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This article presents triple Laplace transform coupled with iterative method to obtain the exact solution of two-dimensional
nonlinear sine-Gordon equation (NLSGE) subject to the appropriate initial and boundary conditions. The noise term in this
equation is vanished by successive iterative method. The proposed technique has the advantage of producing exact solution,
and it is easily applied to the given problems analytically. Four test problems from mathematical physics are taken to show the
accuracy, convergence, and the efficiency of the proposed method. Furthermore, the results indicate that the introduced
method is promising for solving other type systems of NLPDEs.

1. Introduction

The sine-Gordon (SG) equation is a nonlinear hyperbolic
PDE, which was originally considered in the nineteenth cen-
tury in the course of study of surfaces of constant negative
curvature often used to describe and simulate the physical
phenomena in a variety of fields of engineering and science,
such as nonlinear waves, propagation of fluxons, and disloca-
tion of metals [1–4]. Because sine-Gordon equation leads to
different types of soliton solutions, it has been receiving an
enormous amount of attention. Soliton solution travels with-
out experiencing any deformation through the medium, even
when it collides with another soliton. The solitons, identified
in many wave and particle systems, are of importance in the
theory of nonlinear differential equations. As one of the cru-
cial equations in nonlinear science, the sine-Gordon equation
has been constantly investigated and solved numerically and
analytically in recent years [5–8]. For the one-dimensional
sine-Gordon equation, Maitama and Hamza [5] introduced
analytical method called the Natural Decomposition Method
(NDM) for solving nonlinear Sine-Gordon equation. Fayadh
and Faraj [9] also applied combined Laplace transform
method and VIM to get the approximate solution of the
one-dimensional sine-Gordon equation.

For the two-dimensional sine-Gordon equation, Su [6]
obtained numerical solution of two-dimensional nonlinear
sine-Gordon equation using localized method of approxi-
mate particular solutions. In [10], the author developed
and analyzed an energy-conserving local discontinuous
Galerkin method for the two-dimensional SGE on Cartesian
grids. Duan et al. [11] proposed a numerical model based on
lattice Boltzmann method to obtain the numerical solutions
of two-dimensional generalized sine-Gordon equation, and
the method was extended to solve the other two-
dimensional wave equations, such as nonlinear hyperbolic
telegraph equation as indicated in [12]:

In 2020, [13] developed a local Kriging meshless solution
to the nonlinear (2 + 1)-dimensional sine-Gordon equation.
The meshless shape function is constructed by Kriging inter-
polation method to have Kronecker delta function property
for the two-dimensional field function, which leads to con-
venient implementation of imposing essential boundary
conditions.

In paper [14], the authors constructed kink wave solu-
tions and traveling wave solutions of the (2 + 1)-dimen-
sional sine-Gordon equation from the well-known AKNS
system. For more related research about solving the sine-
Gordon equations, readers may refer to [15–20].
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The Laplace transform method (LTM) is one of the inte-
gral transform methods that have been intensively used to
solve linear and nonlinear equations [21]. The Laplace trans-
form method is used frequently in engineering and physics;
the output of a linear time invariant system can be calculated
by convolving its unit impulse response with the input sig-
nal. Performing this calculation in Laplace space turns the
convolution into a multiplication; the latter is easier to solve
because of its algebraic form. The Laplace transform can also
be used to solve differential equations and is used extensively
in electrical engineering [22–25]. The Laplace transform
reduces a linear differential equation to an algebraic equa-
tion, which can then be solved by the formal rules of algebra.
The original differential equation can then be solved by
applying the inverse Laplace transform.

Recently, the concept of single Laplace transform is
extended to double Laplace transform to solve some kind
of differential equations and fractional differential equations
such as linear/nonlinear space-time fractional telegraph
equations, functional, integral, and partial differential equa-
tions [26–28]. Dhunde and Waghmare [29] applied the dou-
ble Laplace transform method for solving a one-dimensional
boundary value problems. Through this method, the bound-
ary value problem is solved without converting it into ordi-
nary differential equation; therefore, there is no need to
find complete solution of ordinary differential equation. This
is the biggest advantage of the proposed method.

Furthermore, different scholars extended the double
Laplace transform method to triple Laplace transform
(TLT) to solve two-dimensional nonlinear partial differential
equations arising in various natural phenomena. In [30], the
authors used triple Laplace transform method to the solu-
tion of fractional-order partial differential equations by
using Caputo fractional derivative. Through [31–34], the tri-
ple Laplace transform method was applied to obtain the
solution of fractional-order telegraph equation in two
dimensions, linear Volterra integro-differential equations
in three dimensions, third-order Mboctara equations, and
the proof of some of its properties like linearity property,
change of scale property, first shifting property, and convo-
lution theorem property, and differential property and triple
integral property are given.

Similar to the Laplace transform method, an iteration
method (IM) is a fascinating task in an applied scientific
branches to find the solution of nonlinear differential equa-
tion. The iterative procedure of the proposed method leads
to a series, which can be summed up to find an analytical
formula, or it can form a suitable approximation [35]. The
error of the approximation can be controlled by properly
truncating the series [36]. More surprisingly, an IM has
showed effective and more rapid convergent series solution
(see [37]).

The purpose of this paper, is to apply triple Laplace
transform (TLT) and iterative method (IM) developed in
[38] to find the exact solution of two-dimensional nonlinear
sine-Gordon equation (NLSGE) subject to appropriate ini-
tial and boundary conditions. Dhunde and Waghmare in
[37, 39] applied double Laplace transform iteration method
(TLTIM) to solve nonlinear Klein-Gordon and telegraph

equations. By this method, the noise terms disappear in the
iteration process, and single iteration gives the exact
solution.

In the present study, we are interested in the following
two-dimensional sine-Gordon equation [40, 41].

utt x, y, tð Þ + βut x, y, tð Þ = α uxx x, y, tð Þ + uyy x, y, tð Þ� �
− ϕ x, yð Þ sin u x, y, tð Þð Þ + h x, y, tð Þ,

ð1Þ

subject to the initial conditions

u x, y, 0ð Þ = ϕ1 x, yð Þ, ut x, y, 0ð Þ = ϕ2 x, yð Þ, x, y ∈Ω, ð2Þ

and boundary conditions (Cauchy type BCs)

u 0, y, tð Þ = g1 y, tð Þ, ux 0, y, tð Þ = g2 y, tð Þ, u x, 0, tð Þ
= g3 x, tð Þ, uy x, 0, tð Þ = g4 x, tð Þ, ð3Þ

within the problem domain of Ω = fðx, yÞ: a ≤ x ≤ b, c ≤ x
≤ dg for t > 0. In Equation (1), the parameter β ≥ 0 is the
damping factor for the dissipative term. When β = 0, this
equation will be reduced to an undamped sine-Gordon
equation and when β > 0 to the damped one. The function
ϕðx, yÞ represents Josephson current density, and the func-
tions ϕ1ðx, yÞ and ϕ2ðx, yÞ are specified wave modes and
velocity.

The remaining parts of this paper is structured as fol-
lows. In Section 2, we begin with some basic definitions,
properties, and theorems of triple Laplace transform
method. Section 3 illustrates the details of the new iterative
method and its convergence. Section 4 presents the descrip-
tion of the model; how the approximate analytical solutions
of the given SGE equations is obtained using triple Laplace
transform method coupled with iterative method. In Section
5, we apply the proposed method to four illustrative exam-
ples in order to show its liability, convergence, and effi-
ciency. Finally, concluding remarks are given in Section 6.

