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Asymptotic approximations of Tangent polynomials, Tangent-Bernoulli, and Tangent-Genocchi polynomials are derived using
saddle point method and the approximations are expressed in terms of hyperbolic functions. For each polynomial there are
two approximations derived with one having enlarged region of validity.

1. Introduction

Several well-known special functions, numbers and polyno-
mials (e.g. zeta functions, Bernoulli, Euler and Genocchi
numbers and polynomials and derivative polynomials
[1–6]) have been studied by many researchers in recent
decade due to their wide-ranging applications from number
theory and combinatorics to other fields of applied mathe-
matics. With these, different variations and generalizations
of these functions, numbers and polynomials have been con-
structed and investigated. For instance, papers in [7, 8] have
introduced and investigated q-analogues of zeta functions
and Euler polynomials. Some variations are constructed by
mixing the concept of two special functions, numbers or
polynomials. For example, poly-Bernoulli numbers and
polynomials in [9–11] are constructed by mixing the
concepts of polylogarithm and Bernoulli numbers and poly-
nomials. Moreover, the Apostol-Genocchi polynomials,
Frobenius-Euler polynomials, Frobenius-Genocchi polyno-
mials and Apostol-Frobenius-type poly-Genocchi polyno-
mials in [12–14] are constructed by mixing the concepts of
Apostol, Frobenius, Genocchi and Euler polynomials.

Another interesting mixture of special polynomials can
be constructed by joining the concept of Tangent polyno-
mials with Bernoulli and Genocchi polynomials. The

Tangent polynomials TnðzÞ, Tangent – Bernoulli ðTBÞnðzÞ
and Tangent – Genocchi ðTGÞnðzÞ polynomials are defined
by the generating functions
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When z = 0, ð1:1Þ reduces to the generating function of
the tangent numbers Tn given by
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In [15], the tangent polynomials can be determined
explicitly using the tangent numbers Tn which is given by
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We are interested in finding asymptotic approximations
of the Tangent polynomials

TnðzÞ, Tangent–Bernoulli ðTBÞnðzÞ and Tangent–Gen-
occhi ðTGÞnðzÞ polynomials for large n which are uniformly
valid in some unbounded region of the complex variable z.
Equation Equation (1) yields a recurrence relation

Tn zð Þ = zn − 〠
n
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n
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 !
Tn−k zð Þ, ð6Þ

with initial value T0ðzÞ = 1. The Tangent polynomials TnðzÞ
can be determined explicitly using (6). The first few
values are

T0 zð Þ = 1, T1 zð Þ = z − 1, T2 zð Þ = z2 − 2z, T3 zð Þ = z3 − 3z2 + 2,

T4 zð Þ = z4 − 4z3 + 8z, T5 zð Þ = z5 − 5z4 + 20z2 − 16:
ð7Þ

The Tangent-Bernoulli polynomials and Tangent-
Genocchi polynomials satisfy the relations

TBð Þn zð Þ = 2n−1Bn
z
2

� �
ð8Þ

TGð Þn zð Þ = 2n−1Gn
z
2

� �
, ð9Þ

where Bernoulli and Genocchi polynomials were defined in [7,
16], respectively. Some specific values are given below.

TBð Þ0 zð Þ = 1
2
, TBð Þ1 zð Þ = −

1
2
+ z
2
, TBð Þ2 zð Þ = 1

6
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, TBð Þ4 zð Þ = −
4
15

+ 2z2 − 2z3 +
z4

2
,

TBð Þ5 zð Þ = 1
6
z −8 + 20z2 − 15z3 + 3z4
� �

,

TGð Þ0 zð Þ = 0, TGð Þ1 zð Þ = 1, TGð Þ2 zð Þ = −2 + 2z, TGð Þ3 zð Þ = −6z + 3z2

TGð Þ4 zð Þ = 8 − 12z2 + 4z3, TGð Þ5 zð Þ = 40z − 20z3 + 5z4: ð10Þ

Applications of Bernoulli polynomials can be found in
[16] while new formulas for Genocchi polynomials involving
Bernoulli polynomials can be found in [17]. The Bernoulli
polynomials and Genocchi polynomials were expressed in
terms of hyperbolic function in [7, 16] as follows
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where C is a circle about 0 with radius <2π (resp. <π). These
integral representations were used to establish the asymptotic
approximations of Bernoulli and Genocchi numbers.

