
Research Article
An Efficient Solving Method to Vehicle and Passenger Matching
Problem for Sharing Autonomous Vehicle System

Ming Li ,1 Nan Zheng,2,3 Xinkai Wu ,1,3 Weihua Li,4 and Jianhua Wu4

1School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
2Institute of Transport Studies, Department of Civil Engineering, Monash University, Australia
3Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China
4Institute of Rail Transportation of Jinan University, Electrical and Information College of Jinan University, Zhuhai 519070, China

Correspondence should be addressed to Xinkai Wu; xinkaiwu@buaa.edu.cn

Received 20 May 2019; Accepted 15 October 2019; Published 10 February 2020

Academic Editor: Dongjoo Park

Copyright © 2020 Ming Li et al. �is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the potential of increasing mobility and reducing cost, shared mobility of autonomous vehicles (AVs) is going to gain solid
growth in the coming decade. �e major issue for the shared use of AVs is how to project serving routes in an efficiently way. From
another perspective, this issue could be understood as to segment maximum number of passengers into groups. �erefore, this paper
intends to investigate passengers’ similarity instead of directly matching AVs and passengers. �e goal is to determine the minimum
number of groups and assign each group with an AV. To this end, a cluster-based algorithm is proposed to classify passengers.
Numerical experiments with both small-size and large-size demands are performed to present the validity of the proposed algorithm.
Results indicate that the cluster-based algorithm could bring benefit to minimizing the number of vehicles and total travel distance.
At last, sensitivity analysis of key parameters shows that vehicle capacity will have little impact when the number of seats exceeds
four, and time windows could make continuous influence on gathering passengers.

1. Introduction

Autonomous vehicles (AVs) are regarded as a promising mode
of transportation that provides increased mobility, enhanced
customer satisfaction, and reduced infrastructure costs (e.g.,
[1–3]). For the autonomous transportation system, using
shared AVs (SAVs) is considered as one of the most efficient
way to provide on-demand service. According to the number
of passengers carried at one time, existing researches related
with SAVs could be classified into two categories, i.e., car-shar-
ing and ride-sharing.

In the car-sharing mode, each SAV only takes one
passenger at one time. Different from traditional car-sharing
system (e.g., Boyaci et al. [4], Huang et al. [5]), the major
concern for SAV system is how to assign SAVs to provide
point-to-point service instead of determining depot locations
and relocate AVs among stations for balancing supply and
demand (e.g., Ma et al. [6], Levin et al. [7], Chen et al. [2],
Miao et al. [8]). In the ride-sharing mode, multiple passengers
are permitted to ride in one car simultaneously. If the system

control platform could match efficiently passengers and
vehicles, then the overall vehicle occupancy will be increased
and traffic congestion will be released through cutting down
on-road vehicles. �erefore, this paper will focus on how to
build a control platform to make passengers sharing a car.

For modeling the ride-sharing service, most researches
refer to the classical Dial-a-Ride Problem (DARP) model
proposed by Cordeau [9]. �e essential idea of DARP is to
extract the routing problem into the arc-based flow
conservation model. In this way, vehicle routes could be
decoded by linking visited arcs. Although this method could
illustrate the routing problem with a mixed integer model, its
drawback is inevitable to generate valid arcs for identical
requests. Meanwhile the number of variables for this model
would be raised exponentially with increased passengers. To
solve this model in an efficient way, efforts have been devoted
on exploring optimal solutions. One of the prevailing
algorithms is the branch-and-cut method, which aims at
eliminating invalid arcs and cutting redundant domains, e.g.,
Liu et al. [10], Bongiovanni et al. [11]. Except for it, other

Hindawi
Journal of Advanced Transportation
Volume 2020, Article ID 3271608, 12 pages
https://doi.org/10.1155/2020/3271608

https://orcid.org/0000-0002-9115-3461
mailto:
mailto:
https://orcid.org/0000-0003-4238-0243
mailto:
mailto:
mailto:
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3271608

Journal of Advanced Transportation2

methods are also tried to find optimal routes. For example,
Hosni et al. [12] adopted the Lagrangian decomposition
method to segment the multivehicles routing problem into
several single vehicle. Mahmoudi and Zhou [13] combined
the forward dynamic programming and Lagrangian relaxation
approach to search feasible solutions. Cordeau and Laporte
[14] applied a Tabu search heuristic to solve the DARP and
proposed a framework of neighborhood evaluation. Häme and
Hakula [15] proposed a heuristic algorithm that maximized
the number of customers served by a single vehicle. Diana and
Dessouky [16] proposed an insertion heuristic to handle the
computational complexity and investigated the relationship
between solution quality and computational costs.

However, most existing methods try to explore detailed
vehicle trajectories. �is poses difficulties in searching feasible
paths for increased demands. Vazifeh, et al. [17] transferred
the dispatching of vehicles as a minimum path cover problem
on directed graphs and tested graph algorithms with massive
taxi data of New York City. Based on this method, it might be
powerful to solve the vehicle and passenger matching problem
by investigating the similarity of passenger trip trajectories
and classifying passengers into groups. Our idea herein is to
simplify the researched problem by directly exploring the rela-
tionship between passengers. In this way, passengers can be
classified into several groups. �en by checking the connection
between groups and assigning each group with one vehicle,
the number of vehicle needed can be derived. With this
thought, we will propose an algorithm for tackling various
passengers. In summary, the main objective of this paper is:
(i) simplify the researched problem by linking passengers
instead of directly matching vehicles and passengers; and (ii)
design a cluster-based algorithm to find solutions for high
traffic demands with high efficiency.

�e rest of the paper is organized as follows. In Section 2,
the vehicle dispatching model for SAV-based transportation
systems is proposed Section 3 presents an efficient heuristic
algorithm developed for the proposed model. In Section 4,
comparative results of various scenarios are discussed. Finally,
Section 5 presents some conclusions with remarks.

2. The Dispatching Problem of an AV-Based
Transportation Service System

�is paper mainly discusses how to plan AVs serving routes
and determine the number of dispatched vehicles for the SAV
transportation system. An optimization model is developed
for matching vehicles and passengers. �e details of the pro-
posed model are descripted in this section.

