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With the potential of increasing mobility and reducing cost, shared mobility of autonomous vehicles (AVs) is going to gain solid 
growth in the coming decade. �e major issue for the shared use of AVs is how to project serving routes in an efficiently way. From 
another perspective, this issue could be understood as to segment maximum number of passengers into groups. �erefore, this paper 
intends to investigate passengers’ similarity instead of directly matching AVs and passengers. �e goal is to determine the minimum 
number of groups and assign each group with an AV. To this end, a cluster-based algorithm is proposed to classify passengers. 
Numerical experiments with both small-size and large-size demands are performed to present the validity of the proposed algorithm. 
Results indicate that the cluster-based algorithm could bring benefit to minimizing the number of vehicles and total travel distance. 
At last, sensitivity analysis of key parameters shows that vehicle capacity will have little impact when the number of seats exceeds 
four, and time windows could make continuous influence on gathering passengers.

1. Introduction

Autonomous vehicles (AVs) are regarded as a promising mode 
of transportation that provides increased mobility, enhanced 
customer satisfaction, and reduced infrastructure costs (e.g., 
[1–3]). For the autonomous transportation system, using 
shared AVs (SAVs) is considered as one of the most efficient 
way to provide on-demand service. According to the number 
of passengers carried at one time, existing researches related 
with SAVs could be classified into two categories, i.e., car-shar-
ing and ride-sharing.

In the car-sharing mode, each SAV only takes one 
passenger at one time. Different from traditional car-sharing 
system (e.g., Boyaci et al. [4], Huang et al. [5]), the major 
concern for SAV system is how to assign SAVs to provide 
point-to-point service instead of determining depot locations 
and relocate AVs among stations for balancing supply and 
demand (e.g., Ma et al. [6], Levin et al. [7], Chen et al. [2], 
Miao et al. [8]). In the ride-sharing mode, multiple passengers 
are permitted to ride in one car simultaneously. If the system 

control platform could match efficiently passengers and 
vehicles, then the overall vehicle occupancy will be increased 
and traffic congestion will be released through cutting down 
on-road vehicles. �erefore, this paper will focus on how to 
build a control platform to make passengers sharing a car.

For modeling the ride-sharing service, most researches 
refer to the classical Dial-a-Ride Problem (DARP) model 
proposed by Cordeau [9]. �e essential idea of DARP is to 
extract the routing problem into the arc-based flow 
conservation model. In this way, vehicle routes could be 
decoded by linking visited arcs. Although this method could 
illustrate the routing problem with a mixed integer model, its 
drawback is inevitable to generate valid arcs for identical 
requests. Meanwhile the number of variables for this model 
would be raised exponentially with increased passengers. To 
solve this model in an efficient way, efforts have been devoted 
on exploring optimal solutions. One of the prevailing 
algorithms is the branch-and-cut method, which aims at 
eliminating invalid arcs and cutting redundant domains, e.g., 
Liu et al. [10], Bongiovanni et al. [11]. Except for it, other 
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methods are also tried to find optimal routes. For example, 
Hosni et al. [12] adopted the Lagrangian decomposition 
method to segment the multivehicles routing problem into 
several single vehicle. Mahmoudi and Zhou [13] combined 
the forward dynamic programming and Lagrangian relaxation 
approach to search feasible solutions. Cordeau and Laporte 
[14] applied a Tabu search heuristic to solve the DARP and 
proposed a framework of neighborhood evaluation. Häme and 
Hakula [15] proposed a heuristic algorithm that maximized 
the number of customers served by a single vehicle. Diana and 
Dessouky [16] proposed an insertion heuristic to handle the 
computational complexity and investigated the relationship 
between solution quality and computational costs.

However, most existing methods try to explore detailed 
vehicle trajectories. �is poses difficulties in searching feasible 
paths for increased demands. Vazifeh, et al. [17] transferred 
the dispatching of vehicles as a minimum path cover problem 
on directed graphs and tested graph algorithms with massive 
taxi data of New York City. Based on this method, it might be 
powerful to solve the vehicle and passenger matching problem 
by investigating the similarity of passenger trip trajectories 
and classifying passengers into groups. Our idea herein is to 
simplify the researched problem by directly exploring the rela-
tionship between passengers. In this way, passengers can be 
classified into several groups. �en by checking the connection 
between groups and assigning each group with one vehicle, 
the number of vehicle needed can be derived. With this 
thought, we will propose an algorithm for tackling various 
passengers. In summary, the main objective of this paper is: 
(i) simplify the researched problem by linking passengers 
instead of directly matching vehicles and passengers; and (ii) 
design a cluster-based algorithm to find solutions for high 
traffic demands with high efficiency.

�e rest of the paper is organized as follows. In Section 2, 
the vehicle dispatching model for SAV-based transportation 
systems is proposed Section 3 presents an efficient heuristic 
algorithm developed for the proposed model. In Section 4, 
comparative results of various scenarios are discussed. Finally, 
Section 5 presents some conclusions with remarks.

2. The Dispatching Problem of an AV-Based 
Transportation Service System

�is paper mainly discusses how to plan AVs serving routes 
and determine the number of dispatched vehicles for the SAV 
transportation system. An optimization model is developed 
for matching vehicles and passengers. �e details of the pro-
posed model are descripted in this section.

