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Determining the number of clusters in high-dimensional real-life datasets and interpreting the final outcome are among the challenging
problems in data science. Discovering the number of classes in cancer andmicroarray data plays a vital role in the treatment and diagnosis
of cancers and other related diseases. Nonnegativematrix factorization (NMF) plays a paramount role as an efficient data exploratory tool
for extracting basis features inherent in massive data. Some algorithms which are based on incorporating sparsity constraints in the
nonconvex NMF optimization problem are applied in the past for analyzing microarray datasets. However, to the best of our
knowledge, none of these algorithms use block coordinate descent method which is known for providing closed form solutions. In
this paper, we apply an algorithm developed based on columnwise partitioning and rank-one matrix approximation. We test this
algorithm on two well-known cancer datasets: leukemia and multiple myeloma. The numerical results indicate that the proposed
algorithm performs significantly better than related state-of-the-art methods. In particular, it is shown that this method is capable of
robust clustering and discovering larger cancer classes in which the cluster splits are stable.

1. Introduction

Analyzing and interpreting microarray data which represent
biological processes of cancers and other related diseases are
among the big challenges in data science [1–3].Moreover, treat-
ing cancer properly depends hugely on identifying specific ther-
apies to different tumor types which is always a challenging
task. For this reason, classifying cancer types properly and accu-
rately plays a vital role in diagnosis and treatment of cancer and
other related diseases [2, 3]. Numerous methods have been
developed in the past to facilitate extracting and interpreting
fundamental patterns of gene expressions hidden in microarray
data. Thesemethods have also been proved useful for classifying
and clustering genes and samples that show similar patterns.
One of these methods is hierarchical clustering (HC) which is
widely used for analyzing and building hierarchy of clusters in
high-dimensional data. For instance, Eisen et al. [4] applied
HC to yeast and human microarray data to find out that it effi-

ciently clusters genes of known similar patterns in the same cat-
egory. HC has also been successfully used by Alizadeh et al. [5]
to identify distinct types of diffuse large B-cell lymphoma
among patients. The authors reported that molecular classifica-
tion based on gene profiles together with HC helps to identify
subtypes of cancer which play a vital role for undergoing clinical
diagnosis. Perou et al. [6] experimentally proved that HC is very
useful for classifying molecular portraits of breast tumors into
subtypes distinguished by the differences that exist in the corre-
sponding gene expression patterns. In spite of the abovemen-
tioned merits, HC has some disadvantages including failing to
reveal clusters correctly, being very sensitive to the similarity
measure used in the experiment, and being unable to depict
local behavior [1, 3, 7, 8].

Other valuable and powerful approaches are types of
artificial neural networks called self-organizing maps
(SOMs). SOMs are dimensionality reduction techniques
trained using unsupervised learning. SOMs can be used for
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recognizing and classifying features in high-dimensional
data. Tamayo et al. [9] applied SOMs for hematopoietic dif-
ferentiation and reported that they are well suited for
highlighting certain genes and pathways involved in differ-
entiation therapy used in the treatment of acute promyelocy-
tic leukemia. Golub et al. [2] reported that SOMs do not
need any background information to effectively discover
the difference between acute myeloid leukemia and acute
lymphoblastic leukemia. On the other hand, SOMs fail to
provide sparse parts-based localized features and since they
are very sensitive to initial conditions, they may give differ-
ent decompositions of the data to different initializations
[1, 3, 8].

There are also various dimensionality reduction and
matrix decomposition techniques developed for analyzing
microarray data. For instance, Moloshok et al. [10] showed
that Bayesian decomposition is capable of providing insights
and identifying temporal patterns when applied to gene
expression data obtained from yeast cell cycle experiments.
Gasch and Eisen [11] used fuzzy k-means clustering to iden-
tify overlapping clusters of yeast genes and groups of func-
tionally related and coregulated yeast genes. Alter et al.
[12] have shown that singular value decomposition is suit-
able for processing and modeling genomewide expression
patterns. The authors applied this decomposition method
on elutriation yeast dataset and find out that it is capable
of extracting gene expression patterns correlated with the
original samples in the data. However, it reported that the
above matrix decomposition methods have some drawbacks
including being unable to capture full structures and local
behaviors hidden in high-dimensional data [1, 7, 8]. Another
efficient and well-known data exploratory tool is nonnega-
tive matrix factorization (NMF). NMF is a linear dimension-
ality reduction technique famous for extracting basic and
hidden features of high-dimensional data. The basic idea of
NMF is to decompose a given nonnegative data matrix into
two low-rank matrices: basis and weight matrix. Given a
data matrix Y ∈ℝm×n