2.1. Problem Statement.  For the SAV system, a major problem
is to optimize vehicle serving paths with the consideration
of saving the number of vehicles. In general, passengers are
characterized by origin-destination (OD) pairs and time
windows. In detail, let � be the set of all requests where �표(�푢)
and �푑(�푢), ∀�푢 ∈ �푈, respectively represent requested pickup
(origin) and delivery (destination) nodes. For these requests,
the earliest and latest pickup time indexes are �푡���(�푢) and
�푡���(�푢), ∀�푢 ∈ �푈 and the earliest and latest drop-off time are

�푡����(�푢) and �푡����(�푢), ∀�푢 ∈ �푈. Based on passenger requests, a
directed graph �퐺 = (�퐴, �퐸) could be depicted, where � is the
set of OD nodes and � is the set of edges associating travel
time among nodes. Let �� represents the set of paths travel
time in the road network, values of weighted edges in the
graph are regarded as travel time, i.e., �푇�푇 (�표(�푢), �푑(�푢)) ∪ �푇�푇
(�표(�푢�), �푑(�푢)) ∪ �푇�푇 (�표(�푢), �푑(�푢�)) ∪ �푇�푇 (�표(�푢�), �푑(�푢�)) ∈ �퐸, ∀�푢,
�푢

�
∈ �푈. It should be noted that travel time is estimated as

fixed values for simplification. For vehicles, � is the set of
available AVs. We assume that AV fleet is homogeneous with
respect to capacity which is equal to a preset value ��. Under
this background, the goal of optimizing the AV transportation
system is set to minimize the system cost, i.e., the number of
used vehicles.

Based on existing researches, an extended DARP model
could be modified to express the objective of minimizing
vehicle number instead of minimizing the total travel distance.
Since the DARP model is a node-flow model, the solution
domain is denoted by 4 × {�푉} ⊗ {�푈} ⊗ {�푈}. When available
vehicles and user demands are large, numerous time will be
exhausted on searching optimal vehicle paths. To reduce the
complexity in mathematical modeling and to present it in a
simple way, we intend to build the optimization model by only
delivering the relationship of passengers, i.e., �휆(�푢, �푤), 1 if
passenger � and w are served by the same vehicle, and 0
otherwise. In this way, passengers are divided into groups and
the space is reduced to 0.5 × {�푈} ⊗ {�푈}. Furthermore, detailed
vehicle paths could be obtained through translating passenger
relationships. For example, given four passengers
(�푢 = 1, 2, 3, 4,∀�푢 ∈ �푈) waiting for service. If �휆(1, 2) = 1 and
�휆(1, 4) = 1, passenger 1, 2, and 4 are carried by the same
vehicle and passenger 3 is assigned to another vehicle. �is
implies that two vehicles in total are required to satisfy these
four passengers. �erefore, the whole framework of this
researched problem could be concluded as shown in Figure 1.
Table 1 lists some important parameters and variables.

2.2. �e Optimization Model of Passenger–Passenger
Matching.  Before formulating the optimization model, some
characteristics of this system are predefined as follows:

	 (i)	 � All passenger requests should be served;
	 (ii)	 � All passengers are assumed to have the willingness

of sharing rides with others;
	 (iii)	 � All passengers’ pick-up and delivery times are

within their expected time windows;
	 (iv)	 � Each passenger is only served by one single vehicle;
	 (v)	 � Vehicle capacity should not be exceeded when car-

rying multiple passengers; and
	 (vi)	 � AVs are controlled by a central control system.

A vehicle carrying more passengers will increase the prob-
ability of saving vehicle needed, which means that more pas-
sengers are associated. �at is to say maximizing the number
of associated passengers could take an effect in minimizing
the total number of vehicles. In this way, the objective function
is formulated by Equation (1)

3Journal of Advanced Transportation

with the following constraints:
(1) �e transitivity relation of passengers.  To determine the
correlation between multiple passengers, the transitivity of

(1)�퐹 = max ∑
�푢,w∈�푈

�휆(�푢, �푤),

passenger relationships is denoted in Equation (2). It means
that passengers �� and ��� are connected if they are both linked
by a passenger �.

To provide the convenience for solving the model, Equation
(2) is transformed with an equivalent expression, as shown in
Equation (3):

(2) Service time constraint.  Since the desired pick-up and
drop-off times are collected in advance, request service time
should be within these time limitations, as reflected in
Equations (4) and (5). For request � and �, if they are
assigned to the same vehicle (�휆(�푢, �푤) = 1), time differences
in spatial dimension also need to be added to determine
variables �푝(�푢) and �푔(�푢), which are expressed in Equations
(6)−(8). M is a very large number. Equation (6) implies that
time difference of taking request � and �� for vehicle v should
not be less than the minimum travel time between original
node �표(�푢) and �표(�푤). Similarly, Equation (7) illustrates that
time difference of dropping off requests � and � need to be
larger than the minimum travel time between destination
nodes �푑(�푢) and �푑(�푤). In addition, the time constraint for
picking up request � and dropping off � is also considered
in Equation (8).

(2)2 − �휆(�푢, �푢�) − �휆(�푢, �푢��) =
{{
{{
{

0 �휆(�푢�, �푢��) = 1,
1 �휆(�푢�, �푢��) = 0 or 1,
2 �휆(�푢�, �푢��) = 0.

(3)
2 − �휆(�푢, �푢�) − �휆(�푢, �푢��) ≥ 1 − �휆(�푢�, �푢��)

∀�푢, �푢�, �푢�� ∈ �푈, �푢 ̸= �푢� ̸= �푢��.

Request pool

u1 u2 un…
OD pairs

Time windows

v1

vm

…

Map

Trip trajectory

Matching

Group 1

Dispatching

Group 2

…Group k

Group 1

Group k

…
Figure 1: �e framework of the AV transportation system.

Table 1: Summary of notations.

Parameters and sets
� Set of nodes
� Set of links
� Set of AVs
� Set of passengers

�� Set of minimum travel time between any
two nodes

�푡���(�푢) �e earliest pick-up time
�푡���(�푢) �e latest pick-up time
�푡����(�푢) �e earliest drop-off time
�푡����(�푢) �e latest drop-off time
�표(�푢) Pick-up location of request �
�푑(�푢) Drop-off location of request �
�� Vehicle capacity
Variables

�휆(�푢, �푤) Binary variable, 1 if passenger � and � are
served by the same vehicle

�푝(�푢) �e moment when passenger � is picked
from the original node

�푔(�푢) �e moment when passenger � is
delivered at the destination

(4)�푡�
in
(�푢) ≤ �푝(�푢) ≤ �푡�

in
(�푢) ∀�푢 ∈ �푈,

(5)�푡�
out
(�푢) ≤ �푔(�푢) ≤ �푡�

out
(�푢) ∀�푢 ∈ �푈,

(6)�儨�儨�儨�儨�푝(�푢) − �푝(�푤)�儨�儨�儨�儨 + (1 − �휆(�푢, �푤)) ⋅ �푀 ≥ �푇�푇(�표(�푢), �표(�푤)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤,

(7)
�儨�儨�儨�儨�푔(�푢) − �푔(�푤)�儨�儨�儨�儨 + (1 − �휆(�푢, �푤)) ⋅ �푀 ≥ �푇�푇(�푑(�푢), �푑(�푤)) ∀�푢, �휇 ∈ �푈, �푢 ̸= �푤,

(8)�儨�儨�儨�儨�푝(�푢) − �푔(�푤)�儨�儨�儨�儨 + (1 − �휆(�푢, �푤)) ⋅ �푀 ≥ �푇�푇(�표(�푢), �푑(�푤)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤.

