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Optimizing to increase the utilization ratio of regenerative braking energy reduces energy consumption, and can be done without 
increasing the deviation of train running time in one circle. �e latter entails that the train timetable is upheld, which guarantees 
that the demand for passenger transport services is met and the quality of services in the urban rail transit system is maintained. �is 
study proposes a multi-objective optimization model for urban railways with timetable optimization to minimize the total energy 
consumption of trains while maximizing the quality of service. To this end, we apply the principles and ideas of calculus to reduce 
the power of the velocity in the train energy consumption model. �is greatly simpli�es the complexity of the optimization model. 
�en, considering the con�icting requirements of decision-makers, weight factors are added to the objective functions to re�ect 
decision-makers’ preferences for energy-saving and the quality of service. We adopt the nondominated sorting genetic algorithm-II 
(NSGA-II) to solve the proposed model. A practical case study of the Yizhuang urban railway line in Beijing is conducted to verify 
the e�ectiveness of the proposed model and evaluate the advantages of the optimal energy saving timetable (OEST) in comparison 
to the optimal quality of service timetable (OQOST). �e results showed that the OEST reduced total energy consumption by 8.72% 
but increased the deviation of trains running time in one circle by 728 s. �e total energy consumption was reduced by 6.09%, but 
there was no increase in the deviation of train running time in one circle with the OQOST.

1. Introduction

Urban rail transit systems are playing an increasingly impor-
tant role in the process of urban development. Urban rail sys-
tems provide fast, convenient, safe, and comfortable 
transportation services for a growing number of passengers 
and also help to alleviate urban tra�c congestion problems. 
In Beijing, by the end of December 2018, the urban rail transit 
network included 24 lines, 388 stations, and 605 km of track 
in operation (data from Beijing Metro o�cial website) and 
prevented over-congestion of roads due to urban tra�c 
demand. Moreover, compared to road tra�c, rail transit sys-
tems are more environmentally friendly. �erefore, rail transit 
systems have become an essential mode of urban transporta-
tion and are thus undergoing rapid construction and 

development. In a given urban rail transit system, more than 
40% of the total electric energy is consumed in the train mov-
ing process, and this is a�ected by driving strategy and utili-
zation of regenerative braking energy [1]. �e maximum 
operating speed di�ers according to driving strategy and inter-
val running times in urban railway, and this also a�ects the 
energy consumption of train traction. Furthermore, the utili-
zation of regenerative braking energy is a�ected by train driv-
ing strategies. Generally, urban railway trains have three 
moving phases including accelerating, coasting, and braking. 
When multiple trains run consecutively in the sections served 
by two transformer substations, the regenerative braking 
energy is produced during the braking phase of the subsequent 
trains and consumed by the preceding train during the accel-
erating phase, simultaneously. �erefore, optimizing the 
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simultaneous moving process of urban trains can reduce any 
unnecessary energy-consumption in urban rail transit sys-
tems. Optimal train operation strategy aims to minimize total 
energy consumption by determining the dwelling time at sta-
tions between consecutive trains, which is closely related to 
urban train timetabling.

With the widespread application of regenerative braking 
technology in the urban rail system, energy-e�cient timeta-
bles, which not only save energy but also are better suited to 
practical operations, are vitally necessary to improve train 
operations. Traditionally, academic research has focused on 
optimizing train driving strategy and establishing mathemat-
ical models to identify optimized driving strategies. �ese 
studies used numerical algorithms to solve the model and 
applied simulation approaches to obtain train driving strate-
gies. Some researchers do not take the regenerative braking 
energy into account and thus, fail to optimize train driving 
strategies [2–4]. Others have adopted regenerative braking 
energy to improve timetabling, but there is still a lack of a 
detailed energy-saving operation optimization model [5–7]. 
We argue that the main issue in saving energy when multiple 
subsequent trains are running is to improve the utilization of 
regenerative braking energy. In this problem, we do not con-
sider a particular train operating strategy as the main factor 
in�uencing total energy consumption. Instead, we formulate 
an urban train energy-saving timetable optimization method 
to optimize dwelling time at stations, taking the energy-saving 
interaction process between following trains into account. 
Besides, timetable changes may reduce the quality of transport 
services. Consequently, we present a multi-objective optimi-
zation model that reduces the total energy consumption while 
maintaining the quality of service.

1.1. Literature Review. Train operation strategies can a�ect 
energy consumption, which is dependent on timetable and 
train speed. �e maintenance of energy-e�cient operations for 
trains by establishing optimal models and using mathematical 
algorithms to seek optimal driving strategies has received 
much attention and widespread application in urban rail 
systems operations [8].

Initially, researchers began to apply mathematical optimi-
zation techniques to solve energy e�ciency issues in driving 
strategies. Some works were related to minimizing energy 
consumption, while other works focused on optimizing driv-
ing strategy. Higgins et al. [9] proposed a biobjective optimi-
zation model to minimize the delay time and fuel consumption. 
Yang et al. [10] formulated an anticipated value programming 
model to optimize overall passenger traveling time and train 
delay time, where commuter passengers boarding or alighting 
at train stations were assumed to be fuzzy variables. Howlett 
[11] considered speed limits, traction e�ciency, and track 
gradients, which can help to shape train driving, and proposed 
a completely analytical approach for determining the optimal 
driving strategy.

Also, some research studies began to pay attention to 
regenerative braking energy, which plays a signi�cant role in 
the creation of energy-saving driving strategies. Ramos [12] 
proposed a timetable optimization model to maximize regen-
erative braking energy by increasing the overlapping time 

between the accelerating time of the train � and the braking 
time of the train (� + 1)% in two consecutive transformer sub-
stations. Fournier et al., Nasri et al., and Li and Yang [13–15] 
designed a mathematical model and employed a numerical 
algorithm to improve the utilization ratio of regenerative brak-
ing energy. Sun et al. [16] presented a biobjective model to 
minimize waiting time and energy consumption base on real-
world smart card data. �en, they conducted a case study using 
a genetic algorithm (GA) search in the Beijing subway system. 
By introducing stop-skipping patterns before applying time-
table optimization, the results show that the proposed model 
can reduce passenger waiting time and improve energy e�-
ciency. To build on these results, we not only construct a math-
ematical model and numerical algorithm but also propose a 
set of analytical solution equations in this study.