2.1. Problem Statement.  For the SAV system, a major problem 
is to optimize vehicle serving paths with the consideration 
of saving the number of vehicles. In general, passengers are 
characterized by origin-destination (OD) pairs and time 
windows. In detail, let � be the set of all requests where �표(�푢) 
and �푑(�푢), ∀�푢 ∈ �푈, respectively represent requested pickup 
(origin) and delivery (destination) nodes. For these requests, 
the earliest and latest pickup time indexes are �푡���(�푢) and  
�푡���(�푢), ∀�푢 ∈ �푈 and the earliest and latest drop-off time are 

�푡����(�푢) and �푡����(�푢), ∀�푢 ∈ �푈. Based on passenger requests, a 
directed graph �퐺 = (�퐴, �퐸) could be depicted, where � is the 
set of OD nodes and � is the set of edges associating travel 
time among nodes. Let �� represents the set of paths travel 
time in the road network, values of weighted edges in the 
graph are regarded as travel time, i.e., �푇�푇 (�표(�푢), �푑(�푢)) ∪ �푇�푇
(�표(�푢�), �푑(�푢)) ∪ �푇�푇 (�표(�푢), �푑(�푢�)) ∪ �푇�푇 (�표(�푢�), �푑(�푢�)) ∈ �퐸, ∀�푢, 
�푢

�
∈ �푈. It should be noted that travel time is estimated as 

fixed values for simplification. For vehicles, � is the set of 
available AVs. We assume that AV fleet is homogeneous with 
respect to capacity which is equal to a preset value ��. Under 
this background, the goal of optimizing the AV transportation 
system is set to minimize the system cost, i.e., the number of 
used vehicles.

Based on existing researches, an extended DARP model 
could be modified to express the objective of minimizing 
vehicle number instead of minimizing the total travel distance. 
Since the DARP model is a node-flow model, the solution 
domain is denoted by 4 × {�푉} ⊗ {�푈} ⊗ {�푈}. When available 
vehicles and user demands are large, numerous time will be 
exhausted on searching optimal vehicle paths. To reduce the 
complexity in mathematical modeling and to present it in a 
simple way, we intend to build the optimization model by only 
delivering the relationship of passengers, i.e., �휆(�푢, �푤), 1 if 
passenger � and w are served by the same vehicle, and 0 
otherwise. In this way, passengers are divided into groups and 
the space is reduced to 0.5 × {�푈} ⊗ {�푈}. Furthermore, detailed 
vehicle paths could be obtained through translating passenger 
relationships. For example, given four passengers 
(�푢 = 1, 2, 3, 4,∀�푢 ∈ �푈) waiting for service. If �휆(1, 2) = 1 and 
�휆(1, 4) = 1, passenger 1, 2, and 4 are carried by the same 
vehicle and passenger 3 is assigned to another vehicle. �is 
implies that two vehicles in total are required to satisfy these 
four passengers. �erefore, the whole framework of this 
researched problem could be concluded as shown in Figure 1. 
Table 1 lists some important parameters and variables.

2.2. �e Optimization Model of Passenger–Passenger 
Matching.  Before formulating the optimization model, some 
characteristics of this system are predefined as follows:

	 (i)	 �  All passenger requests should be served;
	 (ii)	 � All passengers are assumed to have the willingness 

of sharing rides with others;
	 (iii)	 � All passengers’ pick-up and delivery times are 

within their expected time windows;
	 (iv)	 � Each passenger is only served by one single vehicle;
	 (v)	 � Vehicle capacity should not be exceeded when car-

rying multiple passengers; and
	 (vi)	 � AVs are controlled by a central control system.

A vehicle carrying more passengers will increase the prob-
ability of saving vehicle needed, which means that more pas-
sengers are associated. �at is to say maximizing the number 
of associated passengers could take an effect in minimizing 
the total number of vehicles. In this way, the objective function 
is formulated by Equation (1)
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with the following constraints:
(1) �e transitivity relation of passengers.  To determine the 
correlation between multiple passengers, the transitivity of 

(1)�퐹 = max ∑
�푢,w∈�푈

�휆(�푢, �푤),

passenger relationships is denoted in Equation (2). It means 
that passengers �� and ��� are connected if they are both linked 
by a passenger �.

To provide the convenience for solving the model, Equation 
(2) is transformed with an equivalent expression, as shown in 
Equation (3):

(2) Service time constraint.  Since the desired pick-up and 
drop-off times are collected in advance, request service time 
should be within these time limitations, as reflected in 
Equations (4) and (5). For request � and �, if they are 
assigned to the same vehicle (�휆(�푢, �푤) = 1), time differences 
in spatial dimension also need to be added to determine 
variables �푝(�푢) and �푔(�푢), which are expressed in Equations 
(6)−(8). M is a very large number. Equation (6) implies that 
time difference of taking request � and �� for vehicle v should 
not be less than the minimum travel time between original 
node �표(�푢) and �표(�푤). Similarly, Equation (7) illustrates that 
time difference of dropping off requests � and � need to be 
larger than the minimum travel time between destination 
nodes �푑(�푢) and �푑(�푤). In addition, the time constraint for 
picking up request � and dropping off � is also considered 
in Equation (8).