2. Definitions and Properties of Triple Laplace
Transform Method

In this section, we give some essential definitions, properties,
and theorems of triple Laplace transform of partial differen-
tial equation, which should be used in the present study.

Definition 1 (see [31]). Let f ðx, y, tÞ be a function of three
variables x, y, and t defined in the positive xyt-plane. The tri-
ple Laplace transform of the function f ðx, y, tÞ is defined by

Lxyt f x, y, tð Þ½ � = F k, p, sð Þ
=
ð∞
0
e−kx
ð∞
0
e−py
ð∞
0
e−st f x, y, tð Þdtdydx,

ð4Þ

whenever the integral exist. Here, Lxyt½ f ðx, y, tÞ�
denotes LxLyLt½ f ðx, y, tÞ�, and k, p, and s are complex
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numbers. From this definition, we deduce that:

Lxyt f xð Þg yð Þh tð Þf g = F kð ÞG pð ÞH sð Þ
= Lx f xð Þf gLy g yð Þf gLt h tð Þf g:

ð5Þ

Definition 2 (see [34]). The inverse triple Laplace transform
of Fðk, p, sÞ,Lxyt−1½Fðk, p, sÞ� = f ðx, y, tÞ is given by the com-
plex triple integral formula

Lxyt
−1 F k, p, sð Þ½ � = f x, y, tð Þ = 1

2πi

ðq+i∞
q−i∞

e−kx

� 1
2πi

ðr+i∞
r−i∞

e−py
1
2πi

ðz+i∞
z−i∞

e−st F k, p, sð Þds
� �

dp
� �

dk,

ð6Þ

where Lxyt
−1½Fðk, p, sÞ� denotes Lx−1Ly−1Lt−1½Fðk, p, sÞ�, and

Fðk, p, sÞ must be an analytic function for all k, p, and s in
the region defined by the inequality Re ðkÞ ≥ q, Re ðpÞ ≥ r,
and Re ðsÞ ≥ z.

Property 3 (see [34]). The triple Laplace transform of
second-order partial derivatives are given by

Lxyt
∂2

∂x2
f x, y, tð Þ

( )
= k2F k, p, sð Þ − kF 0, p, sð Þ − Fx 0, p, sð Þ,

Lxyt
∂2

∂y2
f x, y, tð Þ

( )
= p2F k, p, sð Þ − pF k, 0, sð Þ − Fy k, 0, sð Þ,

Lxyt
∂2

∂t2
f x, y, tð Þ

( )
= s2F k, p, sð Þ − sF k, p, 0ð Þ − Ft k, p, 0ð Þ,

Lxyt
∂2

∂x∂y
f x, y, tð Þ

( )
= kpF k, p, sð Þ − F 0, p, sð Þ − F k, 0, sð Þ:

ð7Þ

Furthermore, the triple Laplace transform of first-order
partial derivatives are given by

Lxyt
∂
∂x

f x, y, tð Þ
� 	

= sF k, p, sð Þ − F 0, p, sð Þ,

Lxyt
∂
∂y

f x, y, tð Þ
� 	

= sF k, p, sð Þ − F k, 0, sð Þ,

Lxyt
∂
∂t

f x, y, tð Þ
� 	

= sF k, p, sð Þ − F k, p, 0ð Þ:

ð8Þ

2.1. Existence and Uniqueness of the Triple Laplace
Transform

Theorem 4 (Existence). Let f ðx, y, tÞ be a continuous func-
tion on the interval ½0,∞Þ which is of exponential order, that
is, for some a, b, c ϵℝ: Consider

sup
x,y,t>0

f x, y, tð Þ
exp ax + by + ct½ �










 < 0: ð9Þ

Under this condition, the triple transform, Fðk, p, sÞ =Ð∞
0

Ð∞
0

Ð∞
0 e−kxe−pye−st f ðx, y, tÞdxdydt, exists for all p > a, s >

b and k > c and is in actuality infinitely differentiable with
respect to p > a, s > b and k > c:

Theorem 5 (Uniqueness). Let f ðx, y, tÞ and gðx, y, tÞ be con-
tinuous functions defined for x, y, t ≥ 0 and having Laplace
transforms, Fðk, p, sÞ and Gðk, p, sÞ, respectively. If Fðk, p, sÞ
=Gðk, p, sÞ, then f ðx, y, tÞ = gðx, y, tÞ.

For the proof, see [34].

2.2. Some Properties of Triple Laplace Transform

Property 6 (Linearity Property of TLT). If f ðx, y, tÞ and gðx,
y, tÞ are two functions of x, y, and t such that Lxytf f ðx, y, tÞg
= Fðk, p, sÞ and Lxytfgðx, y, tÞg =Gðk, p, sÞ, then

Lxyt αf x, y, tð Þ + βg x, y, tð Þf g = αLxyt f x, y, tð Þ + βLxytg x, y, tð Þ
= αF k, p, sð Þ + βG k, p, sð Þ,

ð10Þ

where α and β are constants.

For the proof, see [31–33].

Property 7 (Change of Scale Property). Let Lxytf f ðx, y, tÞg =
Fðk, p, sÞ,then

Lxyt f ax, by, ctð Þf g = 1
abc

F
k
a
, p
b
, s
c

� �
, ð11Þ

where a, b, and c are nonzero constants.

For the proof, see [31, 33, 34].

Property 8 (First Shifting Property). If Lxytf f ðx, y, tÞg = Fðk
, p, sÞ, then

Lxyt eax+by+ct f x, y, tð Þ
n o

= F k − a, p − b, s − cð Þ: ð12Þ

For the proof, see [31, 33, 34].

Property 9 (Second Shifting Property). If Lxytf f ðx, y, tÞg = F
ðk, p, sÞ, then

Lxyt f x − a, y − b, t − cð ÞH x − a, y − b, t − cð Þf g
= e−ak−bp−csF k, p, sð Þ,

ð13Þ

where Hðx, y, tÞ is the Heaviside unit step function defined
by
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H x, y, tð Þ =
H x − a, y − b, t − cð Þ: x > a, y > b, t > c,
H x − a, y − b, t − cð Þ: x < a, y < b, t < c:

(

ð14Þ

For the proof, see [31, 33].

Property 10. If Lxytf f ðx, y, tÞg = Fðk, p, sÞ, then Lxytf
eax+by+ctg = 1/ððk − aÞðp − bÞðs − cÞÞ, for all x, y, and t.

For the proof, see [31].

3. The New Iterative Method

Consider the following functional equation [38]:

u �xð Þ =N u �xð Þð Þ + f �xð Þ, ð15Þ

where N is a nonlinear operator in a Banach space such that
N : B⟶ B, and f is a known function.

�x = ðx1, x2, x3,⋯,xnÞ, and u is assumed to be the solution
of Equation (15) having the series form:

u �xð Þ = 〠
∞

i=0
ui �xð Þ: ð16Þ

The nonlinear operation N can then be decomposed as

N 〠
∞

i=0
ui

 !
=N u0ð Þ + 〠

∞

i=1
N 〠

i

r=0
ur

 !
−N 〠

i−1

r=0
ur

 !( )
:

ð17Þ

Using Equations (16) and (17), Equation (15) is equiva-
lent to

〠
∞

i=0
ui = f +N u0ð Þ + 〠

∞

i=1
N 〠

i

r=0
ur

 !
−N 〠

i−1

r=0
ur

 !( )
: ð18Þ

From Equation (18), we define the following recurrence
relation:

u0 = f , u1 =N u0ð Þ,
u2 =N u0 + u1ð Þ −N u0ð Þ,

u n+1ð Þ =N u0+⋯+unð Þ −N u0+⋯+u n−1ð Þ
� �

,  n = 1, 2,⋯:

ð19Þ

Thus,

u1+⋯+u n+1ð Þ
� �

=N u0+⋯+u nð Þ
� �

, n = 1, 2,⋯, ð20Þ

and hence,

〠
∞

i=0
ui = f +N 〠

∞

i=0
ui

 !
: ð21Þ

Therefore, the nth term approximate solution of Equa-
tion (16) is given by

u = u0 + 〠
n−1

i=1
ui = u0 + u1 + u2+⋯+un−1, n > 1: ð22Þ

Theorem 11. If N is a continuously differentiable functional
in a neighborhood of u0 and kNðnÞðu0Þk ≤M ≤ e−1 for all n,
then the series ∑∞

n=oun+1 is absolutely convergent [35].