Some researchers have also paid attention to speed pro�le 
optimization, which helps to reduce energy consumption. 
Bocharnikov et al. [17] proposed a single train speed pro�le 
optimization aggregation model, which considered both the 
tractive energy consumption and the utilization of regenera-
tive braking energy. Furthermore, they performed a simula-
tion experiment to prove that their aggregation model 
e�ectively minimized energy consumption. Rodrigo et al. [18] 
designed an algorithm to solve issues in an energy-saving driv-
ing optimization model and improve the utilization ratio of 
regenerative braking energy. Tuyttens et al. [19] designed a 
genetic algorithm to solve the complex optimization model 
and presented a new method to solve such optimization prob-
lems. Wang and Goverde [20] developed an optimization 
model that considered time and speed constraints derived 
from the timetable in order to calculate the minimum energy 
consumption of the train when it was delayed. Luan et al. [21] 
study energy-e�cient train operation and introduce two 
objectives: energy consumption and delay recovery. �en, they 
also consider the utilization of regenerative braking energy 
and construct linear formulations for calculating the same. 
Furthermore, they use the weighted method to balance the 
two objective functions. �e Dutch Railway was selected as a 
practical case to verify the e�ectiveness of the proposed opti-
mization model, and the results show that train energy con-
sumption and delay recovery time can be e�ectively reduced. 
Huang et al. [22] proposed a data-driven optimization model 
to describe the relationship between energy consumption and 
speed pro�le. �ey then integrated two typical machine learn-
ing algorithms, random forest regression (RFR), and support 
vector machine regression (SVR) into a heuristic algorithm to 
solve the model.

Not all researchers have paid attention to speed pro�le 
optimization, and many scholars use train timetabling opti-
mization to solve problems of train energy consumption. Yin 
et al. [23] proposed an integrated approach and an approxi-
mate dynamic programming approach for train scheduling 
problems in a bidirectional urban metro line in order to min-
imize the operational costs (i.e., energy consumption) and 
passenger waiting time. Scheepmaker et al. [24] provided an 
extensive literature review regarding energy-e�cient train 
control and the related topic of energy-e�cient train timeta-
bling. �is area of study includes advanced models and algo-
rithms from the last decade that deal with varying gradients, 
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speed limits, and regenerative braking along with energy- 
e�cient driving strategies for a train under di�erent condi-
tions. Ye and Liu [25] proposed a novel and e�ective approach 
to solve several complex train control problems, including 
optimal control for a �eet of interacting trains and optimal 
train control involving scheduling. Yang et al. [26] developed 
a scheduling approach to coordinate the arrivals and depar-
tures of all trains located under the same electricity supply 
interval so that the energy regenerated from train braking 
could be more e�ectively utilized for train acceleration. 
Miyatake and Ko [27] introduced three methods of solving 
the problem of minimizing train energy consumption: 
dynamic programming (DP), the gradient method, and 
sequential quadratic programming (SQP). Yang et al. [28] 
developed an energy-e�cient rescheduling approach to min-
imize net energy consumption and train delays. �en, they 
present an integer programming model and design an alloca-
tion algorithm to obtain the optimal schedule. Hou et al. [29] 
presented a mixed integer programming model to solve the 
metro train timetable rescheduling problem, which jointly 
optimizes the energy consumption and the total train delay. 
�ey solved the proposed model by using the CPLEX pro-
gramming system, which can obtain trade-o� solutions in a 
short time. Chevrier et al. [30] used the energy e�cient 
rescheduling approach to minimize energy consumption and 
adopt a multi-objective evolutionary algorithm to seek the 
optimized solutions of the running time.

A±er investigating the existing literature, most of them 
[20–22, 26, 28, 29] have contributed to energy-e�cient driving 
using the timetable optimization method to obtain ener-
gy-saving timetables that are conducive to reducing energy 
consumption. �e decision variables selected in the existing 
literature on train energy-saving driving optimization are usu-
ally running time [20–22] or dwelling time [26, 28, 29]. �e 
decision variable chosen in this paper is the dwelling time.

Most of the literature focuses on how to improve the uti-
lization ratio of regenerative braking energy and reduce the 
total energy consumption of train operation. Few scholars 
consider the impact of optimization results on the quality of 
service. By contrast, this study considers both energy con-
sumption and the quality of service. Table 1 shows the main 
research contents and contributions of energy-saving driving 
papers in recent years. To provide a clear comparison, we list 
the detailed characteristics of some closely related studies in 
Table 1, including decision variables, objectives, solution 
methods, and the complexity of the model. (We use the highest 
power of the decision variables in the model to represent the 
complexity of the model. Generally, the higher the power of 
the decision variables in the model, the more complex the 
model is.)

In summary, most of the literature in Table 1 focuses on 
improving energy e�ciency through speed optimization [17, 
20, 22] or timetable optimization [8, 15, 30]. Some studies also 
consider the impact of transport service quality [13, 16, 21]. 
Furthermore, Table 1 shows that the current solution meth-
odologies to solve energy e�ciency problems can be divided 
into three categories: commercial optimization so±ware [20, 
29], heuristic algorithms [8, 16, 26], and simulation methods 

[17]. �e optimization models applied in the studies listed in 
Table 1 are very complex. Many of these scholars focused their 
e�orts on producing innovative algorithms to identify an 
appropriate solution at a faster rate, rather than on model 
simpli�cation.

