regions are changed.

6. Conclusion

In this work, the Hamiltonian of the elliptic four-body
problem is studied. The new coordinates which depend
on the true anomaly as independent variable are used.
The effects of the true anomaly on the stability of motion
have a great rule through this study. The sizes of gaps
between regions of motion about the libration point are
affected by the value of the true anomaly, which means
that the position of the primaries in their orbits must be
taken into consideration when treating these problems.
Also, the energy levels are affected with the values of the
true anomaly.

x́ = σ px − �yð Þ − σ1 �x,ý = σ py + �x
� �

− σ1 �y, ṕx = −σ py + �x
� �

− σ1 px −
σ

∈3
μ −1 + �x + μð Þ

�y2 + �z2 + −1 + �x + μð Þ2� �3/2
"

+ 1 − μð Þ �x + μð Þ
�y2 + �z2 + �x + μð Þ2� �3/2 + −Ds cos f 1 − f 2ð Þ + xð Þμ3 1 − βð Þ

�x −Ds cos f 1 − f 2ð Þð Þ2 + �y −Ds sin f 1 − f 2ð Þð Þ2 + �z2Þ� �3/2
#
,ṕy

= −σ px − �yð Þ − σ1py −
σ

∈3
�yμ

�y2 + �z2 + −1 + �x + μð Þ2� �3/2 + �y 1 − μð Þ
�y2 + �z2 + �x + μð Þ2� �3/2

"

+ �y −Ds sin f 1 − f 2ð Þð Þμ3 1 − βð Þ
�x −Ds cos f 1 − f 2ð Þð Þ2 + �y −Ds sin f 1 − f 2ð Þð Þ2 + �z2Þ� �3/2

#
, ð20Þ
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