4. Description of the Method

Steps to be followed to apply triple Laplace Transform prop-
erties as in Table 1 coupled with new iterative method are as
follows:

Step 1. Applying triple Laplace transform on both sides of
Equation (1) and using Property 3, we get

s2�u k, p, sð Þ − s�u k, p, 0ð Þ − �ut k, p, 0ð Þ + β s�u k, p, sð Þ − �u k, p, 0ð Þð Þ
+ α −p2�u k, p, sð Þ + p�u k, 0, sð Þ + �uy k, 0, sð Þ�
− k2�u k, p, sð Þ + k�u 0, p, sð Þ + �ux 0, p, sð ÞÞ
+ Lxyt ϕ x, yð Þ sin u x, y, tð Þð Þð Þ = Lxyt h x, y, tð Þð Þ,

ð23Þ

where hðx, y, tÞ is the source functioning Equation (1).

Step 2. Now, employing double Laplace transform to Equa-
tions (2) and (3), we have

φ1 k, pð Þ = �u k, p, 0ð Þ, φ2 k, pð Þ = �ut k, p, 0ð Þ, and g1 p, sð Þ
= �u 0, p, sð Þ, g2 p, sð Þ = �ux 0, p, sð Þ,

ð24Þ

g3 k, sð Þ = �u k, 0, sð Þ, g4 k, sð Þ = �uy k, 0, sð Þ, ð25Þ
respectively.

By substituting Equations (24) and (25) into Equation
(23) and simplifying, we obtain

�u k, p, sð Þ = 1
s2 − αp2 − αk2 + βs

s + βð Þ�u k, p, 0ð Þ + �ut k, p, 0ð Þf

− α p�u k, 0, sð Þ + �uy k, 0, sð Þ + k�u 0, p, sð Þ + �ux 0, p, sð Þ� �
+ Lxyt h x, y, tð Þð − ϕ x, yð Þ sin u x, y, tð Þð Þf gg:

ð26Þ

Step 3. By implementing the triple inverse Laplace transfor-
mation of Equation (26), we obtain
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�u k, p, sð Þ = Lxyt
−1 1

s2 − αp2 − αk2 + βs
s + βð Þ�u k, p, 0ð Þf

�
+ �ut k, p, 0ð Þ − α p�u k, 0, sð Þ + �uy k, 0, sð Þ�
+ k�u 0, p, sð Þ + �ux 0, p, sð ÞÞ + Lxyt h x, y, tð Þðf

− ϕ x, yð Þ sin u x, y, tð Þð Þgg
�
:

ð27Þ

Step 4. Assume that

u x, y, tð Þ = 〠
∞

i=0
ui x, y, tð Þ, ð28Þ

is the solution of Equation (1).

Then, substituting Equation (28) into Equation (27), we
obtain

〠
∞

i=0
ui x, y, tð Þ = Lxyt

−1 1
s2 − αp2 − αk2 + βs

s + βð Þ�u k, p, 0ð Þf
�

+ �ut k, p, 0ð Þ − α p�u k, 0, sð Þ + �uy k, 0, sð Þ�
+ k�u 0, p, sð Þ + �ux 0, p, sð ÞÞ + Lxyt h x, y, tð Þ½

− ϕ x, yð Þ sin 〠
∞

i=0
ui x, y, tð Þ

 !#)#
:

ð29Þ

Step 5. By implementing the new iterative method, the non-
linear term sin ðuðx, y, tÞÞ in Equation (29) is decomposed as

sin 〠
∞

i=0
ui x, y, tð Þ

 !
= sin u0 x, y, tð Þð Þ

+ 〠
∞

i=1
sin 〠

i

r=0
ur x, y, tð Þ

 !
− sin 〠

i−1

r=0
ur x, y, tð Þ

 !( )
:

ð30Þ

Using Equation (30), Equation (29) is equivalent to

〠
∞

i=0
ui x, y, tð Þ = Lxyt

−1 1
s2 − αp2 − αk2 + βs

s + βð Þ�u k, p, 0ð Þf
�

+ �ut k, p, 0ð Þ − α p�u k, 0, sð Þ + �uy k, 0, sð Þ�
+ k�u 0, p, sð Þ + �ux 0, p, sð ÞÞ + Lxyt h x, y, tð Þf
− ϕ x, yð Þ sin u0 x, y, tð Þð Þ½

+ 〠
∞

i=1
sin 〠

i

r=0
ur x, y, tð Þ

 ! 

− sin 〠
i−1

r=0
ur x, y, tð Þ

 !!#))#
:

ð31Þ

Step 6. Using triple Laplace transform coupled with new iter-
ative method, we introduce the recursive relations and get

Table 1: Triple Laplace transform for some functions of three variables [33, 34].

Functions f x, y, tð Þ Triple Laplace transform F k, p, sð Þ

abc
abc
kps

xyt
1

k2p2s2

xmyntr
m!n!r!

km+1pn+1sr+1

e−ax−by−ct
1

a + kð Þ b + pð Þ c + sð Þ

cos xð Þ cos yð Þ cos tð Þ kps

1 + k2
� �

1 + p2ð Þ 1 + s2ð Þ

sin xð Þ sin yð Þ sin tð Þ
1

1 + k2
� �

1 + p2ð Þ 1 + s2ð Þ

sin x + y + tð Þ −1 + ps + k p + sð Þ
1 + k2
� �

1 + p2ð Þ 1 + s2ð Þ

cos x + y + tð Þ −
k + p + s − kps

1 + k2
� �

1 + p2ð Þ 1 + s2ð Þ

cosh ax + by + ctð Þ 1
2

1
k − að Þ p − bð Þ s − cð Þ + 1

k + að Þ p + bð Þ s + cð Þ
� �

sinh ax + by + ctð Þ 1
2

1
k − að Þ p − bð Þ s − cð Þ −

1
k + að Þ p + bð Þ s + cð Þ

� �
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u0 x, y, tð Þ = Lxyt
−1 1

s2 − αp2 − αk2 + βs
s + βð Þ�u k, p, 0ð Þf

�
+ �ut k, p, 0ð Þ − α p�u k, 0, sð Þ + �uy k, 0, sð Þ�
+ k�u 0, p, sð Þ + �ux 0, p, sð ÞÞg

�
,

u1 x, y, tð Þ = Lxyt
−1 1

s2 − αp2 − αk2 + βs
Lxyt h x, y, tð Þðf

�

− ϕ x, yð Þ sin u0 x, y, tð Þð Þg
�
,

un+1 x, y, tð Þ = −Lxyt
−1 1

s2 − αp2 − αk2 + βs
Lxyt ϕ x, yð Þ〠

∞

i=1

("

� sin 〠
i

r=0
ur x, y, tð Þ

 !
− sin 〠

i−1

r=0
ur x, y, tð Þ

 ! !)#
, n ≥ 1:

ð32Þ

Step 7. The solution of Equations (1)–(3) in series form is
given by

u x, y, tð Þ = u0 x, y, tð Þ + u1 x, y, tð Þ + u2 x, y, tð Þ +⋯ = u0 x, y, tð Þ:
ð33Þ

5. Illustrative Examples

In order to show the validity and effectiveness of the method
under consideration, some examples are presented here.