�is study focuses on the design and simpli�cation of 
models. �e energy theorem and the principles and ideas of 
calculus are utilized to simplify the model further. �e sim-
pli�ed model makes it easier to calculate and obtain an appro-
priate solution for an energy-saving timetable. Besides, it can 
be seen from Table 1 that the highest power of the velocity of 
the model in this paper is the lowest, and this is one of the 
most important contributions of the modeling method and 
solution e�ciency. Besides, extant literature mainly studies 
speed pro�le optimization and train timetabling optimization 
to reduce the energy consumption of trains. Few studies have 
considered the impact of timetable optimization on the quality 
of service. �erefore, this study proposes a multi-objective 
programming optimization model, which considers both 
energy consumption and the quality of service. �e complex 
optimization model is simpli�ed by using the principles and 
ideas of calculus and energy theorems. Furthermore, this study 
applies a non-dominated sorting genetic algorithm-II 
(NSGA-II) to minimize the total energy consumption of trains 
while maximizing the quality of service. �us, this study �lls 
a gap in the academic literature.

1.2. Objective and Contributions. Generally, energy-saving 
train operation strategies consider three operation phases 
for a complete trip between two stations for a single train. 
�us, �rst, we analyze the usual driving process for a single 
train and present the appropriate motion equations for this 
situation. �e concept of regenerative braking energy is 
proposed on the basis of the three operation phases for a 
single train driving process. �is allows for the optimization 
of the simultaneous and interactive moving processes between 
multiple urban trains. �e analytical calculation equations for 
regenerative braking energy are formulated in accordance 
with the applicable principles that govern the electric 
energy transmission interaction processes between trains. 
Subsequently, we integrate the concept of the regenerative 
braking energy into the optimization solutions for urban rail 
transit systems’ timetabling and present a simpli�ed energy 
consumption calculation model. �e calculation model for 
the optimization problem for train-following should minimize 
the total energy consumption of one train while increasing the 
simultaneous interaction moving the process of subsequent 
trains in order to improve the e�ectively utilized regenerative 
braking energy ratio. �is ratio is represented by �, and � is 
positively correlated with overlapping time, so increasing 
the overlapping time period is important. We also consider 
and construct the objective function to determine the quality 
of service to ensure that our energy-saving optimization 
timetable maintains a high quality of service.

To exemplify the validity of this method, it is applied to 
the Yizhuang urban rail line in Beijing, China. �us, the the-
oretical and practical contributions of the study are as 
follows:
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2. Multi-Objective Optimization Model

2.1. Notation Description. To create an appropriate model 
for regenerative braking energy-based operations, we apply 
speci�c indices, parameters, and variables (including decision 
variables) regarding train operations, as shown in Tables 2−4.

2.2. An Optimized Energy Consumption Modeling Method for 
a Single Train. Concerning a complete driving process for a 
single train, Howlett [11] de�ned the optimal driving phases 
for trains as accelerating, coasting, and braking. As shown 
in Figure 1, two in�ection points �1 and �2 on the v-� curve 
separate the three phases of train driving. v1 and v2 indicate the 
maximum speed of an urban train at the end of its accelerating 
phase and its speed at the beginning of its braking phase, 
respectively, while �1, �2, and �3 indicate the train’s traveling 
distances during the accelerating phase, the coasting phase, 
and braking phase, respectively.

For this analysis, we assume that the impacts of railway 
line physical engineering conditions do not need to be con-
sidered. According to train motion equations, the acceleration 
and speed of a single train can be obtained as shown in 
Equations (1) and (2). � indicates acceleration, v indicates 

(1)  We present a multi-objective optimization model to 
reduce the total energy consumption and increase 
the quality of service of urban rail transit systems.

(2)  �e energy consumption model was simpli�ed using 
the principles and ideas of calculus and the analytical 
solution equations.

(3) �e NSGA-II algorithm was adopted to solve the 
model e�ectively.

(4) �e e�ectiveness of the proposed model was exem-
pli�ed in a practical case study.

�e rest of this paper is organized as follows. In Section 2, we 
construct the multi-objective optimization model for urban 
rail transit systems based on regenerative braking to minimize 
the total energy consumption of trains while maximizing the 
quality of service. We adopt the NSGA-II algorithm for �nding 
an appropriate solution to the optimized timetables in Section 
3. Section 4 analyzes the Yizhuang urban rail line in Beijing 
as a practical case to verify the e�ectiveness of the optimized 
model and to evaluate the e�ect of the di�erent optimized 
timetables based on the model. �e conclusions are summa-
rized in Section 5.

Table 1: Recent publications on energy-saving driving in comparison with this study.

Publication
Decision variable Objects �e highest power 

of the velocity
Solution methods

Timetable Speed pro�les Energy consumption �e quality of 
service <3 >=3

Li and Lo (2014) √ √ √ √ GA
Fournier et al. 
(2012) √ √ √ √ Linear programming 

algorithm
Nasri et al. (2010) √ √ √ GA

Li and Yang (2013) √ √ √ A binary-coded genetic 
algorithm

Bocharnikov et al. 
(2010) √ √ √ GA

Rodrigo et al. 
(2013) √ √ √ Semi-analytical  

solution
Tuyttens et al. 
(2013) √ √ √ GA

Sun et al. (2019) √ √ √ √ GA
Chevrier et al. 
(2013) √ √ √ Multi-objective  

evolutionary algorithm
Wang and Goverde 
(2016) √ √ √ Pseudospectral method

Luan et al. (2018) √ √ √ √ PNLP approach and the 
PTSPO approach

Huang et al. (2019) √ √ √ Machine learning 
algorithms

Yin et al. (2016) √ √ √ √ Dynamic programming 
algorithm

Ye and Liu (2017) √ √ √ Two novel methods
Yang et al. (2015) √ √ √ GA
Yang et al. (2019) √ √ √ √ Allocation algorithm
Hou et al. (2019) √ √ √ √ CPLEX
�is paper √ √ √ √ NSGA-II
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By combining Equations (1) and (2), we can derive the 
dv-d� relationship Equation (3), as shown below:

Furthermore, the duration of the three phases and the distance 
of train driving can be derived through the dv-d� relationship 
Equation (3) under di�erent operation situations. Equations 
(4)–(9) can be deduced from Equations (1)–(3). In the train’s 
acceleration phase, the traction force is greater than its  
basic and extra resistance forces, thus speeding it up until  
it runs at the maximum speed, v1. �e running time, �1,  
and distance, �1, can be calculated using Equations (4) and 
(5):

�ere is no e�ect from the traction force and braking force 
during the train’s coasting phase. �e running time, �2, and 
distance, �2, can be calculated using Equations (6) and (7):

Finally, during the braking phase, the braking force works to 
decelerate the train and make it stop. �e running time, �3, and 
distance, �3, can be calculated using Equations (8) and (9):

�erefore, the energy consumption for the operation of a 
single train in each section of the trip can be calculated 
using Equation (10). However, traction only works during 

(3)
dv

d� = �1�(v) − �2�(v) − �(v)v
.