�ese nonlinear constraints (Equations (6)−(8)) add
increased complexity to the optimization problem. A
transformation method proposed by Sexton and Bodin [18]
is introduced to cope with the computational issue. �e basic
idea of this work is to model service time priority by a 0-1

matrix. Hence a binary variable �휔0(�푢, �푤) is set to denote
whether pick-up time of request � is earlier than request �.
In this way, we can determine �푝(�푢) − �푝(�푤) ≥ �푇�푇(�표(�푢), �표(�푤))
or �푝(�푢) − �푝(�푤) ≤ −�푇�푇(�표(�푢), �표(�푤)). �휔0(�푢, �푤) will be equal to
1 if request w ranks behind request � in the service order, i.e.,

Journal of Advanced Transportation4

�휔0(�푢, �푤) = 1 and �푝(�푢) − �푝(�푤) ≥ �푇�푇(�표(�푢), �표(�푤)) for Equation
(10) when �휔0(�푢, �푤)=0. In such a way, Equations (7) and (8)
deliver exactly the same function as does by Equation (6).

�푝(�푢) ≤ �푝(�푤). A linear approximations of Equation (6) are
shown in Equations (9) and (10). For example, Equation (7)
could be simplified as �푝(�푢) − �푝(�푤) ≤ −�푇�푇(�표(�푢), �표(�푤)), if

(9)�푝(�푢) − �푝(�푤) + (1 − �휔0(�푢, �푤)) ⋅ �푀 ≤ −�푇�푇(�표(�푢), �표(�푢�耠)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤,

(10)�푝(�푢) − �푝(�푤) + �휔0(�푢, �푤) ⋅ �푀 ≥ �푇�푇(�표(�푢), �표(�푢�耠)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤.

Following the same methodology, we reconstruct Equations (7)
and (8) by Equations (11)−(13), where �휔1(�푢, �푤) denotes the

precedence relation of dropping off request � and �, and �휔2(�푢, �푤)
compares picking up request � and dropping off request �.

(11)�푔(�푢) − �푔(�푤) + (1 − �휔1(�푢, �푤)) ⋅ �푀 ≤ −�푇�푇(�푑(�푢), �푑(�푤)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤,

(12)�푔(�푢) − �푔(�푤) + �휔1(�푢, �푤) ⋅ �푀 ≥ �푇�푇(�푑(�푢), �푑(�푤)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤,

(13)�푝(�푢) − �푔(�푤) + (1 − �휔2(�푢, �푤)) ⋅ �푀 ≤ −�푇�푇(�표(�푢), �푑(�푤)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤,

(14)�푝(�푢) − �푔(�푤) + �휔2(�푢, �푤) ⋅ �푀 ≥ �푇�푇(�표(�푢), �푑(�푤)) ∀�푢, �푤 ∈ �푈, �푢 ̸= �푤.

(3) Vehicle capacity constraint.  To express the status of onboard
passengers at a certain time, we discretize the simulation time
into uniform intervals and an auxiliary variable �푧1(�푢, �푡) is used
to present the states of requests. If �푧1(�푢, �푡) = 1, it means that
request � is being served at current time �. Otherwise, request
� is waiting to be picked up or has arrived at its destination.
Combining this binary factor �푧1(�푢, �푡), we can count the total
number of onboard passengers at any time �, which is formu-
lated in Equation (15):

where the state variable �푧1(�푢, �푡) is an indirect representation
on the relation between actual pick-up time �푝(�푢) and drop-off
time g(�푢), as shown in Equation (16):

�e presence of the nonlinear constraint of (16) makes it
difficult to be implemented directly in commercial solvers. For
the sake of computation complexity, we conduct linear trans-
formations as by Equations (17)−(23). To accomplish the pro-
cess, we introduce another auxiliary variable �푧2(�푢, �푡) associated
with request state. Given the pick-up and drop-off times, a
request state could be divided into three phases. Firstly, a wait-
ing phase, the request is waiting to be served and pick-up time
has not been reached, in which time duration of this type
should be earlier than actual pick-up time �푝(�푢). Equation (17)
should always hold in this situation, �푧2(�푢, �푡) and �푧1(�푢, �푡) limited
by Equation (22) will be approximated to 1 and 0 respectively
to meet Equations (18)−(20), i.e., waiting state when �푧1(�푢, �푡) = 0
and �푧2(�푢, �푡) = 1. In the second onboard phase, a request has
been transported to its destination but has not yet arrived.
Time duration of this phase should be governed by the pick-up
time and ended at drop-off time, i.e., �푝(�푢) ≤ �푡 ≤ �푔(�푢). During
the off-board phase, Equations (17) and (20) will hold only if
�푧1(�푢, �푡) = 1 and �푧2(�푢, �푡) = 0. �e last phase will occur when a

(15)

∑
�푤∈�푈

�휆(�푢, �푤) ⋅ �푧1(�푤, �푡) − (1 − �푧1(�푢, �푡)) ⋅ �푀 ≤ �퐶�푤 ∀�푢 ∈ �푈, ∀�푡 ∈ �푇,

(16)�푧1(�푢, �푡) = { 1 �푝(�푢) ≤ �푡 ≤ �푔(�푢)
0 �푒�푙�푠�푒 ∀�푢 ∈ �푈, ∀�푡 ∈ �푇.

request has been completed and time is later than drop-off
time �푔(�푢). Hence, Equation (20) should always hold for off-line
situations. Under this constraint, it can be proved that
�푧1(�푢, �푡) = 0 and �푧2(�푢, �푡) = 0 are the only solution to make
Equations (17) and (19) satisfied. In this way, it is obvious that
Equations (17)−(23) are equivalent constraints to Equation
(16), which could be added in linear forms.

3. Solution Method

A mixed integer optimization problem is formulated to solve
the matching of request and vehicle dispatching. Current prac-
tice to obtain optimal solutions of such problems is through
commercial so�ware such as Gurobi and CPLEX. However,
these solvers are known to have limitation in computation
time once travel demand increases significantly.