Example 1. Consider the two-dimensional NLSGE ð1Þ with
β = 0, α = 1, ϕðx, yÞ = 1, hðx, y, tÞ = sin ðex+y−2tÞ + 2ex+y−2t
on the domain Ω = ½0, 2�2, t ≥ 0. That is,

utt = uxx + uyy − sin u x, y, tð Þð Þ + sin ex+y−2t
� �

+ 2ex+y−2t ,
ð34Þ

with initial conditions

u x, y, 0ð Þ = ex+y, ut x, y, 0ð Þ = −2ex+y, ð35Þ

and boundary conditions

u 0, y, tð Þ = ey−2t , ux 0, y, tð Þ = ey−2t , u x, 0, tð Þ
= ex−2t , uy x, y, 0ð Þ = ex−2t:

ð36Þ

Solution: Applying properties of triple Laplace transform
on both sides of Equation (34), we get

s2�u k, p, sð Þ − s�u k, p, 0ð Þ − �ut k, p, 0ð Þ − p2�u k, p, sð Þ
+ p�u k, 0, sð Þ + �uy k, 0, sð Þ − k2�u k, p, sð Þ + k�u 0, p, sð Þ
+ �ux 0, p, sð Þ + Lxyt sin u x, y, tð Þð Þð Þg = Lxyt sin ex+y−2t

� �� �
+ 2

k − 1ð Þ p − 1ð Þ s + 2ð Þ :

ð37Þ

Applying double Laplace transform to Equations (35)
and (36), we obtain

�u k, p, 0ð Þ = 1
k − 1ð Þ p − 1ð Þ , �ut k, p, 0ð Þ = −

2
k − 1ð Þ p − 1ð Þ ,

�u 0, p, sð Þ = 1
p − 1ð Þ s + 2ð Þ , �ux 0, p, sð Þ = 1

p − 1ð Þ s + 2ð Þ ,

ð38Þ

�u k, 0, sð Þ = 1
k − 1ð Þ s + 2ð Þ , �uy k, 0, sð Þ = 1

k − 1ð Þ s + 2ð Þ ,

ð39Þ
respectively.

By substituting Equations (38) and (39) into Equation
(37), we get

Simplifying (40) gives us

�u k, p, sð Þ = 1
k − 1ð Þ p − 1ð Þ s + 2ð Þ +

1
s2 − p2 − k2
� �

� Lxyt sin ex+y−2t
� �

− sin u x, y, tð Þð Þ� �
:

ð41Þ

Applying inverse triple Laplace transform to Equation
(41), we get

u x, y, tð Þ = ex+y−2t + Lxyt
−1 1

s2 − p2 − k2
� � Lxyt sin ex+y−2t

� ��(

− sin u x, y, tð Þð Þ�
)
:

ð42Þ

Now, applying the new iterative method to Equation

s2 − p2 − k2
� �

�u k, p, sð Þ =
2

k − 1ð Þ p − 1ð Þ s + 2ð Þ + s − 2
k − 1ð Þ p − 1ð Þ −

p + 1
k − 1ð Þ s + 2ð Þ −

k + 1
p − 1ð Þ s + 2ð Þ

+Lxyt sin ex+y−2t
� �

− sin u x, y, tð Þð Þ� �
0
B@

1
CA: ð40Þ
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(42), we obtain the components of the solution as follows:

u0 x, y, tð Þ = ex+y−2t , ð43Þ

u1 x, y, tð Þ = Lxyt
−1 1

s2 − p2 − k2
� � Lxyt sin ex+y−2t

� ��(

− sin ex+y−2t
� ��

)
= 0:

ð44Þ

un+1u x, y, tð Þ = −Lxyt
−1 1

s2 − p2 − k2
Lxyt sin 〠

n

r=0
ur x, y, tð Þ

 !("

− sin 〠
n−1

r=0
ur x, y, tð Þ

 !)#
, n ≥ 1:

ð45Þ
Now, we define the recurrence relation from Equation

(45) for n ≥ 1 as follows:

u2 x, y, tð Þ = Lxyt
−1 1

s2 − p2 − k2
� � Lxyt sin u0 x, y, tð Þðf
"

+ u1 x, y, tð ÞÞ − sin u0 x, y, tð Þð Þg
#
= 0,

u3 x, y, tð Þ = Lxyt
−1 1

s2 − p2 − k2
� � Lxyt sin u0 x, y, tð Þðf
"

+ u1 x, y, tð Þ + u2 x, y, tð ÞÞ − sin u0 x, y, tð Þð

+ u1 x, y, tð ÞÞg
#
= 0:

ð46Þ

In the same way, we obtain u4ðx, y, tÞ = u5ðx, y, tÞ = 0 and so
on.

Therefore, the solution of Example 1 by using Equation
(33) is

u x, y, tð Þ = ex+y−2t : ð47Þ

Let us now test the convergence of the obtained series
solution. From Equation (42), we have

u0 x, y, tð Þ = ex+y−2t ,

N u x, y, tð Þð Þ = Lxyt
−1 1

s2 − p2 − k2
� � Lxyt sin ex+y−2t

� ��(

− sin u x, y, tð Þð Þ�
)
:

ð48Þ

Thus, for all x, y, t ≥ 0, we have

N u0 x, y, tð Þð Þ = Lytx
−1 1

s2 − p2 − k2
� � Lxyt sin ex+y−2t

� ��(

− sin u0 x, y, tð Þð Þ�
)

= Lxyt
−1 1

s2 − p2 − k2
� � Lxyt sin ex+y−2t

� ��(

− sin ex+y−2t
� ��

)
= 0,

ð49Þ

Therefore, kNðu0ðx, y, tÞÞk = k0k = 0 < ð1/eÞ.

N ′ u x, y, tð Þð Þ = Lytx
−1 1

s2 − p2 − k2
� � LxLyLt

(

� ex+y−2t
� �′ cos ex+y−2t

� �h

− cos u x, y, tð Þð Þu′ x, y, tð Þ�
)
,

ð50Þ

where N ′ðuðx, y, tÞÞ represents the partial derivatives ð∂/∂xÞ
uðx, y, tÞ or ð∂/∂yÞuðx, y, tÞ or ð∂/∂tÞuðx, y, tÞ:

N
∂
∂t

u x, y, tð Þ
� �

= Lxyt
−1 1

s2 − p2 − k2
� � Lxyt

−2ex+y−2t cos ex+y−2t
� �

−cos u x, y, tð Þð Þ ∂∂t u x, y, tð Þ

2
64

3
75

8><
>:

9>=
>;:

ð51Þ

Then,

N
∂
∂t

u0 x, y, tð Þ
� �

= Lxyt
−1 1

s2 − p2 − k2
� � Lxyt −2ex+y−2t cos ex+y−2t

� �
+2ex+y−2t cos ex+y−2t

� �
" #( )

= 0,

N
∂
∂x

u0 x, y, tð Þ
� �

=N
∂
∂y

u0 x, y, tð Þ
� �

= Lxyt
−1 1

s2 − p2 − k2
� � Lxyt ex+y−2t cos ex+y−2t

� �
−ex+y−2t cos ex+y−2t

� �
" #( )

= 0: ð52Þ
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Therefore, kNðu0 ′ðx, y, tÞÞk = k0k = 0 < ð1/eÞ.