(4)�1 = ∫v1
0

1�(v) − �(v)dv,

(5)�1 = ∫v1
0

v�(v) − �(v)dv.

(6)�2 = ∫v2
v1

1−�(v)dv,

(7)�2 = ∫v2
v1

v−�(v)dv.

(8)�3 = ∫0
v2

1−�(v) − �(v)dv,

(9)�3 = ∫0
v2

v−�(v) − �(v)dv.
speed, � indicates time, � indicates distance, ������ is the resultant 
force of a train, and ������ is the total weight of an empty train.

(1)� = ������������ =
�1�(v) − �2�(v) − �(v)������ = dv

d� ,

(2)v = d�
d� .

Table 2: Index de�nitions.

Symbol Descriptions
� = {1, 2, ...�} Set of trains indexΥ = {1, 2, . . . 2�} Set of stations indexΓ = {1, 2, ... 2�} Set of station sections indexΛ = {1, 2, ... �} Set of train driving phases� Index of sections, � ∈ Γ� Index of phases, � ∈ Λ� Index of stations, � ∈ Υ� Index of trains, � ∈ �

Table 3: Parameter de�nitions.

Symbol Descriptions
���� �e distance of phase � in the section � of train �, ��(v) �e traction force characteristic curve, kN�(v) �e braking force characteristic curve, kN

�(v) �e basic resistance characteristic curve, generally ex-
pressed as �(v) = �0v2 + �0v + �0, �0, �0, �0 are constant, 

kN�max �e maximum traction force of a train, kN�max �e maximum braking force of a train, kN

��,� �e utilization ratio of regenerative braking capacity of 
train � in the section ��mech �e kinetic energy in the braking phase, kwh�max

acc
�e maximum acceleration, m/s2

�max
dec

�e maximum deceleration, m/s2

� �e regenerative braking energy conversion rate��� �e turn-around time at the terminal station, sec

Table 4: Variable de�nitions.

Symbol Descriptions
v��� �e speed of phase � in the section � of train �, m/s

���� �e time duration of phase � in the section �of train  �, sec���g Regenerative braking energy, kWh

��v������,�+1

�e interaction time or overlapping time duration 
between the braking phase time of train � + 1 and the 

accelerating phase time of train �, sec
�������+1 �e braking phase time duration of train � + 1, sec
�� �e headway between the subsequent trains, sec�1, �2 �1, �2 ∈ {0, 1} are two binary parameters with �1 ⋅ �2 = 0�cut�,� �e current dwell time of train � at station �, sec

�opt�,� �e optimized dwell time of train � at station �, sec 
(decision variables)

v

0 s
s2s1 s3

2
v

1
v

W1

W2

Figure 1: �e v–s curve of train operations between stations.
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we can derive 1/�t ∈ [�(54)/�(54), �(72)/�(72)] and 1/�b ∈ [�(46)/�(46), �(60)/�(60)] (as shown in Figures 3 
and 4). Figure 3 shows the integral values of traction force and 
basic resistance with the velocity at 54 km/h and 72 km/h, 
respectively. Furthermore, Figure 4 shows the integral values 
of braking force and basic resistance with the velocity at 
46 km/h and 60 km/h, respectively.

Finally, we use the integral function “quad” of MATLAB 
to calculate �(54), �(54), �(72), �(72), �(46), �(46), �(60), and �(60). We obtain 1/�t ∈ [295.2/10938.8, 532.3/13451.1] and 1/�b ∈ [217.9/7636, 532.3/9960]. �erefore, the traditional 
energy consumption model of a single train (Equation 10) can 
be simpli�ed to Equation (17). In order to make Equation (17) 
correct, it must satisfy the following three premises.

(1) �e object is the urban rail transit system so 
the maximum speed of trains should not exceed 
80 km/h, the maximum train acceleration is equal 
to 1 m/s2, and the maximum train deceleration is 
equal to −1 m/s2.

(2)  �e distance between each station should not exceed 
3 kilometers in principle, and the train movement in 
each section consists of only three phases: accelerat-
ing, coasting, and braking.

(3)  �e traction, basic resistance, and braking force char-
acteristic curves are given. �eir values in this study 
are shown in Figure 2.

2.3. Application of Regenerative Braking Energy between Multiple 
Trains. Regenerative braking technology is an energy-saving 
approach that converts the kinetic energy in a train’s braking 
phase into electric energy (i.e., regenerative braking energy). 
�is electric energy is transmitted to another train during the 
acceleration phase. �e transformer substation is the main 
electricity source that supports running trains. Speci�cally, 
when multiple trains run consecutively in the sections served 

(17)�� = �t + 12�t ������v
2
�1.

the �rst phase, and the traction force’s e�ect is mainly to 
increase the kinetic energy of trains. �e rest is used to 
overcome the basic resistance of the rail line. �erefore, 
Equation (10) can be rewritten for the �rst phase as shown 
in Equation (11).

�e braking force only works in the third phase, and the brak-
ing force’s e�ect mainly decreases the kinetic energy of the 
train until it reaches a value of 0. �e braking force is also a 
resistance force, similar to the basic resistance of the rail line. 
As shown in Equation (12).

We assume that the ratio of the traction force’s e�ect on the 
basic resistance’s e�ect during the accelerating phase in each 
section is �t. Furthermore, we assume that the ratio of the 
braking force’s e�ect on the basic resistance’s e�ect during the 
braking phase in each section is �b. Under these conditions, 
Equations (11) and (12) can be re-written as Equations (13) 
and (14), respectively.

According to the calculation method of power and energy, as 
shown in Equation (15), the calculation method of �t and �b
can be written as Equation (16).