+ and a reduced rank r, the basic NMF
problem based on the squared Frobenius norm can be stated
as the following optimization problem:

min
U∈ℝm×r

+ ,V∈ℝr×n
+
F U ,Vð Þ = 1

2 ∥Y −UV∥2F : ð1Þ

NMF is found to be an essential tool for analyzing and
interpreting gene expression patterns associated with micro-
array data. The choice and meaning of NMF matrices is
application dependent: in analyzing microarray data, the
columns of the data matrix Y are samples of gene expression
patterns and its rows represent genes. The columns and rows
of the basis matrix U stand for metagenes and genes, respec-
tively, while the columns of the weight matrix V are consid-
ered gene samples and its rows are referred as metagenes [1,
3, 8]. The interesting property of NMF is that it enables
additive combination of parts to make a whole and is found
very suitable for understanding the underlying structure in
microarray data that represent various real-life phenomena
and biological processes [1, 7, 8, 13–16]. Brunet et al. [1]

successfully applied standard NMF algorithm based on
Kullback-Leibler (KL) divergence by Lee and Seung [17] to
extract meaningful information from different leukemia
and tumor microarray data. The authors proved experimen-
tally that NMF is a more powerful method for discovering
cancer classes and molecular patterns when compared to
HC and SOMs. Frigyesi and Hoglund [7] also used the
divergence-based NMF algorithm to analyze some cancer
and tumor data. Their experimental results showed that
NMF facilitates the extraction of biologically relevant struc-
ture of microarray data and plays a vital role in understand-
ing the properties of tumor and cancer-related diseases.
Bocarelli et al. [13] witnessed that NMF is powerful in
extracting biologically relevant genes about the symptoms
and clinical conditions observed on patients suffering from
multiple myeloma (MM) and monoclonal gammopathy of
undetermined significance (MGUS). Carrasco et al. [14]
modified KL-based NMF so that it enables to extract distinct
genomic features and applied it to microarray data obtained
from multiple myeloma patients. The results show that NMF
is capable of providing useful information that helps to pre-
pare specific drugs for certain patients. Kim and Tidor [15]
applied NMF based on the squared Frobenius norm on yeast
data and reported that NMF can predict functional relation-
ships more accurately than conventional approaches. They
have also showed that NMF is able to efficiently detect rela-
tionship among genes and functional subsystems at the
molecular level.

It is possible to make standard NMF more appealing for
the extraction of better and sparser localized features which
are biologically more relevant. This can be done, for
instance, by imposing sparsity constraints on the basic
NMF problem. One way of obtaining sparse factors is by
enforcing an l1-norm-based sparsity constraint on the
weight matrix V of (1) as

min
U∈ℝm×r

+ ,V∈ℝr×n
+
F U , Vð Þ = 1

2 ∥Y −UV∥2F + γ∥V∥1, ð2Þ

where γ is a penalty parameter used to control the trade of
between sparsity and reconstruction accuracy. Algorithms
designed for treating different sparse NMF formulations
including (2) are widely used for discovering cancer classes
and analyzing gene expression microarray data. Gao and
Church [3] formulated a sparse NMF (SNMF) problem by
imposing a squared l2-norm-based sparsity constraint on
V . The authors designed an algorithm which has a multipli-
cative update rule component. The algorithm was applied on
well-studied cancer and tumor datasets. They have con-
cluded that their approach enables them to classify and dis-
cover cancer classes missed by standard NMF. Kim and Park
[18] also considered Frobenius norm-based sparse NMF and
used the concept of alternating nonnegative least squares to
develop a new algorithm and applied it to analyze leukemia
and tumor datasets. The numerical results reveal that their
method has a better clustering performance and facilitates
biological interpretation when compared to classical NMF.
Kong et al. [19] used NMF with sparseness constraints
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(NMFSC) by Hoyer [20] and reported that NMFSC per-
forms more or less the same as SNMF when applied to leu-
kemia and medulloblastoma datasets. Esposito et al. [21]
considered a sparse NMF formulation based on KL diver-
gence and designed a flexible multiplicative update rule to
solve it. The authors successfully applied the method on
3D (a 3D microarray data is a 2D microarray data which
evolves with time) microarray data obtained from multiple
sclerosis patients. The numerical results show that their
approach also helps to get a better understanding of the bio-
logical behavior of the disease.