Therefore, kN ′′ðu0ðx, y, tÞÞk = k0k = 0 < ð1/eÞ,
where N ′′ðu0ðx, y, tÞÞ represents all the second-order

partial derivatives of u0ðx, y, tÞ.
Similarly, by principle of Mathematical induction, we

have kNð3Þðu0ðx, y, tÞÞk = kNð4Þðu0ðx, y, tÞÞk =⋯ = kNðkÞð
u0ðx, y, tÞÞk = 0 < ð1/eÞ, for all k ≥ 0.

As the condition of Theorem 11 are satisfied, the series
solution uðx, y, tÞ =∑∞

i=0uiðx, y, tÞ is absolutely convergent,
and hence, the solution obtained by the new iterative
method is convergent on the domain of interest.

Example 2. Consider Equation (1) with β = 0, α = 1, ϕðx, yÞ
= 1, hðx, y, tÞ = sin ðsin ðx, y, tÞÞ + sin ðx, y, tÞ on the
domain Ω = ½0, 2π�2, t ≥ 0. That is,

utt x, y, tð Þ = uxx x, y, tð Þ + uyy x, y, tð Þ − sin u x, y, tð Þð Þ
+ sin sin x + y + tð Þð Þ + sin x + y + tð Þ,

ð54Þ

with initial conditions

u x, y, 0ð Þ = sin x + yð Þ, ut x, y, 0ð Þ = cos x + yð Þ, ð55Þ

and boundary conditions

u 0, y, tð Þ = sin y + tð Þ, ux 0, y, tð Þ = cos y + tð Þ,
u x, 0, tð Þ = sin x + tð Þ, uy x, 0, tð Þ = cos x + tð Þ:

ð56Þ

Solution: Applying properties of triple Laplace transform
on both sides of Equation (54), we obtain

s2�u k, p, sð Þ − s�u k, p, 0ð Þ − �ut k, p, 0ð Þ − p2�u k, p, sð Þ�
+ p�u k, 0, sð Þ + �uy k, 0, sð Þ − k2�u k, p, sð Þ + k�u 0, p, sð Þ
+ �ux 0, p, sð Þ + Lxyt sin u x, y, tð Þð Þð ÞÞ

= Lxyt sin sin x + y + tð Þf g½ � + −1 + ps + k p + sð Þ
1 + k2
� �

1 + p2ð Þ 1 + s2ð Þ :

ð57Þ

Applying double Laplace transform to Equations (55)
and (56), we obtain

�u k, p, 0ð Þ = k + p

1 + p2ð Þ 1 + k2
� � , �ut k, p, 0ð Þ = kp − 1

1 + p2ð Þ 1 + k2
� � ,

ð58Þ

N
∂2

∂t2
u0 x, y, tð Þ

 !
= Lxyt

−1 1
s2 − p2 − k2
� � Lxyt

4ex+y−2t cos ex+y−2t
� �

− 4e2x+2y−4t sin ex+y−2t
� �

−cos u0 x, y, tð Þð Þ ∂
2

∂t2
u0 x, y, tð Þ

+sin u x, y, tð Þð Þ ∂
∂t

u0 x, y, tð Þ
� �2

2
66666664

3
77777775

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

= Lxyt
−1 1

s2 − p2 − k2
� � Lxyt 4ex+y−2t cos ex+y−2t

� �
− 4e2x+2y−4t sin ex+y−2t

� �
−4ex+y−2t cos ex+y−2t

� �
+ 4e2x+2y−4t sin ex+y−2t

� �
2
4

3
5

8<
:

9=
; = 0,

N
∂2

∂x2
u0 x, y, tð Þ

 !
=N

∂2

∂y2
u0 x, y, tð Þ

 !
=N

∂2

∂x∂y
u0 x, y, tð Þ

 !

= Lxyt
−1 1

s2 − p2 − k2
� � Lxyt ex+y−2t cos ex+y−2t

� �
− e2x+2y−4t sin ex+y−2t

� �
−ex+y−2t cos ex+y−2t

� �
+ e2x+2y−4t sin ex+y−2t

� �
2
4

3
5

8<
:

9=
; = 0,

N
∂2

∂x∂t
u0 x, y, tð Þ

 !
=N

∂2

∂y∂t
u0 x, y, tð Þ

 !
= Lxyt

−1 1
s2 − p2 − k2
� � Lxyt −2ex+y−2t cos ex+y−2t

� �
+ 2e2x+2y−4t sin ex+y−2t

� �
+2ex+y−2t cos ex+y−2t

� �
− 2e2x+2y−4t sin ex+y−2t

� �
" #( )

= 0:

ð53Þ
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�u 0, p, sð Þ = k + s
1 + p2ð Þ 1 + s2ð Þ , �ux 0, p, sð Þ = ps − 1

1 + p2ð Þ 1 + s2ð Þ ,

�u k, 0, sð Þ = k + s

1 + k2
� �

1 + s2ð Þ ,
�uy k, 0, sð Þ = ks − 1

1 + k2
� �

1 + s2ð Þ ,
ð59Þ

respectively.
By substituting Equations (58) and (59) in to Equation

(57) and simplifying, we get

�u k, p, sð Þ = −1 + ps + k p + sð Þ
1 + k2
� �

1 + p2ð Þ 1 + s2ð Þ + 1
s2 − p2 − k2

� Lxyt sin sin x + y + tð Þf g − sin u x, y, tð Þð Þ½ �:
ð60Þ

Applying inverse triple Laplace transform to Equation
(60), we get

u x, y, tð Þ = sin x + y + tð Þ + Lxyt
−1 1

s2 − p2 − k2
Lxyt sin½

�

� sin x + y + tð Þf g − sin u x, y, tð Þð Þ�
o
:

ð61Þ

Now, applying the new iterative method to Equation
(61), we obtain the components of the solution as follows:

Substituting Equation (16) into Equation (61), we obtain
the components of the solution as follows:

u0 x, y, tð Þ = sin x + y + tð Þ,

u1 x, y, tð Þ = Lxyt
−1 1

s2 − p2 − k2
Lxyt sin sin x + y + tð Þf g½

�

− sin sin x + y + tð Þf g�
o
= 0,

u2 x, y, tð Þ = Lxyt
−1 1

s2 − p2 − k2
Lxyt sin u0 x, y, tð Þf½

�

+ u1 x, y, tð Þg − sin u0 x, y, tð Þð Þ�
o
= 0,

u3 x, y, tð Þ = Lxyt
−1 1

s2 − p2 − k2
Lxyt sin u0 x, y, tð Þf½

�
+ u1 x, y, tð Þ + u2 x, y, tð Þg
− sin u0 x, y, tð Þ + u1 x, y, tð Þð Þ�

o
= 0,

ð62Þ

and so on.