In this paper, the Tangent polynomials, Tangent-Bernoulli,
and Tangent-Genocchi polynomials will be given asymptotic
approximations using the method used in [19, 20].

2. Uniform Approximations

First, let us consider the approximation of Tangent polyno-
mials. Using the saddle point method introduced we can
establish the following theorem.

Theorem 1. For z ∈ℂ \ f0g such that jImz−1j < π/2 and
jz ± ð2i/πÞj > 2/π and n ≥ 1,
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Proof. Applying the Cauchy-Integral Formula to (1)
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where C is a circle about 0 with radius <π/2 . It follows
from (13) that
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With 2ew cosh w = e2w + 1, (14) can be written as

Tn z + 1ð Þ = n!
2πi

ð
C

ewz

cosh w
dw
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Let f ðwÞ = 1/cosh w . The singularities of f ðwÞ are
the zeros of cosh w, which are wj = ð2j + 1Þðπ/2Þi, j ∈ℤ.
Each of these singularities is a simple pole of f ðwÞ while
0 is a pole of order n + 1 of the integrand of (15).

Take z⟼ nz and let nz⟼∞ by letting n⟶∞ with
z fixed. Then

Tn nz + 1ð Þ = n!
2πi

ð
C
f wð Þewnz dw
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ð
C
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The main contribution of the integrand to the integral
above originates at the saddle point of the argument of the
exponential (see [18]). This saddle point is at w such that

d
dw

n wz − log wð Þð Þ = 0⟺w =
1
z
= z−1: ð17Þ

Assume that z−1 is not a pole of f ðwÞ. Approximations
of Tnðnz + 1Þ can be obtained by expanding f ðwÞ around
the saddle point [19]. With z−1 not a pole of f ðwÞ, we can
expand f ðwÞ around z−1 . That is,
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where r is the distance from z−1 to the nearest singularity of
f ðwÞ. For w ∈ℂ, the above series is absolutely convergent if
the saddle point z−1 is closer to the origin than to any of the
singularities wj: That is, if z

−1 is in the strip jIm z−1j < π/2
and jz−1j < jz−1 −wjj for all j = 0, ±1,±2,⋯ . It follows from
Lemma 1, Lemma 2 and Theorem 1 of [19] that

Tn nz + 1ð Þ = nzð Þn 〠
∞

k=0

f kð Þ z−1
� �
k!

pk nð Þ
nzð Þk

, ð19Þ

where

p0 nð Þ = 1, p1 nð Þ = 0, p2 nð Þ = −n, p3 nð Þ = 2n, ð20Þ

pk nð Þ = 1 − kð Þ pk−1 nð Þ + n pk−2 nð Þ: ð21Þ

Writing the first few terms of (19), we have

Figure 1 below depicts the graphs of Tnðnz + 1Þ (in solid
lines) generated using relation (6) and the graphs of the
approximate values of Tnðnz + 1Þ (in dashed lines) generated
using the expansion at the right-hand side of (12). The graphs
below are generating using the software Mathematica.

The graphs show the accuracy of approximation (12) for
several values of n for real values of the uniform parameter z.
For a real argument, the oscillatory region of Tnðnz + 1Þ is
also contained in jxj ≤ 2π−1, whereas the monotonic region
contains jxj > 2π−1. Therefore, the accuracy of approxima-
tion (12) is restricted to the monotonic region.

The next theorem contains the approximation formula
for Tangent-Bernoulli polynomials.

Theorem 2. For z ∈ℂ \ f0g such that jImz−1j < π and
jz ± ð1/πÞj > 1/π and n ≥ 1,
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Proof. Applying the Cauchy-Integral Formula to (2)
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where C is a circle about 0 with radius <π. It follows from
(24) that
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With 2ew sinh w = e2w − 1, (25) can be written as
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Let f ðwÞ =w/2 sinh w . The singularities of f ðwÞ are the
zeros of sinh w, which are.

wj = jπ, j ∈ℤ. Each of these singularities is a simple pole
of f ðwÞ while 0 is a pole of order n + 1 of the integrand of
(26).