To solve large-scale instances within an acceptable time,
we intend to discover potential shared trips to reduce the com-
putational complexity by exploring passengers’ characteristics.
Sharing trips denote trips that have overlapping schedules in
both time and space dimensions. �is is similar to the cluster
analysis (e.g., [19]) to find relative elements in a cluster and
divide a set into several independent clusters. �us minimizing

(17)�푡 ≤ �푝(�푢) − 1 + (1 − �푧2(�푢, �푡)) ⋅ �푀 ∀�푢 ∈ �푈, ∀�푡 ∈ �푇,

(18)�푡 ≥ �푝(�푢) − �푧2(�푢, �푡) ⋅ �푀 ∀�푢 ∈ �푈, ∀�푡 ∈ �푇,

(19)�푡 ≤ �푔(�푢) + (1 − �푧1(�푢, �푡)) ⋅ �푀 ∀�푢 ∈ �푈, ∀�푡 ∈ �푇,

(20)
�푡 ≥ �푔(�푢) + 1 − (�푧1(�푢, �푡) + �푧2(�푢, �푡)) ⋅ �푀 ∀�푢 ∈ �푈, ∀�푡 ∈ �푇,

(21)1 ≤ �푡 ≤ �푇,

(22)�푧1(�푢, �푡) + �푧2(�푢, �푡) ≤ 1 ∀�푢 ∈ �푈, ∀�푡 ∈ �푇,

(23)�푧1(�푢, �푡) ∈ {0, 1}, �푧2(�푢, �푡) ∈ {0, 1} ∀�푢 ∈ �푈, ∀�푡 ∈ �푇.

5Journal of Advanced Transportation

matrix П, as shown in Figure 3, where the element �
u,k

means the weight for a passenger pair. �e detour distance,
overlapping trip and waiting time are all feasible parameters
to reflect their weights. To give an intuitive evaluation on
the service system, we take the saving travel distance as the
weighting value. In this way, the weight value is formulated
as �휋�푢,�푘 = �푅(u) + �푅(�푘) − �푅(�푠), where �푅(�푠) denotes the travel
distance for a passenger pair (�푢, �푘). It should be pointed out
that a passenger pair will not be a valid pair if two passengers
are not matched with time and space constraints. Under this
situation, we set �푅(�푠) as a very large number for invalid pairs.
In addition, diagonal elements are also invalid pairs, which
are set to 0 in this relationship matrix.

With this matrix, the task of passenger clustering could be
considered as finding sharing pairs with the maximum total
saved travel distance. �is process is similar with job assign-
ment problems, which is stated as follows:

s.t.

(24a)max ∑
�푢,�푘∈�푈

�휋�푢,�푘 ⋅ �휔�푢,�푘,

(24b)�휋�푢,�푘 = �푅(�푢) + �푅(�푘) − �푅(�푠) ∀�푢, �푘 ∈ �푈,

(24c)∑
�푘∈�푈

�휔�푢,�푘 = 1 ∀�푢 ∈ �푈,

(24d)∑
�푢∈�푈

�휔�푢,�푘 = 1 ∀�푘 ∈ �푈,

the number of vehicle could be regarded as minimizing inde-
pendent clusters. �e minimization implies that each cluster
should include as many passengers as possible.

In this way, the vehicle dispatching problem is converted
to segmenting passenger set. If each cluster is taken as a pas-
senger with specific OD pair and time restriction, traffic
demand will be reduced to the number of clusters in this clus-
ter-based method. Under this simplified network, passengers
no longer have intersection in both time and space dimensions,
i.e., multiple passengers sharing one vehicle at the same time
is impossible. It can be concluded that the problem is approx-
imately translated to a multiple travelling salesman problem
(mTSP) with time windows. To solve this model, we also adopt
the cluster-based method to classify passengers and derive the
number of required vehicles. �e cluster-based method has
shown to have significant impact in simplifying the optimiza-
tion model of this paper. �e whole process of the proposed
algorithm could be summarized into two parts, i.e., passenger
clustering and cluster compression, as shown in Figure 2. �e
detailed description of this algorithm is stated as follows:

3.1. Part I: Passenger Clustering.  To divide passengers into
groups, the first step is to describe the sharing ability of
passengers for selecting sharing pairs. It should be noted
that a sharing pair means two passengers carried by one
AV at the same time. Based on passengers’ OD pairs and
service time restrictions, we can roughly evaluate the sharing
ability of any two passengers and generate a relationship

Passenger clustering Cluster compressionInput

OD pairs(i)

(i)

(i)

(ii) Time windows
�e hungarian algorithm

Passenger-to-passenger assignment

Passenger relationship matrix

Select passengers to groups

Are all passengers
assigned ?

No

Clusters generation

Yes

Label OD and time constraints for
each cluster/link

Cluster relationship matrix

Cluster-to-cluster assignment

Link construction

�e hungarian algorithm

Are all links
independent ?

No

Output

Calculate serving time for
passengers in each branch

Dispatch an AV for each branch

Plan AV paths

Branch generation

Yes

Determine the number of AVs

Passenger request:

AV capacity:
Four seats

Road network:
Travel time

Figure 2: �e flow chart of the cluster-based algorithm.

Π =

π11 π12 π1n

π22

πn1 πnn

πu1

πnu

πuu πun where πu,k = R(u) + R(k) + (k) – R(s)

Figure 3: �e relationship matrix of passengers.

Journal of Advanced Transportation6

as a group. If the set of sharing pairs is empty, stop the iteration
and output passenger groups; otherwise go to step 3.
Step 3: Passenger number redefinition. Take each group as a
new passenger, and relabel them.
Step 4: �e relationship matrix recalculation. Since a new pas-
senger represents a passenger group, the total travel distance
�푅(�푠) for a passenger pair should be calculated with a heuristic
method or dynamic programming. For simplify, we will adopt
the insertion algorithm to find a feasible visiting sequence to
evaluate the total travel distance. �en generate the relation-
ship matrix and go back to step 2.