� is the energy; � is the power; � is the force; � is the distance; 
v is the speed; � is the time; �tra is the traction force’s e�ect; �res is the basic resistance’s e�ect; and �bra is the braking force’s 
e�ect.

Yang et al. [26] show that, if the train operates in the sec-
tion with the optimal energy-saving driving strategy, the speed 
v�1 at the end of the train’s accelerating phase generally reaches 
54 km/h but does not exceed 72 km/h and the speed v�2 at the 
beginning of the train’s braking phase generally reaches 
46 km/h but does not exceed 60 km/h. A±er referring to the 
data resources of Li et al. [31], Figure 2 shows the relationships 
between traction, basic resistance, and braking force. Finally, 

(10)�� = ∑
�∈Γ

3∑
�=1
∫���
0
�(v) ⋅ �d�,

(11)�� = �tra = 12������v2�1 + ∫
��1

0
�(v) ⋅ �d�.

(12)�bra = 12������v2�2 − ∫
��3

0
�(v) ⋅ �d�.

(13)�� = �tra = (1 + 1�t) ⋅
12������v2�1,

(14)�bra = �b1 + �b ⋅
12������v2�2.

(15)
� = ��� = �� = �v� } �⇒ � = �v,

(16)

�
t
= �tra�

res

= ∫
��1
0 �(v) ⋅ �d�∫��10 �(v) ⋅ �d� =

∫v�10 �(v) ⋅ � ⋅ �dv∫v�10 �(v) ⋅ � ⋅ �dv =
∫v�10 �(v)dv∫v�10 �(v)dv ,

�
b
= �bra�

res

= ∫
��3
0 �(v) ⋅ �d�∫��30 �(v) ⋅ �d� =

∫v�20 �(v) ⋅ � ⋅ �dv∫v�20 �(v) ⋅ � ⋅ �dv =
∫v�20 �(v)dv∫v�20 �(v)dv .
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Figure 2:  �e traction, basic resistance, and braking force 
characteristic curves.
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braking energy can be utilized to support air conditioning, 
lighting, and other equipment.

As described above, regenerative braking energy is the 
converted energy derived when the energy of overcoming 
resistance forces is subtracted from the kinetic energy in tran-
sit operations involving multiple trains.

where �mech is the kinetic energy and �res is the basic resist-
ance’s e�ect.

�e e�ective utilization of regenerative braking energy by 
train �, which is generated by train � + 1, ..., � + � − 1 during 
braking phases as shown in Figure 6, can be calculated as 
follows:

� is the utilization ratio of regenerative braking energy. 
�e e�ectively utilized ratio, �, directly determines how much 
electric energy can be saved by utilizing regenerative braking 
energy. �e regenerative braking energy generated by train � + 1, . . . , � + � − 1 in its braking phase is directly propor-
tional to the overlapping time between the braking phase time 

(18)

���g = (�mech
−�

res
) ⋅ �

= (12������v2�2 −�res
) ⋅ �

= �
bra
⋅ �,

(19)

����� = ���g ⋅ �
= �

bra
⋅ � ⋅ (��v������,�+1�������+1 +

��v������,�+2�������+2 + ⋅ ⋅ ⋅ +
��v������,�+�−1�������+�−1 ).

by two transformer substations, the motor of the subsequent 
train switches to generator mode to convert kinetic energy 
from the braking phase into regenerative braking energy, while 
regenerative braking energy is simultaneously transmitted to 
the same power supply section, to accelerate the preceding 
train in the accelerating phase. �erefore, optimizing this 
simultaneous interaction moving process between urban 
trains can recycle kinetic energy and thus, reduce the energy 
consumption of urban rail transit systems. �is optimal train 
driving strategy aims to minimize total energy consumption 
by determining dwelling time, which is closely related to urban 
train timetabling.

Let us assume that there are � trains running under two 
transformer substations and that these � trains are sorted as �, � + 1, . . . , � + � + 1. �e focus of our research is to maxi-
mize the utilization of regenerative braking energy. In other 
words, the regenerative braking energy produced by any train 
during its braking phase can be best absorbed and utilized by 
other trains in traction phases in the two transformer substa-
tions. As shown in Figure 5, the solid arrows indicate the direc-
tion of electricity transmission. �e train � + 1, . . . , � + � + 1
will convert kinetic energy into regenerative braking energy, ���g, during the braking phase. �e preceding train, �, in its 
accelerating phase, can utilize ���g and save the electric energy 
obtained from the transformer substation. Train � + 1, . . . , � + � + 1 in its braking phase can produce regen-
erative braking energy, most of which will be wasted as heat 
energy if there is no other train running in two consecutive 
transformer substations. Only a small part of the regenerative 
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Figure 3: Integral diagram of traction force (blue line) and basic resistance (black line).
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Δ �+1 is the deviation time when train � + 1 enters the braking phase 
in the running section, Δ �+�−1 is the deviation time when train � +� − 1 enters the braking phase in the running section, and (Δ �+1, Δ �+2, ⋅ ⋅ ⋅, Δ �+�−1) is a group of small, positive numbers.

In order to maximize regenerative braking energy and 
ensure that the regenerative braking energy produced by the 
subsequent trains is fully utilized by train �, we assume that � = 1. As Equation (23) shows,

Assuming �������+�1 = min(�������+1 , �������+2 , . . . , �������+�−1), Equation (23) 
can be derived as follows:

Equation (25) shows the maximum overlapping time between 
the braking phase time of the subsequent trains and the accel-
erating phase time of train �. Equation (25) shows,

�erefore, Equation (24) can be written as follows:

Based on Equation (26), Equation (24) can be rewritten as 
follows:

(22)

��+�−1 =
�1−�0−1∑
�=1

3∑
�=1
��� +
�1−�0−1∑
�=2
�opt�+�−1,� − ��1−�0−1,3 − Δ �+�−1.

(23)
��v������,�+1�������+1 +

��v������,�+2�������+2 + ⋅ ⋅ ⋅ +
��v������,�+�−1�������+�−1 ≥ 1.