Inspired by the aforementioned merits of sparse NMF
formulation, we consider problem (2) and propose an algo-
rithm that enables discovering larger cancer classes and
facilitates the extraction of meaningful gene expression pat-
terns. Instead of using multiplicative update rules, like most
of the existing methods, we apply an algorithm which makes
use of the block coordinate descent optimization method.

2. Methods

This section presents the proposed algorithm and the model
selection strategy. The algorithm is obtained by extending
the rank-one residue iteration (RRI) for NMF in [22]. A sim-
ilar algorithm which is an extension of the hierarchical alter-
nating least squares algorithm also exists in [23]. We were
informed about this during the second review.

2.1. Coordinate Descent Method for Sparse NMF. In this sec-
tion, we provide the derivation of the proposed algorithm by
using the concept of the block coordinate descent (BCD)
method which is popular for providing closed form solu-
tions. This concept is interesting in the sense that it enables
breaking down a given matrix-based nonconvex optimiza-
tion problem into convex subproblems (based on blocks of
columns) which are easier to solve [22, 24, 25].

Consider the following formulation of the sparse NMF
problem:

min
U∈ℝm×r

+ ,V∈ℝn×r
+
F U , Vð Þ = 1

2 ∥Y −UVΤ∥2F + γ∥V∥1: ð3Þ

Together with rank-one matrix factorization, BCD
facilitates an optimal way of solving for the columns of
U and V in an alternating fashion. We start by reformu-
lating the sparse NMF problem (3) based on partitioning
the columns of U and V . The basic idea is to consider
one column of U , U :i, as an unknown and treat the rest
columns of U and the whole of V as constants. We do
this repeatedly until all the columns of U and V are
approximated optimally. Using the above procedure leads
to reformulating (3) in U :i as

min
U :i≥0

F U :ið Þ = 1
2 ∥ Y −〠

j≠i
U :jV

Τ
:j

 !
−U :iV

Τ
:i ∥

2
F + γ∥V :i∥1

= 1
2 ∥Rj −U :iV

Τ
:i ∥

2
F + γ∥V :i∥1, i, j = 1, 2,⋯, r,

ð4Þ

where Rj = Y −∑j≠iU :jV
Τ
:j . By the same token, we obtain the

following subproblems corresponding to the columns of V :

min
V :i≥0

F V :ið Þ = 1
2 ∥Rj −U :iV

Τ
:i ∥

2
F + γ∥V :i∥1, i, j = 1, 2,⋯, r: ð5Þ

Just like most optimization problems, the solutions of (4)
and (5) are stationary points that satisfy the corresponding
Karush-Kuhn-Tucker (KKT) optimality conditions. The
KKT conditions for (4) are

U :i ≥ 0, ∇U :i
F U :ið Þ = − Rj −U :iV

Τ
:i

� �
V :i ≥ 0,U :i#∇U :i

F U :ið Þ = 0,
ð6Þ

where # denotes the elementwise product. The vectors that
solve (4) are the ones that satisfy (6). They are given by

U∗
:i =max

RjV :i

∥V :i∥
2
2
, 0

� �
: ð7Þ

Solutions for (5) are stationary points that satisfy the KKT
conditions

V :i ≥ 0, ∇V :i
F V :ið Þ = −UΤ

:i Rj −U :iV
Τ
:i

� �
+ γ1n×1 ≥ 0,V :i#∇V :i

F V :ið Þ = 0:
ð8Þ

Such vectors are given by

V∗
:i =max

RΤ
j U :i + γ1n×1
∥U :i∥

2
2

, 0
 !

: ð9Þ

The proposed algorithm which we call CDSNMF (coordi-
nate descent for sparse NMF) uses (7) and (9) to compute the
minimizers U∗ and V∗ of the objective function in (3). The
main steps of CDSNMF are summarized in Algorithm 1.