(2)2 − �휆(�푢, �푢�) − �휆(�푢, �푢��) =
{{
{{
{

0 �휆(�푢�, �푢��) = 1,
1 �휆(�푢�, �푢��) = 0 or 1,
2 �휆(�푢�, �푢��) = 0.

(3)
2 − �휆(�푢, �푢�) − �휆(�푢, �푢��) ≥ 1 − �휆(�푢�, �푢��)

∀�푢, �푢�, �푢�� ∈ �푈, �푢 ̸= �푢� ̸= �푢��.

Request pool
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Figure 1: �e framework of the AV transportation system.

Table 1: Summary of notations.

Parameters and sets
� Set of nodes
� Set of links
� Set of AVs
� Set of passengers

�� Set of minimum travel time between any 
two nodes

�푡���(�푢) �e earliest pick-up time
�푡���(�푢) �e latest pick-up time
�푡����(�푢) �e earliest drop-off time
�푡����(�푢) �e latest drop-off time
�표(�푢) Pick-up location of request �
�푑(�푢) Drop-off location of request �
�� Vehicle capacity
Variables

�휆(�푢, �푤) Binary variable, 1 if passenger � and � are 
served by the same vehicle

�푝(�푢) �e moment when passenger � is picked 
from the original node

�푔(�푢) �e moment when passenger � is 
delivered at the destination

(4)�푡�
in
(�푢) ≤ �푝(�푢) ≤ �푡�

in
(�푢) ∀�푢 ∈ �푈,

(5)�푡�
out
(�푢) ≤ �푔(�푢) ≤ �푡�

out
(�푢) ∀�푢 ∈ �푈,

(6)�儨�儨�儨�儨�푝(�푢) − �푝(�푤)�儨�儨�儨�儨 + (1 − �휆(�푢, �푤)) ⋅ �푀 ≥ �푇�푇(�표(�푢), �표(�푤)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤,

(7)
�儨�儨�儨�儨�푔(�푢) − �푔(�푤)�儨�儨�儨�儨 + (1 − �휆(�푢, �푤)) ⋅ �푀 ≥ �푇�푇(�푑(�푢), �푑(�푤)) ∀�푢, �휇 ∈ �푈, �푢 ̸= �푤,

(8)�儨�儨�儨�儨�푝(�푢) − �푔(�푤)�儨�儨�儨�儨 + (1 − �휆(�푢, �푤)) ⋅ �푀 ≥ �푇�푇(�표(�푢), �푑(�푤)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤.

�ese nonlinear constraints (Equations (6)−(8)) add 
increased complexity to the optimization problem. A 
transformation method proposed by Sexton and Bodin [18] 
is introduced to cope with the computational issue. �e basic 
idea of this work is to model service time priority by a 0-1 

matrix. Hence a binary variable �휔0(�푢, �푤) is set to denote 
whether pick-up time of request � is earlier than request �. 
In this way, we can determine �푝(�푢) − �푝(�푤) ≥ �푇�푇(�표(�푢), �표(�푤)) 
or �푝(�푢) − �푝(�푤) ≤ −�푇�푇(�표(�푢), �표(�푤)). �휔0(�푢, �푤) will be equal to 
1 if request w ranks behind request � in the service order, i.e., 
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�휔0(�푢, �푤) = 1 and �푝(�푢) − �푝(�푤) ≥ �푇�푇(�표(�푢), �표(�푤)) for Equation 
(10) when �휔0(�푢, �푤)=0. In such a way, Equations (7) and (8) 
deliver exactly the same function as does by Equation (6).

�푝(�푢) ≤ �푝(�푤). A linear approximations of Equation (6) are 
shown in Equations (9) and (10). For example, Equation (7) 
could be simplified as �푝(�푢) − �푝(�푤) ≤ −�푇�푇(�표(�푢), �표(�푤)), if 

(9)�푝(�푢) − �푝(�푤) + (1 − �휔0(�푢, �푤)) ⋅ �푀 ≤ −�푇�푇(�표(�푢), �표(�푢�耠)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤,

(10)�푝(�푢) − �푝(�푤) + �휔0(�푢, �푤) ⋅ �푀 ≥ �푇�푇(�표(�푢), �표(�푢�耠)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤.

Following the same methodology, we reconstruct Equations (7) 
and (8) by Equations (11)−(13), where �휔1(�푢, �푤) denotes the 

precedence relation of dropping off request � and �, and �휔2(�푢, �푤) 
compares picking up request � and dropping off request �.

(11)�푔(�푢) − �푔(�푤) + (1 − �휔1(�푢, �푤)) ⋅ �푀 ≤ −�푇�푇(�푑(�푢), �푑(�푤)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤,

(12)�푔(�푢) − �푔(�푤) + �휔1(�푢, �푤) ⋅ �푀 ≥ �푇�푇(�푑(�푢), �푑(�푤)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤,

(13)�푝(�푢) − �푔(�푤) + (1 − �휔2(�푢, �푤)) ⋅ �푀 ≤ −�푇�푇(�표(�푢), �푑(�푤)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤,

(14)�푝(�푢) − �푔(�푤) + �휔2(�푢, �푤) ⋅ �푀 ≥ �푇�푇(�표(�푢), �푑(�푤)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤.