Take z⟼ nz and let nz⟼∞ by letting n⟶∞ with
z fixed. Then in view of Theorem 1, we can write
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With z−1 not a pole of f ðwÞ, we can expand f ðwÞ around
z−1. That is, if z−1 is in the strip jIm z−1j < π and jz−1j <
jz−1 −wjj for all j = 0, ±1,±2,⋯. It follows from Lemma
1, Lemma 2 and Theorem 1 of [19] that

TBð Þn nz + 1ð Þ = nzð Þn 〠
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where pkðnÞ are given in (20). Writing the first few terms
of (28), we have
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The following figure depicts the graphs of ðTBÞnðnz + 1Þ
(in solid lines) generated using relation (8) and the graphs of
the approximate values of ðTBÞnðnz + 1Þ (in dashed lines)
generated using the expansion at the right-hand side of
(23). The graphs are generated using Mathematica.

The graphs show the accuracy of approximation (23) for
several values of n for real values of the uniformity parame-
ter z. For a real argument, the oscillatory region of ðTBÞn
ðnz + 1Þ is also contained in jxj ≤ π−1, whereas the mono-
tonic region contains jxj > π−1. Therefore, the accuracy of
approximation (23) is restricted to the monotonic region.

The following theorem contains the approximation
formula for Tangent-Genocchi polynomials This theorem

is proved similarly as the first two theorems so the proof
is omitted.

Theorem 3. For z ∈ℂ \ f0g such that jImz−1j < π/2 and
jz ± ð2i/πÞj > 2/π and n ≥ 1,

TGð Þn nz + 1ð Þ = nzð Þn sech 1/zð Þ
z

�

+
sech3 1/zð Þ 3 − cosh 2/zð Þ + 2z sinh 2/zð Þð Þ
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:

ð30Þ

Figure 2 below depicts the graphs of ðTGÞnðnz + 1Þ
(in solid lines) generated using relation (9) and the
graphs of the approximate values of ðTGÞnðnz + 1Þ (in
dashed lines) generated using the expansion at the
right-hand side of (30).

3. Expansion of Tangent, Tangent-Bernoulli,
and Tangent-Genocchi Polynomials with
Enlarged Region of Validity

The validity of the approximations obtained in Theorems 1,
2, and 3, are restricted to the region jz−1j < jz−1 −wjj for all
j = 1, 2,⋯ . However, the region jz−1j < jz−1 −wjj may be
enlarged by isolating the contribution of the poles wj’s of
f ðwÞ. We will follow similar procedure done in [16, 19]
to prove our next three results. A detailed discussion can
be seen in Lemma 3.2 in [16] that allows us to write the
polynomial PnðnzÞ defined by

Pn nzð Þ = n!
2πi

ð
C
f wð Þewz dw

wn+1 ð31Þ

with a meromorphic function f ðwÞ analytic in the origin
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Figure 1: Solid lines represent Tnðnz + 1Þ for several values of n, whereas dashed lines represent the right-hand side of (12) with z ≡ x, both
normalized by the factor ð1 + jx/αjnÞ−1 where α = 0:2.
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with simple poles w1,w2,⋯ represented for each integer
m > 0 as

Pn nzð Þ = −〠
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which is valid for all complex number z satisfying jz−1j
< jz−1 −wjj for all j =m + 1,m + 2,⋯, such that C is a cir-
cle whose center is at the origin and contains no poles of
f ðwÞ inside, Γðn + 1,wknzÞ is the incomplete gamma func-
tion, pkðnÞ are polynomials defined by the relation (20)

and hðkÞm ðz−1Þ is the kth derivative at z−1 of the function
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: ð33Þ

The following theorem contains the asymptotic expansion
of Tangent polynomials with enlarged region of validity.