2.2. Model Selection. In this paper, we use the model selec-
tion strategy described in [1]. One of the advantages of
NMF algorithms is that given an m-by-n microarray data,
they are capable of grouping the m samples into r clusters,

1: Inputs: datamatrix Y ∈ℝm×n
+ and rank r;

2: Initialize and scaleU ∈ℝm×r
+ andV ∈ℝn×r

+ ;
3: Set sparsity parameter γ
4: repeat
5: fori = 1: rdo
6: Rj = Y − ∑j≠iU :jV

Τ
:j ;

7: Use (7) to update U :i;
8: ifkU :ik2 > 0 and kV :ik2 > 0then
9: d =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffikU :ik2/kV :ik2
p

,U :i = dU :i, andV :i = ð1/dÞV :i;
10: end if
11: Repeat steps 6 to 10 using (9) to update V :i;
12: end for
13: until Stopping condition.

Algorithm 1: Pseudocode for CDSNMF
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where r < <min ðm, nÞ [1]. However, determining the num-
ber of clusters or rank r which provide useful and meaning-
ful interpretation is always a challenging task in data science.
Moreover, NMF algorithms are sensitive to initializations
and their stochastic nature poses a problem regarding con-
verging to the same solution for different initial guesses. To
overcome the issue of choosing r, Brunet et al. [1] developed
a strategy by employing consensus clustering which is
proved to facilitate the model selection process. For the sake
of reducing the problem of convergence to the same point,
the algorithm will be run several times for different initial
points and a consensus matrix will be calculated by taking
the average of several connectivity matrices which are of size
m-by-m. The entries of a consensus matrix are valuable
means of knowing whether related samples are clustered
together. In the case of perfect clustering, its entries are
either 0 or 1 and deviation from this optimal scenario indi-
cates lack of stability in the clustering. Stability of clustering
performance of an algorithm associated with rank r can also
be measured quantitatively by calculating the cophenetic
correlation coefficient ρr whose values range between 0
and 1. The fact of the matter is that ρr closer to 1 indicates
strong clustering performance (with ρ1 = 1 meaning perfect
clustering) whereas smaller values tell otherwise. In practice,
one can study the behavior of ρr by varying the value of r
and select the optimum value of the rank accordingly.

3. Numerical Results and Discussion

In this section, we conduct various experiments on leukemia
and multiple myeloma datasets and discuss the results. Ran-
dom initialization is used for all algorithms for its simplicity
and easy implementation. As done in [1, 3, 19], the consen-
sus matrices and cophenetic correlation coefficients were
computed by averaging 50 connectivity matrices except for
the new algorithm (CDSNMF) where averaging 10 of them
is enough. We have compared CDSNMF with KL-NMF
[1], SNMF [3], and NMFSC [19] which have employed the
same model selection criteria. The tested algorithms involve
some parameters: in CDSNMF, the sparsity parameter γ = 5
is used; in SNMF, λ was set to 0.01 as suggested by the
authors; and in NMFSC, the sparsity of factor U was fixed
to 0.5 whereas V was left unconstrained as done by the
authors. For each initialization (we did 50 of them), all algo-
rithms were run until the maximum number of iteration
reaches 1000. All experiments were conducted using
MATLAB (R2019a) on a laptop Intel(R) Core(TM) i7-
6500U CPU @2.50GHz 2.59GHz 8GB RAM.

3.1. Leukemia Dataset. The leukemia ALL-AML [2] gene
expression dataset is a benchmark dataset widely used for can-
cer classification research and for comparing clustering per-
formance of different algorithms. It contains 5000 genes and
38 tumor samples out of which 27 patients suffer from acute
lymphoblastic leukemia (ALL) while 11 of them have acute
myelogenous leukemia (AML). Since the id’s of the columns
(samples) of ALL-AML are very long to be used as axes labels,
we prefer to use the corresponding indices (as given in the

data) presented in Table 1. For instance, the fifth column has
an index number of 5 while its id is ALL-9692-B-cell.