(3) Vehicle capacity constraint.  To express the status of onboard 
passengers at a certain time, we discretize the simulation time 
into uniform intervals and an auxiliary variable �푧1(�푢, �푡) is used 
to present the states of requests. If �푧1(�푢, �푡) = 1, it means that 
request � is being served at current time �. Otherwise, request 
� is waiting to be picked up or has arrived at its destination. 
Combining this binary factor �푧1(�푢, �푡), we can count the total 
number of onboard passengers at any time �, which is formu-
lated in Equation (15):

where the state variable �푧1(�푢, �푡) is an indirect representation 
on the relation between actual pick-up time �푝(�푢) and drop-off 
time g(�푢), as shown in Equation (16):

�e presence of the nonlinear constraint of (16) makes it 
difficult to be implemented directly in commercial solvers. For 
the sake of computation complexity, we conduct linear trans-
formations as by Equations (17)−(23). To accomplish the pro-
cess, we introduce another auxiliary variable �푧2(�푢, �푡) associated 
with request state. Given the pick-up and drop-off times, a 
request state could be divided into three phases. Firstly, a wait-
ing phase, the request is waiting to be served and pick-up time 
has not been reached, in which time duration of this type 
should be earlier than actual pick-up time �푝(�푢). Equation (17) 
should always hold in this situation, �푧2(�푢, �푡) and �푧1(�푢, �푡) limited 
by Equation (22) will be approximated to 1 and 0 respectively 
to meet Equations (18)−(20), i.e., waiting state when �푧1(�푢, �푡) = 0 
and �푧2(�푢, �푡) = 1. In the second onboard phase, a request has 
been transported to its destination but has not yet arrived. 
Time duration of this phase should be governed by the pick-up 
time and ended at drop-off time, i.e., �푝(�푢) ≤ �푡 ≤ �푔(�푢). During 
the off-board phase, Equations (17) and (20) will hold only if 
�푧1(�푢, �푡) = 1 and �푧2(�푢, �푡) = 0. �e last phase will occur when a 

(15)

∑
�푤∈�푈

�휆(�푢, �푤) ⋅ �푧1(�푤, �푡) − (1 − �푧1(�푢, �푡)) ⋅ �푀 ≤ �퐶�푤 ∀�푢 ∈ �푈, ∀�푡 ∈ �푇,

(16)�푧1(�푢, �푡) = { 1 �푝(�푢) ≤ �푡 ≤ �푔(�푢)
0 �푒�푙�푠�푒 ∀�푢 ∈ �푈, ∀�푡 ∈ �푇.

request has been completed and time is later than drop-off 
time �푔(�푢). Hence, Equation (20) should always hold for off-line 
situations. Under this constraint, it can be proved that 
�푧1(�푢, �푡) = 0 and �푧2(�푢, �푡) = 0 are the only solution to make 
Equations (17) and (19) satisfied. In this way, it is obvious that 
Equations (17)−(23) are equivalent constraints to Equation 
(16), which could be added in linear forms.

3. Solution Method

A mixed integer optimization problem is formulated to solve 
the matching of request and vehicle dispatching. Current prac-
tice to obtain optimal solutions of such problems is through 
commercial so�ware such as Gurobi and CPLEX. However, 
these solvers are known to have limitation in computation 
time once travel demand increases significantly.

To solve large-scale instances within an acceptable time, 
we intend to discover potential shared trips to reduce the com-
putational complexity by exploring passengers’ characteristics. 
Sharing trips denote trips that have overlapping schedules in 
both time and space dimensions. �is is similar to the cluster 
analysis (e.g., [19]) to find relative elements in a cluster and 
divide a set into several independent clusters. �us minimizing 

(17)�푡 ≤ �푝(�푢) − 1 + (1 − �푧2(�푢, �푡)) ⋅ �푀 ∀�푢 ∈ �푈, ∀�푡 ∈ �푇,

(18)�푡 ≥ �푝(�푢) − �푧2(�푢, �푡) ⋅ �푀 ∀�푢 ∈ �푈, ∀�푡 ∈ �푇,

(19)�푡 ≤ �푔(�푢) + (1 − �푧1(�푢, �푡)) ⋅ �푀 ∀�푢 ∈ �푈, ∀�푡 ∈ �푇,

(20)
�푡 ≥ �푔(�푢) + 1 − (�푧1(�푢, �푡) + �푧2(�푢, �푡)) ⋅ �푀 ∀�푢 ∈ �푈, ∀�푡 ∈ �푇,

(21)1 ≤ �푡 ≤ �푇,

(22)�푧1(�푢, �푡) + �푧2(�푢, �푡) ≤ 1 ∀�푢 ∈ �푈, ∀�푡 ∈ �푇,

(23)�푧1(�푢, �푡) ∈ {0, 1}, �푧2(�푢, �푡) ∈ {0, 1} ∀�푢 ∈ �푈, ∀�푡 ∈ �푇.
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matrix П, as shown in Figure 3, where the element �
u,k

 
means the weight for a passenger pair. �e detour distance, 
overlapping trip and waiting time are all feasible parameters 
to reflect their weights. To give an intuitive evaluation on 
the service system, we take the saving travel distance as the 
weighting value. In this way, the weight value is formulated 
as �휋�푢,�푘 = �푅(u) + �푅(�푘) − �푅(�푠), where �푅(�푠) denotes the travel 
distance for a passenger pair (�푢, �푘). It should be pointed out 
that a passenger pair will not be a valid pair if two passengers 
are not matched with time and space constraints. Under this 
situation, we set �푅(�푠) as a very large number for invalid pairs. 
In addition, diagonal elements are also invalid pairs, which 
are set to 0 in this relationship matrix.