3.2. Part II: Cluster Compression.  �is part aims to lower the
upper bound and move it towards the optimal solution. If each
cluster is served by one vehicle, the number of clusters gives an
upper bound of the vehicle dispatching problem. To reduce the
number of used vehicles, the method of recombining clusters is
introduced, as shown in Figure 4. It should be noted that a vehicle
could not serve multiple clusters at the same time for clusters
output from Part I. In this way, if each cluster is considered
as a passenger (Figure 4(b)), the problem is similar to mTSP
with time windows. For mTSP, the objective is to minimize the
total travel distance. �us the goal of this part is to dispatch
the minimum number of vehicles to visit these passengers
with least travel distance. �e basic idea is to prejudge any two
passengers that could be served by a vehicle. For passenger
� and ��, assuming that they are served by the same vehicle,
possible serving sequences are �표(�푢) → �푑(�푢) → �표(�푢�) → �푑(�푢�)
and �표(�푢�) → �푑(�푢�) → �표(�푢) → �푑(�푢). If either of them satisfies
time restrictions of picking up and dropping off, they will
be marked as a link, as shown in Figure 4(c). It should be
noted that the weighting value of a link is the travel distance
of drop-off point �푑(�푢) to pick-up point �(��) or drop-off point
�(��) to pick-up point �표(�푢). To choose appropriate links, we
also use the Hungarian algorithm to make decisions. A link
will be considered as a new passenger in this network, as
shown in Figure 4(d). �en the same process is applied again
to link passengers till no link could be established. At the
end, independent passengers (e.g., �� and �� in Figure 4(e))
are defined as branches, where a branch implies a vehicle is
required and passengers could be derived from associating
links. �e whole iterative process is illustrated as below:

Step 1: Preliminary. Based on information submitted by passen-
gers, recalculate OD and time requirement for clusters and label

where ��푢,�푘 is a binary variable, 1 if passenger � and � are com-
bined and 0 otherwise. Equation (24a) denotes the objective
of maximizing the total saved travel cost. Equation (24b) is
the weight value expression for passengers. Equations (24c)
and (24d) represent each passenger should be matched with
a passenger to share a ride.

Results of this model might contain invalid pairs, which
should be refined to obtain valid sharing pairs. In the
relationship matrix, diagonal pairs might be invalid but are
contained in the results. Hence, the pair (�푢, �푢) will be deleted
if  �휔�푢,�푢 = 1. Repeated pairs are another issue for this model.
For example, if ��푢,�푘 and ��푘,�푢 are simultaneously equal to 1,
they both denotes passenger � and �will become a group.
�us, pair (�푢, �푘) or (�푘, �푢) needs to be deleted for simplifying
sharing pairs.

�e aforementioned model and refining process are the
first step to determine passenger pairs, which could not be
directly used to find minimum passenger groups. �is is
because more pairs might be found between passenger pairs
and single passengers. To minimize the number of passenger
groups, an iteration process is conducted to explore new pas-
senger pairs. �e whole procedure of passenger clustering
could be concluded as follows:

Step 1: Preliminary. Collect passenger OD pairs and expected
service times. Label them and mark them as original passengers.
�en calculate the relationship matrix based on Equation (24b).
Step 2: Sharing pair determination. Solve Equations (24a)–(24d)
with the Hungarian algorithm and obtain sharing pairs by
deleting invalid pairs and repeated pairs. �en take each sharing
pair as a group. If a passenger is simultaneously appeared in two
groups, integrate these two groups as a group, until groups are
independent. Unmatched passengers are respectively regarded

A B

C D

Link

OD pairs

A D

B C

D A

C B

Figure 5: Sketch of a 5 × 5 size network.

Figure 4: A paradigm of cluster compression.

Cluster 1 Cluster 2

Cluster 3

Cluster 4 Cluster 5

(a) Cluster segmentation

Passenger 1 Passenger 2

Passenger 3

Passenger 4 Passenger 5

(b) Network simplication

P3

P4
P5

P1
P2

Link 1

Link 2

(c) Link construction

P II

P III

Link a

Link b

P I

(d) Link extension

Branch 1
(Passenger 4 and 5)

Branch 2
(Passenger 1,2 and 3)

pa

pb

Cluster I

Cluster II

(e) Branch generation

7Journal of Advanced Transportation

�e time windows of the requests for the same OD pair are
identical and they only allow two other sharing paths
A → B → D → C and D → C → A → B. In this uniformly
distributed scenario, minimum vehicle number for the
24-request case could be estimated in the following way. First
we consider ride sharing among the same OD pair, i.e., assign-
ing one vehicle to each OD pair. In this situation, four passen-
gers could be served and two passengers are le� for each OD
pair. Since path A → B → D → C and D → C → A → B are
sharing rides, dispatching one vehicle for each path will com-
pletely serve the remaining passengers. In this way, 6 vehicles
are needed to satisfy 24 passengers. Similarly, the minimum
number for the other instances are 8, 10, and 12 vehicles. Our
model and a typical DARP model [9] are solved for this case
using Gurobi solver. �eir results are listed in Table 2. For the
four cases, our model could obtain the correct minimum vehi-
cle number as aforementioned. However, the DARP model
could not find the correct minimum number for the 24 and 40
cases within a short time.

In the randomly generated scenario, any two nodes on the
network could form an OD pair with stochastically given time
windows. For randomly generated case, one passenger might
share rides with more passengers but only within time win-
dows restriction. As is presented in Table 3, our model could
still give optimal values. Computation times of our model are
not drastically exhausted for exploring the best passenger
combination. It implies that our model is more adaptive to
solving the vehicle dispatching problem.

For these instances, the proposed cluster-based algorithm
and a heuristic algorithm (insertion algorithm [20]) are also
used to find optimal dispatching plans. Results of these algo-
rithms are listed in Tables 4 and 5. In fixed OD pair case, the
minimum vehicle number of the two algorithms are equal to
the optimal values and computational times are shorter than
those of Gurobi solvers. For the random case, most results of

them with new passenger indexes � ��∗. �en generate a 0-1
matrix to express the connectivity of these recreate passengers
and mark gap distances as weight values for links and a very
large number for nonlinks.
Step 2: Link selection. Apply the Hungarian algorithm to find
optimal links with the minimum accumulated gap distance.
�en filter these selected links to produce independent links,
where this process is similar with Equation (23).
Step 3: Stop criterion. If there is no feasible links available,
stop calculation and output branches; otherwise go to step 4.
Step 4: Passenger set updating. Recalculate OD and time limi-
tation for each independent links and label passengers indexes
again. �en go back to step 2.

4. Numerical Experiments

In this section, a set of cases are generated to examine the valid-
ity of our model and performance of the proposed cluster-based
algorithm. For providing abundant comparisons, computa-
tional results of a typical DARP model and insertion algorithm
are calculated. From these results, the application scope of our
model and the proposed algorithm are concluded. In addition,
the effect of sensitive parameters on determining the minimum
number of vehicles are analyzed for the SAV system.

4.1. Results of Small Scale Problem.  For the small scale problem
test, request size is set to be ranging from 24 to 48 defined on
a simple network of 5 × 5 (Figure 5). Travel time of each link
between adjacent nodes is assumed to be 60 seconds. Two
simple scenarios are employed: fixed and random OD pairs.