3.2. Model Selection. Figures 1(a)–1(e) depict the reordered
consensus matrices for rank r = 2, 3, 4, 5, 6, respectively,
and (f) shows the cophenetic correlation coefficient ρr
obtained by applying Algorithm 1 (CDSNMF) on the ALL-
AML leukemia dataset. In all cases, i.e., for all the ranks,
CDSNMF has produced very clear diagonal patterns as can
be seen from this figure. The dark yellow colors in (a)–(e)
correspond to a value of 1 and indicate that the gene samples
are always clustered together based on their similarity
whereas the dark blue ones are associated with a numerical
value of 0 which means gene samples do not belong to the
same cluster. The above qualitative results assure that the
proposed algorithm is robust and cluster gene expression
patterns without any dispersion whatsoever (except for r =
6 where there is a little dispersion). Moreover, we were able
to assure what is seen in the reordered consensus matrices
by using the quantitative measure called cophenetic correla-
tion coefficient ρr as shown in Figure 1(f). This measure also
witnessed a perfect clustering ρr = 1 for all values of r (except
for r = 6 which has value ρr = 0:9992) which guaranteed the
stability of the clustering performance of CDSNMF. There-
fore, CDSNMF managed to give perfect consensus matrices
with clear block diagonal patterns indicating that models
for almost all the ranks are robust. Moreover, it can be
observed that for almost all ranks the cluster splits are stable
as per the model selection criteria and users can select a par-
ticular cluster according to their interest.

One can observe from Figure 2 that SNMF [3] was
able to perfectly cluster the leukemia dataset in the case
of r = 2, 3, 4 indicating robustness for these values. How-
ever, it is obvious that the result decreases a little when
r = 5 and is not so good for r = 6 where there is a disper-
sion in the reordered consensus matrices. The value of ρr
is exactly one for r = 2 − 4 but drops significantly when r
increases from 5 to 6.

Figure 3 presents results obtained by applying NMFSC
[19]. The consensus matrices show dispersion for all values
of r. These results are replicated in the sense of ρr indicating
that the performance of NMFSC is not that good.

Figure 4 depicts results obtained by applying KL-based
standard NMF [1]) to the leukemia dataset but the algorithm
does not perform well in most cases. The reordered consen-
sus matrices are clearly visible only in the case of r = 2, and
dispersion of clustering increases as the rank r increases
from 2 to 6. The value of ρr is also shown to decrease as r
increases indicating that the clustering performance of KL-
NMF is not stable.

In conclusion, CDSNMF possesses a much higher clus-
tering performance than SNMF, NMFSC, and KL-NMF. In
fact, CDSNMF has shown a perfect clustering performance
by providing very clear block diagonal patterns of reordered
consensus matrices and a perfect score of 1 for the cophe-
netic correlation coefficient for all ranks except for r = 6
which is very close to 1 (ρr = 0:9992 to be exact, see
Figure 1). CDSNMF assures that the samples are grouped
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as per the similarity that exist in their metagene expression
profiles and it makes sure that there is some regularities
within the groups.

Next, we discuss how the groups of subjects (samples)
change varying the algorithms and rank r. One can observe
the following:

(1) r = 2: CDSNMF and SNMF provide two similar
blocks (yellow squares) except that the samples are
ordered a little differently. In addition, sample 36

(AML-5) belongs to the first group in SNMF
whereas it is grouped in the second cluster in
CDSNMF. KL-NMF also provided two clear diago-
nal blocks but the samples are grouped very differ-
ently. The clusters of NMFSC also do not share
similarities with the other methods

(2) r = 3: here, it is interesting to observe that CDSNMF
and SNMF provide exactly the same clusters. It is
worth mentioning that the ordering of the samples
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Figure 1: CDSNMF: (a–e) reordered consensus matrices and (f) cophenetic correlation coefficient ρr for r = 2‐6 using ALL-AML.

Table 1: Original indices of columns of Golub’s ALL-AML leukemia data.

Index 1 2 3 4 5 6 7 8 9

ALL 19769-B-cell 23953-B-cell 28373-B-cell 9335-B-cell 9692-B-cell 14749-B-cell 17281-B-cell 19183-B-cell 20414-B-cell

Index 10 11 12 13 14 15 16 17 18

ALL 21302-B-cell 549-B-cell 17929-B-cell 20185-B-cell 11103-B-cell 18239-B-cell 5982-B-cell 7092-B-cell R11-B-cell

Index 19 20 21 22 23 24 25 26 27

ALL R23-B-cell 16415-T-cell 19881-T-cell 9186-T-cell 9723-T-cell 17269-T-cell 14402-T-cell 17638-T-cell 22474-T-cell