(24)
��v������,�+1�������+�1 +

��v������,�+2�������+�1 + . . . +
��v������,�+�−1�������+�1 ≥ 1,��v������,�+1 + ��v������,�+2 + . . . + ��v������,�+�−1 ≥ �������+�1 .

(25)

��v������,�+1 = ��1 ,1 − Δ �+1,��v������,�+2 = ��1 ,1 − Δ �+2,��v������,�+�−1 = ��1 ,1 − Δ �+�−1.

(26)

��1 ,1 − Δ �+1 + ��1 ,1 − Δ �+2 + ⋅ ⋅ ⋅ + ��1 ,1 − Δ �+�−1 ≥ �������+�1 ,(� − 1)��1 ,1 − (Δ �+1 + Δ �+2 + ⋅ ⋅ ⋅ + Δ �+�−1) ≥ �������+�1 .

(27)

��1 ,1�������+�1 +
(� − 2)��1 ,1 − (Δ �+1 + Δ �+2 + ⋅ ⋅ ⋅ + Δ �+�−1)�������+�1 ≥ 1.

of the subsequent trains and the accelerating phase time of 
train �.

�e start time of the accelerating phase of the preceding 
train �’s departure from station �1 can be used as a basic ref-
erence time. At the reference time, the operation time of train � is ��, the operation time of train � + 1 is ��+1, and so on. 
Furthermore, the operation time of the train � + � − 1 is ��+�−1,  
as Equations (20)–(22) show.

(20)�� =
�1−1∑
�=1

3∑
�=1
��� +
�1∑
�=2
�opt�,�,

(21)��+1 =
�1−2∑
�=1

3∑
�=1
��� +
�1−2∑
�=2
�opt�+1,� − ��1−2,3 − Δ �+1,

Transformer substation

Train k + 1 

�e third track

Track

Transformer substation

Train k+N–1

Station m1–m0 Station m1–1 Station m1

Train k …

Figure 5: A schematic of regenerative braking energy utilization. Note: Figure 5 imitates the drawing style of [26].
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In summary, the analytical solution equations can obtain the 
ranges of dwelling times to fully utilize the regenerative brak-
ing energy and also largely reduce the solving e�orts required 
to obtain acceptable solutions.

2.5. Objective Functions and Constraint Conditions. Based on 
the aforementioned train motion equations and regenerative 
braking energy principles, the mathematical model for the 
timetable optimization aims to minimize the total energy 
consumption of trains, while maximizing the quality of service. 
Furthermore, we have considered that the change of dwelling 
time will have a certain impact on passengers alighting/
boarding the train. �erefore, in order to avoid this problem, 
�rstly, we limit the scope of application of this optimization 
model, which stipulates that the scope of application of this 
optimization model is during the nonpeak hours of metro 
operation (the headway of the case selected in this paper is 
210 s), even during the low-peak period of passenger travel at 
night, because the passenger �ow is relatively low during these 
two periods, so the reasonable change of dwelling time will 
have less impact on passengers alighting/boarding the train. 
Secondly, we set upper and lower limits of dwelling time, which 
can let the solution more make sense, as shown in Table 5. 
�e upper and lower limits of dwelling time are the speci�c 
values given by Beijing Metro considering the actual passenger 
transport demand during the nonrush hours. �erefore, we 
think that optimizing the dwelling time within a reasonable 
range of values will have less impact on passengers alighting/
boarding the train.

Not at all, the reasonable dwell time should be certainly 
considered when optimizing the timetable with the target of 
minimizing energy consumption, and that is why we establish 
the integrated optimization on energy saving and quality of 
service, in which the stability and robustness of the timetable 
against disruption should be carefully considered. We want to 
obtain timetables that can reach a balance between the ener-
gy-saving and service quality by taking into account the dwell 
time as an important factor. Also, we believe that train delay 
recovery and adjustment can be studied as an independent 
issue because the location of delay and the initial delay time 
will a�ect the choice of delay recovery strategy, so the problem 
of delay recovery and adjustment is also a complex optimiza-
tion problem. However, the main purpose of this paper is to 
minimize energy consumption and maximize the quality of 

(28)
�� −�opt�,�1 − ∑

�=�1−1

3∑
�=1
��� −�opt�+1,�1−1 = ��1−2,3 + Δ �+1,

(29)
2�� − �opt�,�1 −

�1−1∑
�=�1−2

3∑
�=1
��� − �opt�+1,�1−1 − �opt�+2,�1−2

= ��1−3,3 + Δ �+2,

(30)

(� − 1)�� − (�
opt

�,�1 + �
opt

�+1,�1−1 + ⋅ ⋅ ⋅ + −�
opt

�+�−1,�1−�+1)

−
�1−1
∑
�=�1−�+1

3
∑
�=1
��� = ��1−�,3 + Δ �+�+1.

According to the results of relevant literature [27, 30], we know 
that the duration of the acceleration phase is generally longer 
than the duration of the braking phase: (��1 ,1/�������+�1 ) ≥ 1. 
�erefore, in order to ensure the validity of Equation (27), 
Equation (27) only needs to satisfy (� − 2)��1 ,1−(Δ �+1 + Δ �+2 + ⋅ ⋅ ⋅ + Δ �+�−1) = 0. Furthermore, we can 
obtain many feasible solutions to ensure the validity of (� − 2)��1 ,1 − (Δ �+1 + Δ �+2 + ⋅ ⋅ ⋅ + Δ �+�−1) = 0 by adjusting 
the train timetable. However, the optimal solution must be 
calculated using the optimization theory. Equation (27) only 
provides an optimization direction for the model.

2.4. Establishment of Analytical Solution Equations. As 
discussed above, the key to improving energy-consumption 
e�ciency is to increase the e�ectively utilized regenerative 
braking energy ratio, which is represented by �, where � is 
positively correlated with overlapping time. �us, increasing 
the overlapping time period is important. �e optimal 
overlapping time duration (��v������,�+1 , ��v������,�+2 , ..., ��v������,�+�−1) is 
a�ected by many elements, including headways between trains 
and train dwelling times at stations, which makes the model 
solution highly complex. Based on the systematic analysis of 
processes involving subsequent trains, we constructed a set of 
analytical solution equations to reduce the di�culty of solving 
the problem.