In the first scenario, we intend to explain our model with
predetermined sharing paths. �e OD pairs are designed to be
in diagonal directions (A → D, B → C, D → A, and C → B).
Each OD pair is allocated with the same amount of requests.

Table 2: Model performance comparison (uniform distribution).

Requests
Our model Cordeau’s DARP model

Number of vehicles Time (s) Gap Number of vehicles Time (s) Gap
24 6 1.01 0% 7 1.01 14.3%
32 8 3.36 0% 8 1.71 0%
40 10 3.03 0% 11 2.13 9.09%
48 12 5.63 0% 12 5.05 0%

Table 3: Model performance comparison (random generation).

Requests
Our model Cordeau’s DARP model

Number of vehicles Time (s) Gap Number of vehicles Time (s) Gap
24 9 0.46 0% 10 1001 23.3%
28 10 1.52 0% 12 709 22.9%
32 12 1.84 0% 13 5512 25.6%
36 12 2.07 0% 15 4458 33.2%
40 12 5.92 0% 16 5055 41%
44 15 8.22 0% 16 6032 43%
48 14 15.27 0% 16 6124 43.5%

Journal of Advanced Transportation8

30 mph [7]. Assuming a maximum vehicle speed, travel time
on each link is approximately 60 seconds. �e time interval
between earliest and latest time of pick-up or drop-off nodes
is still set to be 120 seconds.

In this section, random requests ranging from 500 to 4000
are tested. �e average distance of passengers’ trips are
8.59 miles, 8.69 miles, 8.7 miles, 8.65 miles, 8.65 miles,
8.67 miles, 8.63 miles, and 8.66 miles, respectively. Total vehicle
number and total travel distance solved by the cluster-based
algorithm are listed and compared with the insertion algo-
rithm (Table 7). It is obvious that the proposed algorithm
could find a ride-sharing pattern with fewer number of vehi-
cles and shorter travel distance. In terms of vehicle number,
the proposed cluster-based algorithm saves 12–42 vehicles as
compared to the insertion algorithm. As for travel distance, a
reduction of 100–600 miles could be obtained.

�e average occupation rate (average passenger number
per vehicle) obtained with the cluster-based algorithm ranges
from 3.6 to 5.32, which is higher than the insertion algorithm’s
occupation rate from 3.31 to 5.12 (Figure 6). Detailed passen-
ger number distributions are presented in Figure 7. As could
be noticed, the passenger number distributions have similar
form of a normal distribution with peak frequency in the mid-
dle. �e cluster-based algorithm’s distributions always have a
larger median value. For example, the mean value of clus-
ter-based algorithm is 4 for the 500 request case, which is one
passenger more than the insertion algorithm. �is means that
the cluster-based algorithm is able to apply more sharing rides

cluster-based algorithm find the best values while the heuristic
algorithm could not give any optimal values. For request 28
and 40, although dispatching plan derived from cluster-based
algorithm needs one more vehicle, they are less than those by
the insertion algorithm. �is shows that the cluster-based
algorithm has a better chance of finding the optimal or
near-optimal values. Nevertheless, compared with the inser-
tion algorithm, the cluster-based algorithm might need a little
longer time to obtain superior results.

To further analyze our model’s adaptability, we conduct a
series of tests to observe computation time variation with
increased requests on the same road network, as shown in
Table 6. In addition, the minimum number of vehicles of
cluster-based algorithm are 8, 9, 8, 13, 12, and 13; and the
optimal values of our model are 8, 8, 8, 11, 12, and 11. Although
cluster-based algorithm could not search the optimal values
for all cases, it has an overwhelming advantage in terms of
computation time. It can be seen that the computation time
of Gurobi is more than 1000 seconds when request reaches
100, which might need several hours to find the optimal value
for larger requests. �erefore cluster-based algorithm will
become a better choice when near-optimal solutions are
demanded in a short time with hundreds of requests.

4.2. Comparison Test for Large-Scale Case.  In addition to
the 5 × 5 road network, a larger 20 × 20 grid representing city
downtown is adopted with randomly generated requests.
�e length of each link is set to 2640 � and free flow speed is

Table 4: Algorithm performance comparison (uniform distribution).

Requests
Cluster-based algorithm Insertion algorithm Gurobi solver

Number of vehicles Time (s) Gap Number of vehicles Time (s) Gap Number of vehicles Time (s)
24 6 0.23 0% 6 0.31 0% 6 1.01
32 8 0.42 0% 8 0.29 0% 8 3.36
40 10 0.77 0% 10 0.38 0% 10 3.03
48 12 1.28 0% 12 0.35 0% 12 5.63

Table 5: Algorithm performance comparison (random generation).

Requests
Cluster-based algorithm Insertion algorithm Gurobi solver

Number of vehicles Time (s) Gap Number of vehicles Time (s) Gap Number of vehicles Time (s)
24 9 0.3 0% 11 0.38 18.2% 9 0.46
28 11 0.29 9% 12 0.35 16.7% 10 1.52
32 12 0.35 0% 13 0.33 7.7% 12 1.84
36 12 0.49 0% 14 0.42 14.3% 12 2.07
40 13 0.68 8% 15 0.53 20% 12 5.92
44 15 0.79 0% 17 0.62 11.8% 15 8.22
48 14 0.83 0% 16 0.67 2.5% 14 15.27

Table 6: Computation time comparison.

Computation time (s)
Requests

50 60 70 80 90 100
Gurobi solver 35.43 89.16 191 307.6 927.4 2835.6
Cluster-based algorithm 0.95 0.88 1.16 1.34 3.01 5.21

9Journal of Advanced Transportation

�is implies that the SAV system might not gain more benefits
by introducing larger vehicles with more seats under this
condition. �is is mainly because the probability of numerous
passengers with very similar OD pair and the time windows
are relatively low. �e average number of multiple passengers
served by a vehicle at the same time will not be a large value,
especially when demand is lower than 3000. �us a vehicle
with four seats is enough under this condition.

�e influence of the time windows (the difference between
earliest and latest expected time of picked up or dropped off)
on system’s total vehicle number is shown in Figure 8. With
increasing time interval, total vehicle number gradually
reduces from 139 to 93 as time windows increase from
2 minutes to 16 minutes (Figure 9(a)), which results in
shortened total travel distance (Figure 9(b)). It indicates that
the system succeeds in finding sharing rides for more
passengers with extended time restriction. Since the time
interval is a key parameter that reflects the willingness of
waiting time, passengers might be picked later compared with
the earliest expected times if it is set to be longer. If this
parameter is very large, it is intuitive that they will have more
opportunities to share a ride with others. Under this condition,
the number of vehicles will become smaller. For more trips
which are integrated as a trip, the total travel distance will also
be reduced.