Index 28 29 30 31 32 33 34 35 36

AML AML-12 AML-13 AML-14 AML-16 AML-20 AML-1 AML-2 AML-3 AML-5

Index 37 38

AML AML-6 AML-7
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Figure 3: NMFSC: (a–e) reordered consensus matrices and (f) cophenetic correlation coefficient ρr for r = 2‐6 using ALL-AML.
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Figure 2: SNMF: (a–e) reordered consensus matrices and (f) cophenetic correlation coefficient ρr for r = 2‐6 using ALL-AML.
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in all the groups is identical. Once again, the group-
ings of NMFSC are completely different from the
abovementioned methods. Unfortunately, the same
is true for KL-NMF

(3) For the rest of the ranks, i.e, r = 4, r = 5, and r = 6, all
algorithms cluster the samples of the data in a differ-
ent manner.

3.2.1. Optimal Rank, Clustering, and Metagene Analysis.
Figure 5(a) compares cophenetic correlation coefficient ρr
of the four algorithms by varying the value of r from 2 to
9. This helps to determine the optimal rank as well as iden-
tify the best method. It is shown, in this figure, that
CDSNMF performs better and r = 5 can be chosen as the
optimal rank (of course r = 6 is also a nice choice).

Figure 5(b) depicts the reordered consensus matrix using
CDSNMF and r = 5 (optimal rank). For this rank, CDSNMF
provides five clusters which are the clear yellow blocks on
the diagonal indicating that there are some regularities
within the groups and the clustering is made as per the
underlying similarities in the metagene expression profiles.

Figure 5(c) shows the stacked bar plot of the encoding
matrix V as provided by CDSNMF for r = 5. Each bar repre-
sents the sum of the composition of metagenes that make up
the sample of the original data. This figure enables us to
investigate the contribution of the metagenes to each sample
and their distribution in the 5 different clusters. It is interest-
ing to observe that all metagenes contribute to all clusters.
There is a high expression of Metagene 1 in Cluster 4 (the
least amount is a little over 30 percent in sample AML-3
while the highest percentage is a little over 70 in AML-14.
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Figure 4: KL-NMF: (a–e) reordered consensus matrices obtained by averaging 50 connectivity matrices and (f) cophenetic correlation
coefficient ρr for r = 2‐6 using ALL-AML.
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On the other hand, its concentration is low in Cluster 5 (in
particular in ALL-17638-T-cell and ALL-14402-T-cell). It
is also very low in ALL-12085-B-cell of Cluster 1 and ALL-
23953-B-cell of Cluster 2. Metagenes 2, 3, and 5 are seen to
be fairly distributed in all clusters except Cluster 4. This clus-
ter has a very low amount of Metagenes 2 and 5 in sample
AML-14. One can also observe that Cluster 3 and Cluster
4 have relatively low expressions of Metagene 4.

Figure 6 depicts the first top 10 dominant genes that
highly influence the basis matrix U and the five metagenes
extracted from ALL-AML by CDSNMF. This figure helps
us to identify the genes that influence the obtained bases.
The basis matrix U is a gene-by-metagene matrix of size
5000 × 5. Rearranging the columns of U by sorting the
weights (entries) in decreasing order puts the dominant
genes at the top, we can then use bar plots to investigate

the effect of each gene. Figure 6(a) shows that gene
M25079-s-at with 3.2 percent is the most dominant one in
Metagene 1 followed by Z84721-cds2-at and X57351-s-at
with a percentage of 1.68 and 0.93, respectively. One can also
observe that the contribution of the genes in forming the five
extracted metagenes is not far from one another (mostly less
than 1 percent). For instance, the two ‘most dominant’ genes
in Metagene 2 are M1147-at (0.675 percent) and X57351-s-
at (0.669 percent), and the rest are also very close to one
another. Next, let us discuss how the genes affect samples
of the data. The contribution of Metagene 1 is very high in
sample AML-14; this means the expressions of the genes
M25079-s-at, Z84721-cds2-at, X57351-s-at, and X00274-at
(taking only the first four) play a significant role in defining
AML-14. On the other hand, the influence of the genes in
Metagene 1 is very small in sample ALL-22474-T-cell
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Figure 5: ALL-AML data: (a) cophenetic correlation coefficient by varying r from 2 to 9. (b) Reordered consensus matrix for the optimal
rank r = 5 obtained by using the winner algorithm CDSNMF. (c) Stacked bar plots of the encoding matrix V provided by CDSNMF for the
optimal rank r = 5.
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whereas the genes that define Metagene 5 (like M1147-at,
X57351-s-at, and D64142-at) exist in large amount. We
can proceed in a similar way to analyze the rest of the meta-
genes and the genes that define them.