Therefore, the solution of Example 2 by using equation
(33) is

u x, y, tð Þ = sin x + y + tð Þ, ð63Þ

as indicated in Baccouch [10] and Deresse et al. [41].
Next, we test the convergence of the obtained series solu-

tion. From Equation (61) we have,

u0 x, y, tð Þ = sin x + y + tð Þ andN u x, y, tð Þð Þ
= Lxyt

−1 1
s2 − p2 − k2

Lxyt sin sin x + y + tð Þf g½
�

− sin u x, y, tð Þð Þ�
	
:

ð64Þ

Thus, for all x, y, t ≥ 0, we have

N u0 x, y, tð Þð Þ = Lxyt
−1 1

s2 − p2 − k2
� � Lxyt sin sin x + y + tð Þf g½

(

− sin u0 x, y, tð Þð Þ�
	

= Lxyt
−1 1

s2 − p2 − k2
� � Lxyt sin sin x + y + tð Þf g½

(

− sin sin x + y + tð Þf g�
	
= 0:

ð65Þ

Therefore, kNðu0ðx, y, tÞÞk = k0k = 0 < ð1/eÞ.

N
∂
∂t

u x, y, tð Þ
� �

= Lxyt
−1 1

s2 − p2 − k2
� � Lxyt cos½

(

� sin x + y + tð Þf g cos x + y + tð Þ
− cos u x, y, tð Þð Þ ∂∂t u x, y, tð Þ

�	
,

N
∂
∂t

u0 x, y, tð Þ
� �

= Lxyt
−1 1

s2 − p2 − k2
� � Lxyt cos½

(

� sin x + y + tð Þf g cos x + y + tð Þ
− cos sin x + y + tð Þf g cos x + y + tð Þ�

	
= 0:

ð66Þ

Similarly, Nðð∂/∂xÞu0ðx, y, tÞÞ =Nðð∂/∂yÞu0ðx, y, tÞÞ = 0.
Therefore, kNðu0 ′ðx, y, tÞÞk = k0k = 0 < ð1/eÞ.

N
∂2

∂t2
u0 x, y, tð Þ

 !
= Lxyt

−1 1
s2 − p2 − k2
� � Lxyt −sin sin x + y + tð Þf g cos2 x + y + tð Þ + cos sin x + y + tð Þf g sin x + y + tð Þ�(

− cos u0 x, y, tð Þð Þ ∂
2

∂t2
u0 x, y, tð Þ − sin u x, y, tð Þð Þ ∂

∂t
u0 x, y, tð Þ

� �2
 !#)

= Lxyt
−1 1

s2 − p2 − k2
� � Lxyt −sin sin x + y + tð Þf g cos2 x + y + tð Þ − cos sin x + y + tð Þf g sin x + y + tð Þ

sin sin x + y + tð Þf g cos2 x + y + tð Þ + cos sin x + y + tð Þf g sin x + y + tð Þ

" #( )
= 0:

ð67Þ
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Similarly,

N
∂2

∂x2
u0 x, y, tð Þ

 !
=N

∂2

∂y2
u0 x, y, tð Þ

 !
=N

∂2

∂x∂y
u0 x, y, tð Þ

 !

=N
∂2

∂x∂t
u0 x, y, tð Þ

 !
=N

∂2

∂y∂t
u0 x, y, tð Þ

 !
= 0:

ð68Þ

Therefore, kN ′′ðu0ðx, y, tÞÞ k = k0k = 0 < ð1/eÞ,
where N ′′ðu0ðx, y, tÞÞ represents all the second-order

partial derivatives of u0ðx, y, tÞ.
Similarly, by principle of Mathematical induction, we

have kNð3Þðu0ðx, y, tÞÞk = kNð4Þðu0ðx, y, tÞÞk =⋯ = kNðkÞð
u0ðx, y, tÞÞk = 0 < ð1/eÞ, for all k ≥ 0.

As the condition of Theorem 11 are satisfied, the series
solution uðx, y, tÞ =∑∞

i=0uiðx, y, tÞ is absolutely convergent,
and hence, the solution obtained by the new iterative
method is convergent on the domain of interest.

Example 3. Consider Equation (1) on the domain Ω =
½−1/2, 1/2�2 with β = 0, α = 1/2π2, ϕðx, yÞ = 1, and hðx, y, tÞ
= sin ðcos ðπxÞ cos ðπyÞ cos ðtÞÞ + sin ðx, y, tÞ , That is,

utt x, y, tð Þ = 1
2π2 uxx x, y, tð Þ + uyy x, y, tð Þ� �
− sin u x, y, tð Þð Þ + sin cos πxð Þ cos πyð Þ cos tð Þð Þ,

ð69Þ

with initial conditions

u x, y, 0ð Þ = cos πxð Þ cos πyð Þ, ut x, y, 0ð Þ = 0, ð70Þ

and boundary conditions

u 0, y, tð Þ = cos πyð Þ cos tð Þ, ux 0, y, tð Þ
= 0, u x, 0, tð Þ = cos πxð Þ cos tð Þ, uy x, 0, tð Þ = 0:

ð71Þ

Solution: Applying properties of triple Laplace transform
on both sides of Equation (69), we get

s2�u k, p, sð Þ − s�u k, p, 0ð Þ − �ut k, p, 0ð Þ + 1
2π2 −p2�u k, p, sð Þ��

+ p�u k, 0, sð Þ + �uy k, 0, sð Þ − k2�u k, p, sð Þ + k�u 0, p, sð Þ
+ �ux 0, p, sð ÞÞ + LxLyLt sin u x, y, tð Þð Þð Þ

i
= LxLyLt sin cos πxð Þ cos πyð Þ cos tð Þf g½ �:

ð72Þ

Applying double Laplace transform to Equations (70)
and (71), we obtain

�u k, p, 0ð Þ = kp

π2 + p2ð Þ π2 + k2
� � , �ut k, p, 0ð Þ = 0, ð73Þ

�u k, 0, sð Þ = ks

π2 + k2
� �

1 + s2ð Þ ,
�uy k, 0, sð Þ = 0,

�u 0, p, sð Þ = ps
π2 + p2ð Þ 1 + s2ð Þ , �ux 0, p, sð Þ = 0

, ð74Þ

respectively.
By substituting Equations (73) and (74) into Equation

(72) and simplifying, we get

�u k, p, sð Þ = kps

π2 + p2ð Þ π2 + k2
� �

1 + s2ð Þ +
2π2

2π2s2 − p2 − k2

� Lxyt sin cos πxð Þ cos πyð Þ cos tð Þf g − sin u x, y, tð Þð Þ½ �:
ð75Þ

Applying inverse triple Laplace transform to Equation
(75), we obtain

u x, y, tð Þ = cos πxð Þ cos πyð Þ cos tð Þ + Lxyt
−1 2π2

2π2s2 − p2 − k2

��

� Lxyt sin cos πxð Þ cos πyð Þ cos tð Þf g − sin u x, y, tð Þð Þ½ �
o�

:

ð76Þ

Now, applying the new iterative method to Equation
(76), we obtain the components of the solution as follows:

u0 x, y, tð Þ = cos πxð Þ cos πyð Þ cos tð Þ,

u1 x, y, tð Þ = Lxyt
−1 2π2

2π2s2 − p2 − k2
Lxyt sin cos πxð Þf½

�

� cos πyð Þ cos tð Þg − sin u0 x, y, tð Þð Þ�
o
,

= Lxyt
−1 2π2

2π2s2 − p2 − k2
Lxyt sin cos πxð Þf½

�
� cos πyð Þ cos tð Þg − sin cos πxð Þf
� cos πyð Þ cos tð Þg�

o
= 0,

ð77Þ

u2 x, y, tð Þ = Lxyt
−1 2π2

2π2s2 − p2 − k2
Lxyt sin u0 x, y, tð Þð½

�

+ u1 x, y, tð ÞÞ − sin u0 x, y, tð Þð Þ�
	
= 0,

u3 x, y, tð Þ = Lxyt
−1 2π2

2π2s2 − p2 − k2
Lxyt sin u0 x, y, tð Þð½

�
+ u1 x, y, tð Þ + u2 x, y, tð ÞÞ − sin u0 x, y, tð Þð
+ u1 x, y, tð ÞÞ�

	
= 0,

ð78Þ
and so on.
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Therefore, the solution of Example 3 by using Equation
(33) is

u x, y, tð Þ = cos πxð Þ cos πyð Þ cos tð Þ: ð79Þ

This is exactly the same as the result obtained by Kang
et al. [16] and Deresse et al. [41].