5. Conclusions

In this paper, we formulate the vehicle dispatching problem
of SAV transportation system into a 0-1 integer programming
model. Unlike existing vehicle routing optimization models,
our model focuses on exploring the similarity of passengers’
demand in time and space dimensions to classify passengers
into groups, in which the number of required vehicles is
derived indirectly. To solve this model, the cluster-based algo-
rithm is proposed for classifying passengers. �e whole pro-
cess consists of two parts: (1) the Hungarian algorithm is
introduced to select appropriate passengers sharing trips and
determine an upper bound for required vehicles; (2) a reunion
process by linking sharing trips is conducted to lower the
upper bound. Since the Hungarian algorithm only needs a
polynomial time, the computational complexity of the

than the insertion method since its number of highly loaded
vehicle is larger. For example, for 4000 requests case, 52 vehi-
cles are assigned with 8 passengers by the cluster-based algo-
rithm while only 7 vehicles could be assigned with the same
number of passengers for the insertion algorithm.

4.3. Sensitivity Analysis.  In this section, we conduct a
sensitivity analysis to examine how the performance of the
proposed algorithm is affected by key input parameters.
Figure 8 presents results of demanded vehicle number under
various vehicle capacities. It should be noted that capacity
equaling 1 means only one passenger is served at a time by
a vehicle with four seats where ride-sharing is not included.
For capacity of 7 case, seven passengers are allowed to be
carried at the same time. For simplicity, we mark vehicle
capacity of 1, 4, and 7 as condition I, II, III respectively. For
condition I, the number of required vehicles are much higher
than the other two conditions, while results of condition II
and III are of little difference. If condition II is considered as
the benchmark, it seems that vehicles with higher capacity
makes little contribution to reducing total vehicle number.

Table 7: Comparison results for large-scale instances.

Scenario
�e number of vehicles Total travel distance (mile)

Cluster-based
algorithm Insertion algorithm Percentage (%) Cluster-based

algorithm Insertion algorithm Percentage (%)

500 139 151 7.9 1564.5 1635.75 4.3
1000 254 277 8.3 2880.35 3065.35 6.1
1500 340 360 4.1 3966.15 4110.15 3.5
2000 421 445 5.4 5043.75 5260 4.1
2500 511 544 6.1 6121.87 6402.5 4.4
3000 600 636 5.6 6984 7254.25 3.7
3500 663 705 5.9 8077 8304 2.7
4000 752 781 3.7 9070.75 9224.24 1.7

500 1000 1500 2000 2500 3000 3500 4000
Demand (number of passengers)

3

3.5

4

4.5

5

5.5

O
cc

up
at

io
n

ra
te

Insertion algorithm
Cluster-based algorithm

Figure 6: �e occupation rate comparison.

Journal of Advanced Transportation10

Demand = 500

1 2 3 4 5 6 7 8 9 10
Number of passengers

0

10

20

30

40

50

60

70

A
cc

um
ul

at
ed

 v
eh

ic
le

s

Insertion algorithm
Cluster-based algorithm

(a)

Insertion algorithm
Cluster-based algorithm

Demand = 1000

1 2 3 4 5 6 7 8 9 10
Number of passengers

0

20

40

60

80

100

120

A
cc

um
ul

at
ed

 v
eh

ic
le

s

(b)

1 2 3 4 5 6 7 8 9 10
Number of passengers

Insertion algorithm
Cluster-based algorithm

Demand = 1500

0

50

100

150

A
cc

um
ul

at
ed

 v
eh

ic
le

s

(c)

Insertion algorithm
Cluster-based algorithm

1 2 3 4 5 6 7 8 9 10
Number of passengers

Demand = 2000

0
20
40
60
80

100
120
140
160

A
cc

um
ul

at
ed

 v
eh

ic
le

s

(d)

1 2 3 4 5 6 7 8 9 10
Number of passengers

Insertion algorithm
Cluster-based algorithm

Demand = 2500

0
20
40
60
80

100
120
140
160
180
200

A
cc

um
ul

at
ed

 v
eh

ic
le

s

(e)

Insertion algorithm
Cluster-based algorithm

1 2 3 4 5 6 7 8 9 10
Number of passengers

Demand = 3000

20
40
60
80

100
120
140
160
180
200

A
cc

um
ul

at
ed

 v
eh

ic
le

s

(f)

1 2 3 4 5 6 7 8 9 10
Number of passengers

Insertion algorithm
Cluster-based algorithm

Demand = 3500

0

50

100

150

200

250

A
cc

um
ul

at
ed

 v
eh

ic
le

s

(g)

1 2 3 4 5 6 7 8 9 10
Number of passengers

Insertion algorithm
Cluster-based algorithm

Demand = 3500

0

50

100

150

200

250

A
cc

um
ul

at
ed

 v
eh

ic
le

s

(h)

Figure 7: �e distribution of served passengers of each vehicle.

11Journal of Advanced Transportation

proposed algorithm could be greatly reduced, which makes it
applicable for solving large-scale cases.

�e validity and efficiency of our vehicle dispatching model
and the proposed cluster-based algorithm are presented by
conducting a series of tests. First the model and algorithm are
applied for small-size passenger requests. Results show that the
proposed algorithm could always find optimal or near-optimal
solutions when comparing the optimal values with obtained
from the optimization solver. We also list results of a typical
DARP model [9] and insertion algorithm for further analysis.
By comparing computation time and solution gaps, it indicates
that the proposed algorithm has an advantage in gathering
passengers sharing a vehicle and making the objective function
towards the best value. For large-size cases, the new algorithm
still expresses a better performance than the insertion algo-
rithm in minimizing the number of vehicles and total travel
distance. At last, the effect of key input parameters on the num-
ber of vehicles are discussed. It is concluded that enlarging
vehicle capacity will not reduce used vehicles in consequence
when it exceeds four and extending waiting time will make a
positive feedback on decreasing the number of vehicles.

�rough the whole study, we mainly investigate how to
minimize used vehicles for the SAV system with given demands,
which is a static dispatching method. To enrich the application
scope of the cluster-based algorithm, the dynamic or on-line
planning will be regarded as an interesting research direction.
Furthermore, we assume and all passengers have the willingness
of accepting ride sharing, which only consider the dispatching
problem from the system view. We will extend our model by
introducing customized passengers demand for the further
research. In addition, charging price is a key factor in passen-
gers’ decisions, which might bring a trade-off in passengers cost
and the system revenue. In this way, price optimization will be
also considered as our future research to enrich our model.

Data Availability

�e data used to support the findings of this study are available
from the corresponding author upon request.

Conflicts of Interest

�e authors declare that they have no conflicts of interest.