3.3. Multiple Myeloma (MM).MM [13] is an incurable blood
cancer that forms in a type of white blood cell called plasma
cell. The disease can damage bones and main organs of a
human body like the kidneys. It is characterized by the pres-
ence of a monoclonal component of plasma cells in the bone
marrow. The disease also disrupts immune systems and red
blood cell count. The dataset consists of 15464 genes and 10
samples.

3.3.1. Model Selection. CDSNMF has performed remarkably
well in the MM dataset also and emerged as a clean winner
once again. As shown in Figure 7, the block diagonal pat-
terns of all the consensus matrices are clearly depicted and
the clustering performance of CDSNMF is once again
proved to be stable as it is accompanied by a perfect score
of the cophenetic correlation coefficient ρr . This means that
the models for the classes obtained by taking r = 2‐6 are
robust. As for the comparison, SNMF is found to be the sec-
ond winner, since it has a robust performance for the ranks

r = 2, 3, 4. But, as shown in Figure 8, the reordered consen-
sus matrices provided by this algorithm for r = 5, 6 exhibit
a bit of dispersion, more in the case of r = 5. The cophenetic
correlation score of SNMF also drops when r goes from 4 to
5 but goes up a little higher when r = 6 which indicates that
its performance is not that stable. As depicted in Figure 9,
NMFSC performs well for the first two values of r but its
performance decreases when r increases from 3 to 4 and gets
better when r = 5 but again becomes lower for r = 6. It can be
observed that NMFSC is also not stable as its cophenetic cor-
relation graph exhibits a clear zigzagging behavior. Figure 10
depicts the results obtained from the classical KL-NMF; one
can see that this algorithm is not attractive as its perfor-
mance zigzags here and there.

It is interesting to investigate how the tested algorithms
cluster the samples for different values of r. For r = 2, all
algorithms cluster samples in a very similar way. For r = 3,
the clusters of samples provided by CDSNMF, SNMF, and
NMFSC are identical. However, the only difference between
KL-NMF and the other three is that the former places sam-
ple GSM613793 in Cluster 1 (instead of Cluster 2). For r = 4,
only the last two clusters of the four algorithms are simi-
lar; they contain samples GSM613798 and GSM613795,
respectively. For this particular rank, the only difference
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Figure 6: Composition of the five metagenes (provided by CDSNMF) of ALL-AML based on the first top 10 dominant original genes.
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between CDSNMF and KL-NMF is that GSM613793
belongs to the first cluster in the former whereas it is
placed in the second cluster by the later. It is not possible

to draw a clear conclusion about SNMF and NMFSC
regarding the first two clusters for r = 4. In the case when
r = 5, Clusters 1, 4, and 5 of CDSNMF, SNMF, and
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Figure 7: CDSNMF: (a–e) reordered consensus matrices and (f) cophenetic correlation coefficient ρr for r = 2‐6 using MM.
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Figure 8: SNMF: (a–e) reordered consensus matrices and (f) cophenetic correlation coefficient ρr for r = 2‐6 using MM.
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NMFSC are exactly the same but the other clusters are
totally different. However, KL-NMF clusters the samples
very differently. For r = 6, the first three clusters of

CDSNMF, SNMF, and NMFSC are identical. Once
again, the clusters in KL-NMF do not share similarities
with others.
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Figure 10: KL-NMF: (a–e) reordered consensus matrices and (f) cophenetic correlation coefficient ρr for r = 2‐6 using MM.
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Figure 9: NMFSC: (a–e) reordered consensus matrices and (f) cophenetic correlation coefficient ρr for r = 2‐6 using MM.
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3.3.2. Optimal Rank, Clustering, and Metagene Analysis.
Figure 11(a) depicts the cophenetic correlation coefficient
graphs obtained by varying the rank r from 2 to 9. It can
be seen that CDSNMF performs best and managed to find
a larger class of clusters with an optimal rank of r = 7.