Theorem 4. For z ∈ℂ \ f0g such that jz−1j < jz−1 ± ð2k + 1Þ
ðπ/2Þij for k = 0, 1, 2,⋯,m − 1. Then, as n⟶∞,
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Proof. To obtain the corresponding residues, we first let

f wð Þ = 1
cosh w

=
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q wð Þ : ð35Þ

Then
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=
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Now, for k = 0, 1, 2⋯ :,m − 1, sinh wk = ð−1Þki: Hence,
rk = ð−1Þk+1i:

On the other hand, for k = 0, 1, 2⋯ :,m − 1, sinh
w−ðkÞ = ð−1Þk+1i. Thus, for k = 0, 1, 2⋯ :,m − 1, r−k = ð−1Þki:
Hence, for k = 0, 1, 2⋯ :,m − 1 we have
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We then evaluate some derivatives of the function hmðwÞ
defined in (33) at the saddle point z−1. Then for k = 0, 1, 2
⋯ :,m − 1, we write
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Using (37) we can compute some derivatives of hmðwÞ and
evaluate it at the saddle point z−1. We obtain the results below.

h 1ð Þ
m wð Þ = 〠

m−1

k=0

32 −1ð Þ2k+1 π + 2kπð Þ2 w
4w2 + π + 2kπð Þ2� 
2 , ð39Þ
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Figure 2: Solid lines represent ðTGÞnðnz + 1Þ for several values of n, whereas dashed lines represent the right-hand side of (30) with z ≡ x,

both normalized by the factor ð1 + jx/αjnÞ−1 where α = 0:2.
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Equations (37) and (39) yield
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Using (16) and (32) for k = 0, 1, 2⋯ :,m − 1, we have
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In Theorem 1, we have p0ðnÞ = 1, p1ðnÞ = 0, p2ðnÞ = −n,
f ðz−1Þ = 1/cosh ð1/zÞ, f ð2Þðz−1Þ = −sech3ð1/zÞ + sech ð1/zÞ
tanh2ð1/zÞ and using (40) and (41), we obtain (34).

Figure 3 below depicts the graphs of Tnðnz + 1Þ (in solid
lines) generated using relation (6) and the graphs of the
approximate values of Tnðnz + 1Þ (in dashed lines) gener-
ated using the expansion at the right-hand side of (34). We
use Mathematica to graph the left-hand and right-hand side
of (34).

The graphs show the accuracy of approximation (34) for
several values of n for real values of the uniformity parame-
ter z. For a real argument, the approximation of Tnðnz + 1Þ
with enlarged validity in the monotonic region is better than
the approximation in (12). It can also be observed that, in
the oscillatory region, even if the accuracy is not that good
the approximation is better compared to the approximation
in (12).

Now, let us consider the asymptotic expansion of Tangent-
Bernoulli polynomials with enlarged region of validity.

Theorem 5. For z ∈ℂ \ f0g such that jz−1j < jz−1 ± kπj for
k = 1, 2,⋯,m. Then, as n⟶∞,

TBð Þn nz + 1ð Þ = −π〠
m

k=1

k

1 + ⅇ2kπ
ⅇkπ 1+nzð Þ

kπð Þn+1
Γ n + 1, kπnzð Þ

"

+
ⅇkπ 1−nzð Þ

−kπð Þn+1 Γ n + 1,−kπnzð Þ� + nzð Þn

� csch 1/zð Þ
2z

+ 〠
m

k=1

2k2π2z2

ⅇ−kπ + ⅇkπ
� �

z2k2π2 − 1
� �

(

−
n

2 nzð Þ2
csch3 1/zð Þ 3 + cosh 2/zð Þ − 2z sinh 2/zð Þð Þ

4z

"

+〠
m

k=1

4ⅇkπk2π2z4 z2k2π2 + 3
� �

1 + ⅇ2kπ
� �

z2k2π2 − 1
� �3

#
+O

1
n2

� �)