With this matrix, the task of passenger clustering could be 
considered as finding sharing pairs with the maximum total 
saved travel distance. �is process is similar with job assign-
ment problems, which is stated as follows:

s.t.

(24a)max ∑
�푢,�푘∈�푈

�휋�푢,�푘 ⋅ �휔�푢,�푘,

(24b)�휋�푢,�푘 = �푅(�푢) + �푅(�푘) − �푅(�푠) ∀�푢, �푘 ∈ �푈,

(24c)∑
�푘∈�푈

�휔�푢,�푘 = 1 ∀�푢 ∈ �푈,

(24d)∑
�푢∈�푈

�휔�푢,�푘 = 1 ∀�푘 ∈ �푈,

the number of vehicle could be regarded as minimizing inde-
pendent clusters. �e minimization implies that each cluster 
should include as many passengers as possible.

In this way, the vehicle dispatching problem is converted 
to segmenting passenger set. If each cluster is taken as a pas-
senger with specific OD pair and time restriction, traffic 
demand will be reduced to the number of clusters in this clus-
ter-based method. Under this simplified network, passengers 
no longer have intersection in both time and space dimensions, 
i.e., multiple passengers sharing one vehicle at the same time 
is impossible. It can be concluded that the problem is approx-
imately translated to a multiple travelling salesman problem 
(mTSP) with time windows. To solve this model, we also adopt 
the cluster-based method to classify passengers and derive the 
number of required vehicles. �e cluster-based method has 
shown to have significant impact in simplifying the optimiza-
tion model of this paper. �e whole process of the proposed 
algorithm could be summarized into two parts, i.e., passenger 
clustering and cluster compression, as shown in Figure 2. �e 
detailed description of this algorithm is stated as follows:

3.1. Part I: Passenger Clustering.  To divide passengers into 
groups, the first step is to describe the sharing ability of 
passengers for selecting sharing pairs. It should be noted 
that a sharing pair means two passengers carried by one 
AV at the same time. Based on passengers’ OD pairs and 
service time restrictions, we can roughly evaluate the sharing 
ability of any two passengers and generate a relationship 
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OD pairs(i)
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(ii) Time windows
�e hungarian algorithm 
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Figure 2: �e flow chart of the cluster-based algorithm.
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Figure 3: �e relationship matrix of passengers.
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as a group. If the set of sharing pairs is empty, stop the iteration 
and output passenger groups; otherwise go to step 3.
Step 3: Passenger number redefinition. Take each group as a 
new passenger, and relabel them.
Step 4: �e relationship matrix recalculation. Since a new pas-
senger represents a passenger group, the total travel distance 
�푅(�푠) for a passenger pair should be calculated with a heuristic 
method or dynamic programming. For simplify, we will adopt 
the insertion algorithm to find a feasible visiting sequence to 
evaluate the total travel distance. �en generate the relation-
ship matrix and go back to step 2.

3.2. Part II: Cluster Compression.  �is part aims to lower the 
upper bound and move it towards the optimal solution. If each 
cluster is served by one vehicle, the number of clusters gives an 
upper bound of the vehicle dispatching problem. To reduce the 
number of used vehicles, the method of recombining clusters is 
introduced, as shown in Figure 4. It should be noted that a vehicle 
could not serve multiple clusters at the same time for clusters 
output from Part I. In this way, if each cluster is considered 
as a passenger (Figure 4(b)), the problem is similar to mTSP 
with time windows. For mTSP, the objective is to minimize the 
total travel distance. �us the goal of this part is to dispatch 
the minimum number of vehicles to visit these passengers 
with least travel distance. �e basic idea is to prejudge any two 
passengers that could be served by a vehicle. For passenger 
� and ��, assuming that they are served by the same vehicle, 
possible serving sequences are �표(�푢) → �푑(�푢) → �표(�푢�) → �푑(�푢�) 
and �표(�푢�) → �푑(�푢�) → �표(�푢) → �푑(�푢). If either of them satisfies 
time restrictions of picking up and dropping off, they will 
be marked as a link, as shown in Figure 4(c). It should be 
noted that the weighting value of a link is the travel distance 
of drop-off point �푑(�푢) to pick-up point �(��) or drop-off point 
�(��) to pick-up point �표(�푢). To choose appropriate links, we 
also use the Hungarian algorithm to make decisions. A link 
will be considered as a new passenger in this network, as 
shown in Figure 4(d). �en the same process is applied again 
to link passengers till no link could be established. At the 
end, independent passengers (e.g., �� and �� in Figure 4(e)) 
are defined as branches, where a branch implies a vehicle is 
required and passengers could be derived from associating 
links. �e whole iterative process is illustrated as below:

Step 1: Preliminary. Based on information submitted by passen-
gers, recalculate OD and time requirement for clusters and label 

where ��푢,�푘 is a binary variable, 1 if passenger � and � are com-
bined and 0 otherwise. Equation (24a) denotes the objective 
of maximizing the total saved travel cost. Equation (24b) is 
the weight value expression for passengers. Equations (24c) 
and (24d) represent each passenger should be matched with 
a passenger to share a ride.