We now test the convergence of the obtained series solu-
tion of Example 3.

From Equation (61), we have u0ðx, y, tÞ = cos ðπxÞ cos
ðπyÞ cos ðtÞ and

N u x, y, tð Þð Þ = Lxyt
−1 2π2

2π2s2 − p2 − k2
Lxyt sin cos πxð Þf½

�

� cos πyð Þ cos tð Þg − sin u x, y, tð Þð Þ�
	
:

ð80Þ

Thus, for all x, y, t ≥ 0, we have

N u0 x, y, tð Þð Þ = Lxyt
−1 2π2

2π2s2 − p2 − k2
Lxyt sin cos πxð Þf½

�

� cos πyð Þ cos tð Þg − sin u0 x, y, tð Þð Þ�
	

= Lxyt
−1 2π2

2π2s2 − p2 − k2
Lxyt sin cos πxð Þf½

�
� cos πyð Þ cos tð Þg − sin cos πxð Þf
� cos πyð Þ cos tð Þg �

	
= 0:

ð81Þ

Therefore, kNðu0ðx, y, tÞÞk=k0k = 0 < ð1/eÞ.

N
∂
∂t

u x, y, tð Þ
� �

= Lxyt
−1 2π2

2π2s2 − p2 − k2
Lxyt

�
� −cos cos πxð Þ cos πyð Þ cos tð Þf g½
� cos πxð Þ cos πyð Þ sin tð Þ
− cos u x, y, tð Þð Þ ∂∂t u x, y, tð Þ

�	
,

N
∂
∂t

u0 x, y, tð Þ
� �

= Lxyt
−1 2π2

2π2s2 − p2 − k2
Lxyt

�
� −cos cos πxð Þ cos πyð Þ cos tð Þf g½
� cos πxð Þ cos πyð Þ sin tð Þ
+ cos cos πxð Þ cos πyð Þ cos tð Þf g
� cos πxð Þ cos πyð Þ sin tð Þ�

	
= 0:

ð82Þ

Similarly, Nðð∂/∂xÞu0ðx, y, tÞÞ =Nðð∂/∂yÞu0ðx, y, tÞÞ = 0.

Therefore, kNðu0 ′ðx, y, tÞÞk = k0k = 0 < ð1/eÞ:

N
∂2

∂t2
u0 x, y, tð Þ

 !
= Lxyt

−1 2π2

2π2s2 − p2 − k2
Lxyt

�

� −sin cos πxð Þ cos πyð Þ cos tð Þf g cos2 πxð Þ cos2 πyð Þ�
� sin2 tð Þ − cos cos πxð Þ cos πyð Þ cos tð Þf g cos πxð Þ

� cos πyð Þ cos tð Þ − cos u0 x, y, tð Þð Þ ∂
2

∂t2
u0 x, y, tð Þ

 

− sin u x, y, tð Þð Þ ∂
∂t

u0 x, y, tð Þ
� �2��	

= Lxyt
−1 2π2

2π2s2 − p2 − k2
Lxyt −sin cos πxð Þ cos πyð Þf½

�
� cos tð Þg cos2 πxð Þ cos2 πyð Þ sin2 tð Þ − cos cos πxð Þf
� cos πyð Þ cos tð Þg cos πxð Þ cos πyð Þ cos tð Þ
+ sin cos πxð Þ cos πyð Þ cos tð Þf g cos2 πxð Þ cos2 πyð Þ
� sin2 tð Þ + cos cos πxð Þ cos πyð Þ cos tð Þf g
� cos πxð Þ cos πyð Þ cos tð Þ�

	
= 0:

ð83Þ

Similarly,

N
∂2

∂x2
u0 x, y, tð Þ

 !
=N

∂2

∂y2
u0 x, y, tð Þ

 !
=N

∂2

∂x∂y
u0 x, y, tð Þ

 !

=N
∂2

∂x∂t
u0 x, y, tð Þ

 !
=N

∂2

∂y∂t
u0 x, y, tð Þ

 !
= 0,

ð84Þ

Therefore, kNðu0 ′′ðx, y, tÞÞk = k0k = 0 < ð1/eÞ,
where N ′′ðu0ðx, y, tÞÞ represents all the second order

partial derivatives of u0ðx, y, tÞ.
Similarly, by principle of Mathematical induction, we

have kNð3Þðu0ðx, y, tÞÞk = kNð4Þðu0ðx, y, tÞÞk =⋯ = kNðkÞð
u0ðx, y, tÞÞk = 0 < ð1/eÞ, for all k ≥ 0.

As the condition of Theorem 11 are satisfied, the solu-
tion series uðx, y, tÞ =∑∞

i=0uiðx, y, tÞ is absolutely convergent,
and hence, the solution obtained by the new iterative
method is convergent on the domain of interest.

Example 4. Consider Equation (1) with β = 1, α = 1, ϕðx, yÞ
= 2, hðx, y, tÞ = 2 sin ½e−tð1 − cos ðπxÞÞð1 − cos ðπyÞÞ� − π2

e−t ½cos ðπxÞ + cos ðπyÞ − 2 cos ðπxÞ cos ðπyÞ� on the domain
Ω = ½0, 2�2, t ≥ 0. That is,

utt x, y, tð Þ + ut x, y, tð Þ = uxx x, y, tð Þ + uyy x, y, tð Þ − 2 sin
�

� u x, y, tð Þð Þ + 2 sin e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� �
− π2e−t cos πxð Þ + cos πyð Þ − 2 cos πxð Þ cos πyð Þ½ �Þ,

ð85Þ
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with initial conditions

u x, y, 0ð Þ = 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ, ut x, y, 0ð Þ
= − 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ, ð86Þ

and boundary conditions

u 0, y, tð Þ = 0, ux 0, y, tð Þ = 0, u x, 0, tð Þ = 0, uy x, 0, tð Þ = 0:
ð87Þ

Solution: Applying properties of triple Laplace transform
on both sides of Equation (85), we obtain

s2�u k, p, sð Þ − s�u k, p, 0ð Þ − �ut k, p, 0ð Þ + s�u k, p, sð Þ − �u k, p, 0ð Þ�
− p2�u k, p, sð Þ + p�u k, 0, sð Þ + �uy k, 0, sð Þ − k2�u k, p, sð Þ
+ k�u 0, p, sð Þ + �ux 0, p, sð Þ + 2Lxyt sin u x, y, tð Þð Þð ÞÞ

= 2 Lxyt sin e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� � ��
−

π2

s + 1
k

k2 + π2
+ p
p2 + π2 −

2kp
k2 + π2� �

p2 + π2ð Þ

" #!
:

ð88Þ

Applying double Laplace transform to Equations (86)
and (87), we obtain

�u k, p, 0ð Þ = 1
s
−

k

k2 + π2
−

p
p2 + π2 + kp

k2 + π2� �
p2 + π2ð Þ

,

�ut k, p, 0ð Þ = −
1
s
−

k

k2 + π2
−

p
p2 + π2 + kp

k2 + π2� �
p2 + π2ð Þ

 !
,

ð89Þ

and

�u k, 0, sð Þ = 0, �uy k, 0, sð Þ = 0, �u 0, p, sð Þ = 0, �ux 0, p, sð Þ = 0,
ð90Þ

respectively.
By substituting Equations (89) and (90) into Equation

(88) and simplifying, we get

�u k, p, sð Þ = 1
s + 1ð Þ

1
s
−

k

k2 + π2
−

p
p2 + π2 + kp

k2 + π2� �
p2 + π2ð Þ

" # 

+ 2
s2 + s − p2 − k2
� � Lxyt sin e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� ��

− sin u x, y, tð Þð Þ�
!
:

ð91Þ

Applying inverse triple Laplace transform to Equation
(91), we obtain

u x, y, tð Þ = e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ + Lxyt
−1�

� 2
s2 + s − p2 − k2
� � Lxyt sin e−t 1 − cos πxð Þð Þ��(

� 1 − cos πyð Þð Þ� − sin u x, y, tð Þð Þ�
)!