ð44Þ

Proof. To obtain the corresponding residues, we first let

f wð Þ = w
2 sinh w

=
p wð Þ
q wð Þ : ð45Þ

Then,

rk =
p wkð Þ
q′ wkð Þ

=
wk

2 cosh wkð Þ , k = 1, 2⋯ :,m: ð46Þ

Now, for k = 1, 2⋯ :,m − 1,

cosh wk = cosh kπ =
ekπ + e−kπ

2
· ð47Þ

Hence,

rk =
kπ

ekπ + e−kπ
· ð48Þ

On the other hand, for k = 1, 2⋯ :,m ,

cosh w− kð Þ = cosh −kπð Þ, k = 1, 2,⋯m = cosh kπ = ekπ + e−kπ

2
·

ð49Þ

Thus, for k = 1, 2⋯ :,m ,

r−k =
−kπ

ekπ + e−kπ
· ð50Þ

Hence, for k = 1, 2⋯ :,m we have

rk =
kπ

ekπ + e−kπ
forwk = kπ,

r−k =
−kπ

ekπ + e−kπ
forw−k = −kπ ·

ð51Þ

We then evaluate some derivatives of the function hmðwÞ
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defined in (33) at the saddle point z−1. Then for k = 1,
2⋯ :,m, we write

hm wð Þ = −〠
m

k=1

rk
w −wk

− 〠
m

k=1

r−k
w −w−k

= −〠
m

k=1

kπ/ekπ + e−kπ

w − kπ
− 〠

m

k=1

−kπ/ekπ + e−kπ

w + kπ

= 〠
m

k=1

kπ

ekπ + e−kπ
1

w + kπ
−

1
w − kπ

� �

= 〠
m

k=1

2 kπð Þ2
ekπ + e−kπ
� �

k2π2 −w2
� � :

ð52Þ

Using (51) we can compute some derivatives of hmð
wÞ and evaluate it at the saddle point z−1. We obtain
the results below.

h 1ð Þ
m wð Þ = 〠

m

k=1

4k2π2w

ⅇ−kπ + ⅇkπ
� �

k2π2 −w2
� �2 , ð53Þ

h 2ð Þ
m wð Þ = 〠

m

k=1

4ⅇkπk2π2 k2π2 + 3w2� �
1 + ⅇ2kπ
� �

k2π2 −w2
� �3 : ð54Þ

Equations (51) and (53) yield

h 0ð Þ
m z−1
� �

= 〠
m

k=1

2k2π2z2

ⅇ−kπ + ⅇkπ
� �

z2k2π2 − 1
� � ð55Þ

h 2ð Þ
m z−1
� �

= 〠
m

k=1

4ⅇkπk2π2z4 z2k2π2 + 3
� �

1 + ⅇ2kπ
� �

z2k2π2 − 1
� �3 : ð56Þ

Using equations (26) and (32) for k = 1, 2⋯ :,m, we have

TBð Þn nz + 1ð Þ = −〠
m

k=1

kπ/ekπ + e−kπ
� �

ekπnz

kπð Þn+1
Γ n + 1, kπnzð Þ

− 〠
m

k=1

−kπ/ekπ + e−kπ
� �

e−kπnz

−kπð Þn+1
Γ n + 1,−kπnzð Þ

+ nzð Þn f 0ð Þ z−1
� �

+ h 0ð Þ
m z−1
� �

p0 nð Þ
0!

(

+
f 1ð Þ z−1
� �

+ h 1ð Þ
m z−1
� �

p1 nð Þ
1! nzð Þ

+
f 2ð Þ z−1
� �

+ h 2ð Þ
m z−1
� �

p2 nð Þ
2! nzð Þ2 +O

1
n2

� �)
:

ð57Þ

In Theorem 2, we have p0ðnÞ = 1, p1ðnÞ = 0, p2ðnÞ = −n,
f ð0Þðz−1Þ = ðcsch ð1/zÞ/2zÞ , f ð2Þðz−1Þ = csch3ð1/zÞð3 + cosh
ð2/zÞ − 2z sinh ð2/zÞÞ/4z and using (54) and (55), we
obtain the desired result.

The figure below depicts the graphs of ðTBÞnðnz + 1Þ (in
solid lines) generated using relation (8) and the graphs of
the approximate values of ðTBÞnðnz + 1Þ (in dashed lines)
generated using the expansion at the right-hand side of
(43). Using Mathematica, we obtain the graph below.