In Figure 11(b), the reordered consensus matrix for the
optimal rank r = 7 is plotted using CDSNMF. For this rank,
CDSNMF provides seven clear yellow diagonal blocks which
assure the existence of regularities within the groups. It can
also be concluded that the samples are clustered based on
the underlying similarities in the metagene expression profiles.

Figure 11(c) presents the stacked bar plot of the encod-
ing matrix V as provided by CDSNMF for r = 7. As indi-
cated in this figure, all the bars consist of proportions of
the metagenes that define samples of the data. One can
observe that there is a very low expression of Metagene 1
in all clusters except Cluster 4 (sample GSM613801). The
expression of Metagenes 2 and 3 seem to be very high in
Clusters 2. It is also good to notice that Cluster 5 (sample

GSM613795) has the least amount of Metagene 3 but more
of Metagene 7 as compared to the other samples. In most
samples, the expression of Metagene 4 is more or less the
same except in samples GSM613796 and GSM613798 which
enjoy a little bit higher concentrations. Metagenes 5 and 6
are fairly be distributed in all the samples except Cluster 4
(sample GSM613801) whose share is relatively small.

Figure 12 depicts the first top 10 dominant genes that
highly influence the basis matrix U and the seven metagenes
extracted from MM by CDSNMF. This figure helps us to
identify the genes that influence the obtained bases. The
basis matrix U is a gene-by-metagene matrix of size 15464
× 7. It is worth mentioning that, as presented in this figure,
the role of the original genes of the data in defining each of
the metagenes is very close to one another. This is justified
by the fact that the contribution of each of the genes is less
than one percent. For instance, the most dominant genes
that play a vital role in defining the seven metagenes have
percentages 0.832 (TOM1L2), 0.135 (ZBTB32), 0.104
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Figure 11: MM data: (a) cophenetic correlation coefficient by varying r from 2 to 9. (b) Reordered consensus matrix for the optimal rank
r = 7 using the winner algorithm CDSNMF. (c) Stacked bar plots of the encoding matrix V provided by CDSNMF for the optimal rank r = 7.
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(ZBTB32), 0.114 (ZBTB32), 0.073 (ZBTB32), 0.037 (SEPT7),
and 0.044 (SEPT7), respectively. The other thing worth
mentioning here is that the heaviest genes that exist in Meta-
gene 1, namely, TOM1L2, GABRE, DDX20, GJA4, and
NRF1 (considering only the first five) highly influence how
sample GSM613801 is made. On the other hand, the contri-
bution of these genes is negligible in samples GSM613796
and extremely small in GSM613794. In addition, genes
SEPT7, ZBTB33, KNDC1, SUPT7L, and NAP1L3 (only tak-
ing the tops 5 genes fromMetagene 7) play a paramount role
in sample GSM613795 whereas there is a very low concen-
tration of them in sample GSM613801. Similar analysis
can be made for the remaining genes and samples.

4. Conclusive Remarks

Nonnegative matrix factorization has become very popular for
handling high-dimensional data. By its very nature, NMF
facilitates the extraction and interpretation of real-life datasets
including gene expression microarray datasets. In this paper,
we extended the RRI algorithm which we abbreviate as
CDSNMF to solve a nonconvex optimization problem posed
in the form of sparse nonnegative matrix factorization. The
algorithm uses block coordinate descent approach and is
proved to work very well in practice. We have considered
two cancer datasets, namely, ALL-AML and MM. The exper-
imental results show that the new algorithm is capable of
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Figure 12: Composition of the seven metagenes (provided by CDSNMF) of MM based on the first top 10 original genes.
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discovering larger cancer classes and providing perfect con-
sensus matrices whose block diagonal patterns are very clear.
This signifies that the models for different rank factorizations
are robust. Moreover, CDSNMF gives a perfect score of 1 (in
almost all cases) for the cophenetic correlation coefficient indi-
cating that the clustering performance of the algorithm is sta-
ble. In addition, the experimental results reveal that the new
algorithm significantly outperforms other related state-of-
the-art methods. The algorithm is also shown to be capable
of identifying the dominant genes that influence the basis ele-
ments and extracted metagenes.
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