First, the precondition for the interaction processes of 
subsequent trains to produce regenerative braking energy is 
that the subsequent trains should run in the sections of two 
transformer substations. �e most common and simple case 
is where two trains run in consecutive sections. �eoretically 
and practically, multiple trains can run in two transformer 
substations. Generally, the length of headway �� (i.e., the 
tracking time interval between subsequent trains) determines 
the number of sections and stations between subsequent 
trains. In essence, improving the interaction processes between 
subsequent trains involves changing the dwelling time at sta-
tions between them to increase the e�ective overlapping time 
between them. Based on the analysis provided above, the ana-
lytical solution equations are constructed, while also consid-
ering the di�erent numbers of stations between the subsequent 
trains.

In addition, we know that the headway of two 
subsequent trains will be constant in the same period, as �� − ��+1 = ��+1 − ��+2 = ... = ��+�−2 − ��+�−1 = ��, and the 
accelerating phase is generally longer than the braking phase. 
In order to analyze the optimal interaction processes of sub-
sequent trains, we present a set of analytical solution equations 
to express the optimal interaction process between them. 
According to these equations, the regenerative braking energy 
produced by the subsequent trains in the braking phase can 
be fully consumed by the preceding train in its accelerating 
phase, as shown in Equations (28)–(30). According to the 
analysis results of Equation (27), we know that when we obtain 
a set data of (Δ �+1, Δ �+2, ⋅ ⋅ ⋅, Δ �+�−1), we can calculate the 
dwelling time at stations between subsequent trains using 
Equations (28)–(30). �us, when we obtain a set of optimized 
data (Δ �+1, Δ �+2, ⋅ ⋅ ⋅, Δ �+�−1), we can calculate the optimal 
dwelling time at stations between the subsequent trains.
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To guarantee safety and prevent the train from extreme cases 
of operation, the proposed optimization model should satisfy 
the following constraints:

First, the train operation should be restricted by dynamic 
constraints and kinematic constraints. Equation (33) repre-
sents dynamic constraints and Equations (4)–(9), (34)–(36) 
represent kinematic constraints. Considering that the basic 
resistance of the line �(v) is known, it can be generally 
expressed as �(v) = �0v2 + �0v + �0. �0, �0, and �0 are constant. 
We can calculate �(v) and �(v) using Equations (35) and (36):

Second, the following constraints also apply: ������ is the total 
operation time of the research period; �� is the operation time 
of the train in section I; ∑�−1�=2��,� is the total dwelling time at 
stations excluding the origin and destination stations in the 
upward direction; and ∑2�−1�=�+1��,� is the total dwelling time 
at stations excluding the origin and destination stations in the 
downward direction. �e operating time of the train in the 
running sections should satisfy the following constraints:

(31)

min�������� = ��[
�
∑
�=1

2�
∑
�=1

�
∑
�=1
∫
����

0
�(v)�d�

−
�
∑
�=1

2�
∑
�=1

�
∑
�=1
∫
����

0
�(v)�d� × � × ��,�]

= ��[
�
∑
�=1

2�
∑
�=1
(1 + 1�

t

) ⋅ 12������v
2
��1

−
�
∑
�=1

2�
∑
�=1

�
b

1 + �
b

⋅ 12������v
2
��2 × � × ��,�],

(32)min�������� = ��
����������
�∑
�=1

2�∑
�=1
(�opt�,� − �cut�,�)

����������.

(33)
0 ≤ �(v) ≤ �max,0 ≤ �(v) ≤ �max,

(34)�� = �∑
�=1
���,

(35)0 ≤ �(v) − �(v)������ = � ≤ �
max
acc ,

(36)0 ≤ �(v) + �(v)������ = � ≤
�����max

dec

����.

(37)

2�∑
�=1

�∑
�=1
��� + �−1∑
�=2
�opt�,� +

2�−1∑
�=�+1
�opt�,� + ��� + (� − 1) ⋅�� = ����
�,

(38)∑
�∈Γ

�∑
�=1
��� = ��.

services by optimizing reasonable train dwelling time. �is 
paper does not consider the study of train delay recovery. So 
we set an upper and lower limit of dwelling time to let the 
resolutions make more sense, as shown in Table 5. �e upper 
and lower limits of dwelling time are the speci�c values given 
by Beijing Metro considering the actual passenger transport 
demand during the nonrush hours. Reasonable dwelling time 
setting can help this paper avoid considering delayed 
recovery.

We use ������ to express the total energy consumption of 
trains. Based on the analysis in Section 2.2, which applied 
calculus to simplify the calculation model of train energy 
consumption, the complexity of the objective function ������
has been reduced. �e formulation of the metro train time-
tables takes many factors into account, such as passenger 
transport plan, energy-saving, and so on. So the current time-
table is the timetable that best meets the quality of service. In 
this study, we use ������, which represents the deviation 
between the total running time of all trains in one circle under 
the optimized timetable and the total running time of all 
trains in one circle under the current timetable, to express 
the di�erence between the optimized timetable and the cur-
rent timetable. When ������ is large, we believe that the opti-
mized timetable does not have the same characteristics as the 
current timetable, which means that the demand of passenger 
transport services is not met. For the operation enterprises, 
it means that the punctuality rate of train operation decreases, 
and for the passengers, it means that the quality of transport 
services decreases. When ������ is small, we conclude that the 
optimized timetable has the same characteristics as the cur-
rent schedule. Furthermore, according to the research results 
of Yang et al. [26], in order to maintain the quality of the 
passenger transport service (quality of service), the total run-
ning time of a train in one circle under the optimized time-
table should be the same as the total running time of a train 
in one circle under the current timetable. �erefore, we use ������ to express the quality of the service in the context of the 
research in this study. Since the decision variable in this study 
is the dwelling time of a train at a station, and the running 
time of trains in sections does not change, the deviation of 
train running time in one circle,������, can be expressed by 
Equation (32). Considering the objective function ������ is only 
a linear model; it does not need to be further simpli�ed. Since 
the objective function ������ has been simpli�ed, we can use 
NSGA-II to solve the multi-objective programming model. 
Besides, we set weight factors to meet the demands of di�er-
ent preferences of decision-makers. �� is the weight factor of 
total energy consumption, ������, and �� is the weight factor 
of the total cycle time error rate, ������. According to the 
research results of Li et al. [31], we adopt ��/�� = 10 : 1 to 
re�ect decision-makers’ preferences for energy-saving and 
use ��/�� = 1 : 10 to re�ect decision-makers’ preferences for 
quality of service in this study.