The graphs show the accuracy of approximation (43) for
several values of n for real values of the uniform parameter z.
For a real argument the approximation of ðTBÞnðnz + 1Þ
with enlarged validity in the monotonic region is better than
the approximation in (23). It can also be observed that in the
oscillatory region the accuracy is better compare to the
approximation in (23).

The next theorem contains the asymptotic expansion of
Tangent-Genocchi polynomials with enlarged region of
validity.
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Figure 3: Solid lines represent Tnðnz + 1Þ for several values of n, whereas dashed lines represent the right-hand side of (34) with z ≡ x, both
normalized by the factor ð1 + jx/αjnÞ−1 where α = 0:2.
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Theorem 6. For z ∈ℂ \ f0g such that jz−1j < jz−1 ± ð2k + 1Þ
ðπ/2Þi j for k = 0, 1,⋯,m − 1. Then, as n⟶∞,

TGð Þn TGð Þn nz + 1ð Þ = 2n

πnin+1
〠
m−1

k=0

−1ð Þk+1
2k + 1ð Þn e2k+1/2πinz Γ n + 1,

2k + 1
2

πinz
� ��

+ −1ð Þn+1e−2k+1/2πinzΓ n + 1,−
2k + 1
2

πinz
� ��

+ nzð Þn sech 1/zð Þ
z

+ 〠
m−1

k=0

4 −1ð Þk+1 1 + 2kð Þπz
4 + π2 z + 2kzð Þ2

(

−
n

2 nzð Þ2
sech3 1/zð Þ −3 + cosh 2/zð Þ − 2z sinh 2/zð Þð Þ

2z

"

+ 〠
m−1

k=0

32 −1ð Þk 1 + 2kð Þπz3 −4 + 3π2 z + 2kzð Þ2� 

4 + π2 z + 2kzð Þ2� 
3

#

+O
1
n2

� �	
:

ð58Þ

Proof. We let

f wð Þ = w
cosh w

=
p wð Þ
q wð Þ : ð59Þ

Then

rk =
p wkð Þ
q′ wkð Þ

=
wk

sinh wkð Þ , k = 0, 1, 2⋯ :,m − 1: ð60Þ

Now, for wk = ð2k + 1Þðπ/2Þi, k = 0, 1, 2⋯ :,m − 1, we
see from Theorem 4 that

sinh wk = −1ð Þki, ð61Þ

so that

rk =
2k + 1ð Þ π/2ð Þi

−1ð Þki
= −1ð Þk 2k + 1ð Þπ2 : ð62Þ

On the other hand, for w−k = −ð2k + 1Þðπ/2Þi, k = 0, 1, 2
⋯ :,m − 1, we see from Theorem 4 that

sinh w− kð Þ = −1ð Þk+1i: ð63Þ
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Figure 5: Solid lines represent ðTBÞnðnz + 1Þ for several values of n, whereas dashed lines represent the right-hand side of (43) with z ≡ x,

both normalized by the factor ð1 + jx/αjnÞ−1 where α = 0:2.
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Figure 4: Solid lines represent ðTBÞnðnz + 1Þ for several values of n, whereas dashed lines represent the right-hand side of (23) with z ≡ x,

both normalized by the factor ð1 + jx/αjnÞ−1 where α = 0:2.
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This gives

r−k =
− 2k + 1ð Þ π/2ð Þi

−1ð Þk+1i
= −1ð Þk 2k + 1ð Þπ2 : ð64Þ

Hence, for k = 0, 1, 2⋯ :,m − 1 we have

rk = r−k = −1ð Þk 2k + 1ð Þπ2 , ð65Þ

for both

wk =
2k + 1
2

πi andw−k = −
2k + 1
2

πi · ð66Þ

Evaluating some derivatives of the function hmðwÞ at the
saddle point z−1 for k = 0, 1⋯ :,m − 1, we have