Results of this model might contain invalid pairs, which 
should be refined to obtain valid sharing pairs. In the 
relationship matrix, diagonal pairs might be invalid but are 
contained in the results. Hence, the pair (�푢, �푢) will be deleted 
if  �휔�푢,�푢 = 1. Repeated pairs are another issue for this model. 
For example, if ��푢,�푘 and ��푘,�푢 are simultaneously equal to 1, 
they both denotes passenger � and �will become a group. 
�us, pair (�푢, �푘) or (�푘, �푢) needs to be deleted for simplifying 
sharing pairs.

�e aforementioned model and refining process are the 
first step to determine passenger pairs, which could not be 
directly used to find minimum passenger groups. �is is 
because more pairs might be found between passenger pairs 
and single passengers. To minimize the number of passenger 
groups, an iteration process is conducted to explore new pas-
senger pairs. �e whole procedure of passenger clustering 
could be concluded as follows:

Step 1: Preliminary. Collect passenger OD pairs and expected 
service times. Label them and mark them as original passengers. 
�en calculate the relationship matrix based on Equation (24b).
Step 2: Sharing pair determination. Solve Equations (24a)–(24d) 
with the Hungarian algorithm and obtain sharing pairs by 
deleting invalid pairs and repeated pairs. �en take each sharing 
pair as a group. If a passenger is simultaneously appeared in two 
groups, integrate these two groups as a group, until groups are 
independent. Unmatched passengers are respectively regarded 
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�e time windows of the requests for the same OD pair are 
identical and they only allow two other sharing paths 
A → B → D → C and D → C → A → B. In this uniformly 
distributed scenario, minimum vehicle number for the 
24-request case could be estimated in the following way. First 
we consider ride sharing among the same OD pair, i.e., assign-
ing one vehicle to each OD pair. In this situation, four passen-
gers could be served and two passengers are le� for each OD 
pair. Since path A → B → D → C and D → C → A → B are 
sharing rides, dispatching one vehicle for each path will com-
pletely serve the remaining passengers. In this way, 6 vehicles 
are needed to satisfy 24 passengers. Similarly, the minimum 
number for the other instances are 8, 10, and 12 vehicles. Our 
model and a typical DARP model [9] are solved for this case 
using Gurobi solver. �eir results are listed in Table 2. For the 
four cases, our model could obtain the correct minimum vehi-
cle number as aforementioned. However, the DARP model 
could not find the correct minimum number for the 24 and 40 
cases within a short time.

In the randomly generated scenario, any two nodes on the 
network could form an OD pair with stochastically given time 
windows. For randomly generated case, one passenger might 
share rides with more passengers but only within time win-
dows restriction. As is presented in Table 3, our model could 
still give optimal values. Computation times of our model are 
not drastically exhausted for exploring the best passenger 
combination. It implies that our model is more adaptive to 
solving the vehicle dispatching problem.

For these instances, the proposed cluster-based algorithm 
and a heuristic algorithm (insertion algorithm [20]) are also 
used to find optimal dispatching plans. Results of these algo-
rithms are listed in Tables 4 and 5. In fixed OD pair case, the 
minimum vehicle number of the two algorithms are equal to 
the optimal values and computational times are shorter than 
those of Gurobi solvers. For the random case, most results of 

them with new passenger indexes � ��∗. �en generate a 0-1 
matrix to express the connectivity of these recreate passengers 
and mark gap distances as weight values for links and a very 
large number for nonlinks.
Step 2: Link selection. Apply the Hungarian algorithm to find 
optimal links with the minimum accumulated gap distance. 
�en filter these selected links to produce independent links, 
where this process is similar with Equation (23).
Step 3: Stop criterion. If there is no feasible links available, 
stop calculation and output branches; otherwise go to step 4.
Step 4: Passenger set updating. Recalculate OD and time limi-
tation for each independent links and label passengers indexes 
again. �en go back to step 2.

4. Numerical Experiments

In this section, a set of cases are generated to examine the valid-
ity of our model and performance of the proposed cluster-based 
algorithm. For providing abundant comparisons, computa-
tional results of a typical DARP model and insertion algorithm 
are calculated. From these results, the application scope of our 
model and the proposed algorithm are concluded. In addition, 
the effect of sensitive parameters on determining the minimum 
number of vehicles are analyzed for the SAV system.

4.1. Results of Small Scale Problem.  For the small scale problem 
test, request size is set to be ranging from 24 to 48 defined on 
a simple network of 5 × 5 (Figure 5). Travel time of each link 
between adjacent nodes is assumed to be 60 seconds. Two 
simple scenarios are employed: fixed and random OD pairs.

In the first scenario, we intend to explain our model with 
predetermined sharing paths. �e OD pairs are designed to be 
in diagonal directions (A → D, B → C, D → A, and C → B). 
Each OD pair is allocated with the same amount of requests. 

Table 2: Model performance comparison (uniform distribution).

Requests
Our model Cordeau’s DARP model

Number of vehicles Time (s) Gap Number of vehicles Time (s) Gap
24 6 1.01 0% 7 1.01 14.3%
32 8 3.36 0% 8 1.71 0%
40 10 3.03 0% 11 2.13 9.09%
48 12 5.63 0% 12 5.05 0%

Table 3: Model performance comparison (random generation).