:

ð92Þ

Now, we apply the iteration process.
Substituting Equation (16) into Equation (92), we obtain

the components of the solution as follows:

u0 x, y, tð Þ = e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ,

u1 x, y, tð Þ = Lxyt
−1 2

s2 + s − p2 − k2
� � Lxyt sin e−t 1 − cos πxð Þð Þ��(

� 1 − cos πyð Þð Þ� − sin u0 x, y, tð Þð Þ �
	
,

= Lxyt
−1 2

s2 + s − p2 − k2
� � Lxyt sin e−t 1 − cos πxð Þð Þ��(

� 1 − cos πyð Þð Þ� − sin e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� � �	 = 0,

u2 x, y, tð Þ = Lxyt
−1 2

s2 + s − p2 − k2
� � Lxyt sin u0 x, y, tð Þð½

(

+ u1 x, y, tð ÞÞ − sin u0 x, y, tð Þð Þ�
	
= 0,

u3 x, y, tð Þ = Lxyt
−1 2

s2 + s − p2 − k2
� � Lxyt sin u0 x, y, tð Þð½

(

+ u1 x, y, tð Þ + u2 x, y, tð ÞÞ − sin u0 x, y, tð Þð
+ u1 x, y, tð ÞÞ�

	
= 0,

ð93Þ

and so on.
Therefore, the solution of Example 4 by using Equation

(33) is

u x, y, tð Þ = e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ: ð94Þ

This result shows an excellent agreement with the one
obtained in [12, 40, 41].

Now, we test the convergence of the obtained series solu-
tion. From Equation (61), we have

u0 x, y, tð Þ = e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ,
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N u x, y, tð Þð Þ = Lxyt
−1 2

s2 + s − p2 − k2
� � Lxyt

(

� sin e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� ��
− sin u x, y, tð Þð Þ�

	
:

ð95Þ

Thus, for all x, y, t ≥ 0, we have

N u0 x, y, tð Þð Þ = Lxyt
−1 2

s2 + s − p2 − k2
� � Lxyt

(

� sin e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� ��
− sin u0 x, y, tð Þð Þ�

	

= Lxyt
−1 2

s2 + s − p2 − k2
� � Lxyt

(

� sin e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� ��
− sin e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� ��	 = 0:

ð96Þ

Therefore, kNðu0ðx, y, tÞÞk = k0k = 0 < ð1/eÞ.

N
∂
∂t

u x, y, tð Þ
� �

= Lxyt
−1 2

s2 + s − p2 − k2
� � Lxyt

(

� −cos e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� ��
� e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ − cos u x, y, tð Þð Þ
� ∂
∂t

u x, y, tð Þ�
	
,

N
∂
∂t

u0 x, y, tð Þ
� �

= Lxyt
−1 2

s2 + s − p2 − k2
� � Lxyt

(

� −cos e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� ��
� e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ
+ cos e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� �

� e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ�
	
= 0: ð97Þ

Similarly, Nðð∂/∂xÞu0ðx, y, tÞÞ =Nðð∂/∂yÞu0ðx, y, tÞÞ = 0
.

Therefore, kNðu0 ′ðx, y, tÞÞk=k0k = 0 < ð1/eÞ.

N
∂2

∂t2
u0 x, y, tð Þ

 !
= Lxyt

−1 2
s2 + s − p2 − k2
� � Lxyt

(

� sin e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� ��
� e−2t 1 − cos πxð Þð½ �2 1 − cos πyð Þð½ �2
− cos e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� �
e−t 1 − cos πxð Þð 1 − cos πyð Þð − cos u0 x, y, tð Þð Þð

� ∂
2

∂t2
u0 x, y, tð Þ − sin u x, y, tð Þð Þ ∂

∂t
u0 x, y, tð Þ

� �2��	

= Lxyt
−1 2

s2 + s − p2 − k2
� � Lxyt e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� ��(

� e−2t 1 − cos πxð Þð½ �2 1 − cos πyð Þð½ �2 − cos e−t 1 − cos πxð Þð Þ�
� 1 − cos πyð Þð Þ�e−t 1 − cos πxð Þð 1 − cos πyð Þð
− e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� �

e−2t 1 − cos πxð Þð½ �2
� 1 − cos πyð Þð½ �2 + cos e−t 1 − cos πxð Þð Þ 1 − cos πyð Þð Þ� �
� e−t 1 − cos πxð Þð 1 − cos πyð Þð �

	
= 0:

ð98Þ

Similarly,

N
∂2

∂x2
u0 x, y, tð Þ

 !
=N

∂2

∂y2
u0 x, y, tð Þ

 !
=N

∂2

∂x∂y
u0 x, y, tð Þ

 !

=N
∂2

∂x∂t
u0 x, y, tð Þ

 !
=N

∂2

∂y∂t
u0 x, y, tð Þ

 !
= 0:

ð99Þ

Therefore, kNðu0 ′′ðx, y, tÞÞk = k0k = 0 < ð1/eÞ,
where N ′′ðu0ðx, y, tÞÞ represents all the second order

partial derivatives of u0ðx, y, tÞ.
Similarly, by principle of Mathematical induction, we

have kNð3Þðu0ðx, y, tÞÞk = kNð4Þðu0ðx, y, tÞÞk =⋯ = kNðkÞð
u0ðx, y, tÞÞk = 0 < ð1/eÞ, for all k ≥ 0.

As the condition of Theorem 11 are satisfied, the series
solution uðx, y, tÞ =∑∞

i=0uiðx, y, tÞ is absolutely convergent,
and hence, the solution obtained by the new iterative
method is convergent on the domain of interest.

6. Conclusion

In this paper, triple Laplace transform coupled with iterative
method is applied to obtain exact solution of two-
dimensional nonlinear Sine-Gordon equation subject to ini-
tial and boundary conditions. Four illustrative examples are
presented to show the validity of the method under consid-
eration. The solutions of Examples 1, 2, 3, and 4 obtained by
the proposed method are in an excellent agreement with the
same problem that has been considered in [6, 10–12, 16, 40,
41], and further, nontrivial problems that are solved using
earlier methods become trivial in the sense that the decom-
position uðx, y, tÞ =∑∞

n=0unðx, y, tÞ = u0ðx, y, tÞ + u1ðx, y, tÞ
+ u2ðx, y, tÞ +⋯ + umðx, y, tÞ +⋯ consists of only one term,
i.e., uðx, y, tÞ = u0ðx, y, tÞ. From this study, we concluded that
triple Laplace transform coupled with iterative method finds
quite practical analytical results with less computational
work.
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