Acknowledgments

�is work is partially supported by the National Science
Foundation of China under Grant #61773040, and #U1811463,
and the National Key Research and Development Program of
China (2016YFB0100902).

References

  [1] � A. Talebpoura and H. S. Mahmassani, “Influence of
connected and autonomous vehicles on traffic flow stability

500 1000 1500 2000 2500 3000 3500 4000
Demand (number of passengers)

0

200

400

600

800

1000

1200

1400

1600

1800

�
e

to
ta

l n
um

be
r o

f r
eq

ui
re

d
ve

hi
cl

es

Capacity = 7 Capacity = 4
Capacity = 1

Figure 8: Sensitivity analysis of vehicle capacity.

Figure 9: Sensitivity analysis of the time windows. (a) �e number
of vehicles and (b) the total travel distance.

2 4 6 8 10 12 14 16
Time interval (min)

90

95

100

105

110

115

120

125

130

135

140

�
e

nu
m

be
r o

f r
eq

ui
re

d
ve

hi
cl

es

(a)

(b)

2 4 6 8 10 12 14 16
Time interval (min)

1200

1250

1300

1350

1400

1450

1500

1550

1600

�
e

to
ta

l t
ra

ve
l d

ist
an

ce
 (m

ile
)

Journal of Advanced Transportation12

[17] � M. M. Vazifeh, P. Santi, G. Resta, S. H. Strogatz, and C. Ratti,
“Addressing the minimum fleet problem in on-demand urban
mobility,” Nature, vol. 557, no. 7706, pp. 534–538, 2018.

[18] � T. R. Sexton and L. D. Bodin, “Optimizing single vehicle many-
to-many operations with desired delivery times: I. Scheduling,”
Transportation Science, vol. 19, no. 4, pp. 378–410, 1985.

[19] � J. MacQueen, “Some methods for classification and analysis
of multivariate observations,” in Proceedings of the Fi�h
Berkeley Symposium on Mathematical Statistics and Probability,
pp. 281–297, University of California Press, Berkeley, CA, 1967.

[20] � J. Jaw, A. Odoni, H. Psara�is, and N. Wilson, “A heuristic
algorithm for the multi-vehicle advance request dial-a-ride
problem with time windows,” Transportation Research B, vol. 20,
pp. 243–257, 1986.

and throughput,” Transportation Research Part C: Emerging
Technologies, vol. 71, pp. 143–163, 2016.

  [2] � T. D. Chen, K. M. Kockelman, and J. P. Hanna, “Operations
of a shared, autonomous, electric vehicle fleet: implications of
vehicle & charging infrastructure decisions,” Transportation
Research Part C, vol. 94, pp. 243–254, 2016.

  [3] � Z. Chen, F. He, and Y. Yin, “Optimal deployment of charging
lanes for electric vehicles in transportation networks,”
Transportation Research Part B: Methodological, vol. 91,
pp. 344–365, 2016.

  [4] � B. Boyaci, K. G. Zografos, and N. Geroliminis, “An optimization
framework for the development of efficient one-way car-sharing
systems,” European Journal of Operational Research, vol. 240,
no. 3, pp. 718–733, 2015.

  [5] � K. Huang, G. H. de A. Correia, and K. An, “Solving the station-
based one-way carsharing network planning problem with
relocations and non-linear demand,” Transportation Research
Part C: Emerging Technologies, vol. 90, pp. 1–17, 2018.

  [6] � J. Ma, X. Li, F. Zhou, and W. Hao, “Designing optimal
autonomous vehicle sharing and reservation systems: a linear
programming approach,” Transportation Research Part C:
Emerging Technologies, vol. 84, pp. 124–141, 2017.

  [7] � M. W. Levin, K. M. Kockelman, S. D. Boyles, and T. Li, “A
general framework for modeling shared autonomous vehicles
with dynamic network-loading and dynamic ride-sharing
application,” Computers, Environment and Urban Systems,
vol. 64, pp. 373–383, 2017.

  [8] � H. Miao, H. Jia, J. Li, and T. Z. Qiu, “Autonomous connected
electric vehicle (ACEV)-based car-sharing system modeling
and optimal planning: a unified two-stage multi-objective
optimization methodology,” Energy, vol. 169, pp. 797–818, 2019.

  [9] � J.-F. Cordeau, “A branch-and-cut algorithm for the dial-a-ride
problem,” Operation Research, vol. 54, no. 3, pp. 573–586, 2006.

[10] � M. Liu, Z. Luo, and A. Lim, “A branch-and-cut algorithm for a
realistic dial-a-ride problem,” Transportation Research Part B:
Methodological, vol. 81, pp. 267–288, 2015.

[11] � C. Bongiovanni, M. Kaspi, and N. Geroliminis, “�e electric
autonomous dial-a-ride problem,” Transportation Research Part
B: Methodological, vol. 122, pp. 436–456, 2019.

[12] � H. Hosni, J. Naoum-Sawaya, and H. Artail, “�e shared-taxi
problem: formulation and solution methods,” Transportation
Research Part B: Methodological, vol. 70, pp. 303–318, 2014.

[13] � M. Mahmoudi and X. Zhou, “Finding optimal solutions for
vehicle routing problem with pickup and delivery services with
time windows: a dynamic programming approach based on
state–space–time network representations,” Transportation
Research Part B: Methodological, vol. 89, pp. 19–42, 2016.

[14] � J.-F. Cordeau and G. Laporte, “A Tabu search heuristic for
the static multi-vehicle dial-a-ride problem,” Transportation
Research Part B: Methodological, vol. 37, no. 6, pp. 579–594,
2003.

[15] � L. Häme and H. Hakula, “A maximum cluster algorithm for
checking the feasibility of dial-a-ride instances,” Transportation
Science, vol. 49, no. 2, pp. 295–310, 2015.

[16] � M. Diana and M. M. Dessouky, “A new regret insertion heuristic
for solving large-scale dial-a-ride problems with time windows,”
Transportation Research Part B: Methodological, vol. 38, no. 6,
pp. 539–557, 2004.

	An Efficient Solving Method to Vehicle and Passenger Matching Problem for Sharing Autonomous Vehicle System
	1. Introduction
	2. The Dispatching Problem of an AV-Based Transportation Service System
	2.1. Problem Statement
	2.2. The Optimization Model of Passenger–Passenger Matching
	3. Solution Method
	3.1. Part I: Passenger Clustering
	3.2. Part II: Cluster Compression
	4. Numerical Experiments
	4.1. Results of Small Scale Problem
	4.2. Comparison Test for Large-Scale Case
	4.3. Sensitivity Analysis
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments
	References