Requests
Our model Cordeau’s DARP model

Number of vehicles Time (s) Gap Number of vehicles Time (s) Gap
24 9 0.46 0% 10 1001 23.3%
28 10 1.52 0% 12 709 22.9%
32 12 1.84 0% 13 5512 25.6%
36 12 2.07 0% 15 4458 33.2%
40 12 5.92 0% 16 5055 41%
44 15 8.22 0% 16 6032 43%
48 14 15.27 0% 16 6124 43.5%
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30 mph [7]. Assuming a maximum vehicle speed, travel time 
on each link is approximately 60 seconds. �e time interval 
between earliest and latest time of pick-up or drop-off nodes 
is still set to be 120 seconds.

In this section, random requests ranging from 500 to 4000 
are tested. �e average distance of passengers’ trips are 
8.59 miles, 8.69 miles, 8.7 miles, 8.65 miles, 8.65 miles, 
8.67 miles, 8.63 miles, and 8.66 miles, respectively. Total vehicle 
number and total travel distance solved by the cluster-based 
algorithm are listed and compared with the insertion algo-
rithm (Table 7). It is obvious that the proposed algorithm 
could find a ride-sharing pattern with fewer number of vehi-
cles and shorter travel distance. In terms of vehicle number, 
the proposed cluster-based algorithm saves 12–42 vehicles as 
compared to the insertion algorithm. As for travel distance, a 
reduction of 100–600 miles could be obtained.

�e average occupation rate (average passenger number 
per vehicle) obtained with the cluster-based algorithm ranges 
from 3.6 to 5.32, which is higher than the insertion algorithm’s 
occupation rate from 3.31 to 5.12 (Figure 6). Detailed passen-
ger number distributions are presented in Figure 7. As could 
be noticed, the passenger number distributions have similar 
form of a normal distribution with peak frequency in the mid-
dle. �e cluster-based algorithm’s distributions always have a 
larger median value. For example, the mean value of clus-
ter-based algorithm is 4 for the 500 request case, which is one 
passenger more than the insertion algorithm. �is means that 
the cluster-based algorithm is able to apply more sharing rides 

cluster-based algorithm find the best values while the heuristic 
algorithm could not give any optimal values. For request 28 
and 40, although dispatching plan derived from cluster-based 
algorithm needs one more vehicle, they are less than those by 
the insertion algorithm. �is shows that the cluster-based 
algorithm has a better chance of finding the optimal or 
near-optimal values. Nevertheless, compared with the inser-
tion algorithm, the cluster-based algorithm might need a little 
longer time to obtain superior results.

To further analyze our model’s adaptability, we conduct a 
series of tests to observe computation time variation with 
increased requests on the same road network, as shown in 
Table 6. In addition, the minimum number of vehicles of 
cluster-based algorithm are 8, 9, 8, 13, 12, and 13; and the 
optimal values of our model are 8, 8, 8, 11, 12, and 11. Although 
cluster-based algorithm could not search the optimal values 
for all cases, it has an overwhelming advantage in terms of 
computation time. It can be seen that the computation time 
of Gurobi is more than 1000 seconds when request reaches 
100, which might need several hours to find the optimal value 
for larger requests. �erefore cluster-based algorithm will 
become a better choice when near-optimal solutions are 
demanded in a short time with hundreds of requests.

4.2. Comparison Test for Large-Scale Case.  In addition to 
the 5 × 5 road network, a larger 20 × 20 grid representing city 
downtown is adopted with randomly generated requests. 
�e length of each link is set to 2640 � and free flow speed is 

Table 4: Algorithm performance comparison (uniform distribution).

Requests
Cluster-based algorithm Insertion algorithm Gurobi solver

Number of vehicles Time (s) Gap Number of vehicles Time (s) Gap Number of vehicles Time (s)
24 6 0.23 0% 6 0.31 0% 6 1.01
32 8 0.42 0% 8 0.29 0% 8 3.36
40 10 0.77 0% 10 0.38 0% 10 3.03
48 12 1.28 0% 12 0.35 0% 12 5.63

Table 5: Algorithm performance comparison (random generation).

Requests
Cluster-based algorithm Insertion algorithm Gurobi solver

Number of vehicles Time (s) Gap Number of vehicles Time (s) Gap Number of vehicles Time (s)
24 9 0.3 0% 11 0.38 18.2% 9 0.46
28 11 0.29 9% 12 0.35 16.7% 10 1.52
32 12 0.35 0% 13 0.33 7.7% 12 1.84
36 12 0.49 0% 14 0.42 14.3% 12 2.07
40 13 0.68 8% 15 0.53 20% 12 5.92
44 15 0.79 0% 17 0.62 11.8% 15 8.22
48 14 0.83 0% 16 0.67 2.5% 14 15.27

Table 6: Computation time comparison.

Computation time (s)
Requests

50 60 70 80 90 100
Gurobi solver 35.43 89.16 191 307.6 927.4 2835.6
Cluster-based algorithm 0.95 0.88 1.16 1.34 3.01 5.21
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�is implies that the SAV system might not gain more benefits 
by introducing larger vehicles with more seats under this 
condition. �is is mainly because the probability of numerous 
passengers with very similar OD pair and the time windows 
are relatively low. �e average number of multiple passengers 
served by a vehicle at the same time will not be a large value, 
especially when demand is lower than 3000. �us a vehicle 
with four seats is enough under this condition.