hm wð Þ = − 〠
m−1

k=0

−1ð Þk 2k + 1ð Þ π/2ð Þ
w − 2k + 1/2ð Þπi − 〠

m−1

k=0

−1ð Þk 2k + 1ð Þ π/2ð Þ
w + 2k + 1/2ð Þπi

= 〠
m−1

k=0

4 −1ð Þk+1 1 + 2kð Þπw
π + 2kπð Þ2 + 4w2

,

ð67Þ

which yields,

h 1ð Þ
m wð Þ = 〠

m−1

k=0

4 −1ð Þk+1 1 + 2kð Þπ π + 2kπð Þ2 − 4w2� 

π + 2kπð Þ2 + 4w2

� 
2 , ð68Þ

h 2ð Þ
m wð Þ = 〠

m−1

k=0

32 −1ð Þk 1 + 2kð Þπw 3 π + 2kπð Þ2 − 4w2� 

π + 2kπð Þ2 + 4w2

� 
3 ′

ð69Þ

h 0ð Þ
m z−1
� �

= 〠
m−1

k=0

4 −1ð Þk+1 1 + 2kð Þπz
4 + π2 z + 2kzð Þ2

ð70Þ

h 2ð Þ
m z−1
� �

= 〠
m−1

k=0

32 −1ð Þk 1 + 2kð Þπz3 −4 + 3π2 z + 2kzð Þ2� 

4 + π2 z + 2kzð Þ2� 
3 :

ð71Þ

Using equations (2.18) and (32) for k = 0, 1, 2⋯ :,m − 1,
we have

TGð Þn nz + 1ð Þ = − 〠
m−1

k=0

−1ð Þk 2k + 1ð Þ π/2ð Þ e 2k+1/2ð Þπinz

2k + 1/2ð Þπið Þn+1 Γ

� n + 1,
2k + 1
2

πinz
� �

− 〠
m−1

k=0

−1ð Þk 2k + 1ð Þ π/2ð Þ e− 2k+1/2ð Þπinz

− 2k + 1/2ð Þπið Þn+1 Γ

� n + 1,−
2k + 1
2

πinz
� �

+ nzð Þn

� f 0ð Þ z−1
� �

+ h 0ð Þ
m z−1
� �

p0 nð Þ
0!

(

+
f 1ð Þ z−1
� �

+ h 1ð Þ
m z−1
� �

p1 nð Þ
1! nzð Þ

+
f 2ð Þ z−1
� �

+ h 2ð Þ
m z−1
� �

p2 nð Þ
2! nzð Þ2

+O
1
n2

� �	
:

ð72Þ

In Theorem 3, we have p0ðnÞ = 1, p1ðnÞ = 0, p2ðnÞ = −n,
f ð0Þðz−1Þ = ðsech ð1/zÞ/zÞ ,

f 2ð Þ z−1
� �

= sech3 1/zð Þ −3 + cosh 2/zð Þ − 2z sinh 2/zð Þð Þ
2z

,

ð73Þ

and using (58) and (73) for k = 0, 1, 2⋯ :,m − 1, we
obtain (59).
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Figure 6: Solid lines represent ðTGÞnðnz + 1Þ for several values of n, whereas dashed lines represent the right-hand side of (58) with z ≡ x,

both normalized by the factor ð1 + jx/αjnÞ−1 where α = 0:2.
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The following figure depicts the graphs of ðTBÞnðnz + 1Þ
(in solid lines) generated using relation (9) and the graphs of
the approximate values of ðTBÞnðnz + 1Þ (in dashed lines)
generated using the expansion at the right-hand side of (58).

The graphs show the accuracy of approximation (58) for
several values of n for real values of the uniform parameter z.
In both monotonic and oscillatory regions, the approxima-
tion in (58) shows better accuracy than in (30).

4. Conclusion

Two sets of approximation formulas for Tangent polynomials,
Tangent-Bernoulli polynomials and Tangent-Genocchi poly-
nomials are obtained using the saddle point method and the
integral representation of these polynomials in terms of
hyperbolic functions. The last set of formulas which have
enlarged validity give more accurate approximations com-
pared to the first set of formulas as shown in Figures 1–6. It
is interesting to establish the asymptotic approximation of
other variations of Tangent polynomials like Apostol-Tangent
polynomials, Apostol-Tangent-Bernoulli polynomials and
Apostol-Tangent-Genocchi polynomials as well as the higher-
order versions of these polynomials.
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