�e influence of the time windows (the difference between 
earliest and latest expected time of picked up or dropped off) 
on system’s total vehicle number is shown in Figure 8. With 
increasing time interval, total vehicle number gradually 
reduces from 139 to 93 as time windows increase from 
2 minutes to 16 minutes (Figure 9(a)), which results in 
shortened total travel distance (Figure 9(b)). It indicates that 
the system succeeds in finding sharing rides for more 
passengers with extended time restriction. Since the time 
interval is a key parameter that reflects the willingness of 
waiting time, passengers might be picked later compared with 
the earliest expected times if it is set to be longer. If this 
parameter is very large, it is intuitive that they will have more 
opportunities to share a ride with others. Under this condition, 
the number of vehicles will become smaller. For more trips 
which are integrated as a trip, the total travel distance will also 
be reduced.

5. Conclusions

In this paper, we formulate the vehicle dispatching problem 
of SAV transportation system into a 0-1 integer programming 
model. Unlike existing vehicle routing optimization models, 
our model focuses on exploring the similarity of passengers’ 
demand in time and space dimensions to classify passengers 
into groups, in which the number of required vehicles is 
derived indirectly. To solve this model, the cluster-based algo-
rithm is proposed for classifying passengers. �e whole pro-
cess consists of two parts: (1) the Hungarian algorithm is 
introduced to select appropriate passengers sharing trips and 
determine an upper bound for required vehicles; (2) a reunion 
process by linking sharing trips is conducted to lower the 
upper bound. Since the Hungarian algorithm only needs a 
polynomial time, the computational complexity of the 

than the insertion method since its number of highly loaded 
vehicle is larger. For example, for 4000 requests case, 52 vehi-
cles are assigned with 8 passengers by the cluster-based algo-
rithm while only 7 vehicles could be assigned with the same 
number of passengers for the insertion algorithm.

4.3. Sensitivity Analysis.  In this section, we conduct a 
sensitivity analysis to examine how the performance of the 
proposed algorithm is affected by key input parameters. 
Figure 8 presents results of demanded vehicle number under 
various vehicle capacities. It should be noted that capacity 
equaling 1 means only one passenger is served at a time by 
a vehicle with four seats where ride-sharing is not included. 
For capacity of 7 case, seven passengers are allowed to be 
carried at the same time. For simplicity, we mark vehicle 
capacity of 1, 4, and 7 as condition I, II, III respectively. For 
condition I, the number of required vehicles are much higher 
than the other two conditions, while results of condition II 
and III are of little difference. If condition II is considered as 
the benchmark, it seems that vehicles with higher capacity 
makes little contribution to reducing total vehicle number. 

Table 7: Comparison results for large-scale instances.

Scenario
�e number of vehicles Total travel distance (mile)

Cluster-based 
algorithm Insertion algorithm Percentage (%) Cluster-based 

algorithm Insertion algorithm Percentage (%)

500 139 151 7.9 1564.5 1635.75 4.3
1000 254 277 8.3 2880.35 3065.35 6.1
1500 340 360 4.1 3966.15 4110.15 3.5
2000 421 445 5.4 5043.75 5260 4.1
2500 511 544 6.1 6121.87 6402.5 4.4
3000 600 636 5.6 6984 7254.25 3.7
3500 663 705 5.9 8077 8304 2.7
4000 752 781 3.7 9070.75 9224.24 1.7
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proposed algorithm could be greatly reduced, which makes it 
applicable for solving large-scale cases.

�e validity and efficiency of our vehicle dispatching model 
and the proposed cluster-based algorithm are presented by 
conducting a series of tests. First the model and algorithm are 
applied for small-size passenger requests. Results show that the 
proposed algorithm could always find optimal or near-optimal 
solutions when comparing the optimal values with obtained 
from the optimization solver. We also list results of a typical 
DARP model [9] and insertion algorithm for further analysis. 
By comparing computation time and solution gaps, it indicates 
that the proposed algorithm has an advantage in gathering 
passengers sharing a vehicle and making the objective function 
towards the best value. For large-size cases, the new algorithm 
still expresses a better performance than the insertion algo-
rithm in minimizing the number of vehicles and total travel 
distance. At last, the effect of key input parameters on the num-
ber of vehicles are discussed. It is concluded that enlarging 
vehicle capacity will not reduce used vehicles in consequence 
when it exceeds four and extending waiting time will make a 
positive feedback on decreasing the number of vehicles.

�rough the whole study, we mainly investigate how to 
minimize used vehicles for the SAV system with given demands, 
which is a static dispatching method. To enrich the application 
scope of the cluster-based algorithm, the dynamic or on-line 
planning will be regarded as an interesting research direction. 
Furthermore, we assume and all passengers have the willingness 
of accepting ride sharing, which only consider the dispatching 
problem from the system view. We will extend our model by 
introducing customized passengers demand for the further 
research. In addition, charging price is a key factor in passen-
gers’ decisions, which might bring a trade-off in passengers cost 
and the system revenue. In this way, price optimization will be 
also considered as our future research to enrich our model.
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