Table 5: Other parameters used in the model.

������/kg �min/s �max/s � limit/m � ���/s �total/s ��/s �0 �0 �0
194295 20 45 100 0.90 300 6800 210 0.001807 0.0622 2.031
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In summary, the basic steps of the NSGA-II algorithm are as 
follows, and the framework of the proposed NSGA-II algo-
rithm is shown in Figure 7.

Step 1. �e paternal generation, ��, with population size � is 
randomly generated, and then the paternal generation pop-
ulation produces the same size o�spring population, ��. �e 
two populations are mixed to form a new population �� with 
population size 2 N.

Step 2. Fast nondominant sequencing of new populations �� is 
performed. At the same time, the crowding degree of all indi-
viduals in each nondominant layer is calculated. According to 
the nondominant relationship between individuals and the size 
of the individual crowding degree, the appropriate individuals 
should be selected to form a new parent population, ��+1.
Step 3. �rough the basic operation of the traditional genetic 
algorithm (crossover, mutation, and so on), a new o�spring 
population ��+1 is generated. When ��+1 and ��+1 are mixed, 
a new population ��+1 is generated. �e above operation is 
repeated until the condition of the end of the optimization 
problem is satis�ed.

4. Numerical Experiments

4.1. Numerical Experiment Set-Up. Numerical experiments 
were conducted to verify the e�ectiveness of the proposed 
optimization model in the urban rail transit system based 
on the Yizhuang line in Beijing, China. Table 7 provides the 
input data for the Yizhuang line in Beijing, including section 
length, dwelling time, traveling time in the upward direction, 
and traveling time in the downward direction. �e speed limit 
of trains for each section is 80 km/h. Considering passenger 
traveling comfort, the maximum acceleration of the train is 
1 m/s2, and the maximum deceleration of the train is −0.5 m/
s2, the headway between following trains during the nonpeak 
hours is 210 s. Other parameters are listed in Table 5.

�ird, �opt�,� is the optimized dwell time of train � at station  �, �min and �max are the lower and upper bound of the dwell 
time. In order to ensure e�cient passenger transport, �opt�,�
should satisfy the following constraints:

Finally, to ensure the safety of train operations, the maximum 
tracking speed between adjacent trains should be less than the 
critical value vlimit. Based on the kinematics formula, we know 
that v22 − v21 = 2��, v2 is the terminal velocity, v1 is the initial 
velocity, � is the acceleration, and � is the distance. �erefore, 
the speed v��� should be expressed as v��� ≤ √2� limit�max

dec  to 
ensure that there is no con�ict between the adjacent trains.

3. Solution Method

�e NSGA-II is a mature, multi-objective, intelligent optimi-
zation algorithm. It was �rst proposed by Deb et al. [32] to 
analyze and solve optimization problems of maximization or 
minimization. Furthermore, multi-objective optimization 
algorithms, such as NSGA, PAES, SPEA, MOEA/D, and 
NSGA-II, are very well-developed. A comparative analysis of 
the above algorithms is shown in Table 6.

Considering that the multi-objective optimization model 
established in this study does not belong to the high-dimen-
sional optimization model a±er simpli�cation, we apply the 
NSGA-II algorithm. �e NSGA-II is a multi-objective pro-
gramming algorithm with an elite strategy, which is better than 
the NSGA algorithm. Compared with the NSGA algorithm, it 
can reduce the complexity of the model and get the optimiza-
tion results faster. Furthermore, the NSGA-II algorithm has 
been e�ectively applied in the �eld of transportation in the past 
(Jemai et al. [33]). Finally, considering that the scale of the 
actual case studied in this study is not very large, the NSGA-II 
algorithm can be used to solve the problem. �e detailed 
description of the NSGA-II algorithm is given in Li et al. [31]. 

(39)�min ≤ �opt�,� ≤ �max.

(40)v��� ≤ vlimit = √2� limit�max
dec .

Table 6: Comparative analysis of several major multi-objective optimization algorithms.

Algorithm Advantage Insu�cient

NSGA
�e number of optimization objectives is unrestricted, the 

 distribution of noninferior optimal solutions is uniform, and 
multiple equivalent solutions are allowed to exist.

�e computational e�ciency is low, and the shared 
parameters should be determined in advance.

PAES Using “1 + 1” strategy and local search evolutionary strategy, 
making its solution time lower than other algorithms.

Easy to lose the horizontal or vertical Pareto front 
solution.

SPEA Using an external population to realize elite retention strategy.
Using clustering to delete individuals from the external 
population, which may lose the noninferior solution in 

the external population.

MOEA/D

�e convergence rate is faster, and the computational  complexity 
is lower. Because the weight vectors guiding evolution are 

uniformly distributed, the solutions obtained by MOEA/D are 
uniformly distributed.

When dealing with multi-objective optimization 
 problems with high dimensions, its distribution cannot 

be guaranteed, and the e�ect is poor.

NSGA-II

Using the crowded-comparison operator and elite strategy to 
expand the sampling space, which allows the parents and their 
o�spring to participate in the competition to produce the next 

generation of the population and generate better o�spring.

When dealing with multi-objective optimization  
problems, congestion distance is not applicable 
in high-dimensional space, and computational 

 complexity is high.
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are tuned as follows: the optimal individual coe�cient = 0.3, 
population size = 100, generations = 200, the generation of 
stopping iteration = 200, and the error of �tness function = 1e-
100. �e solving time was less than one minute. Figures 8 
and 9 present the Pareto solutions of the multi-objective 
programming model obtained by the NSGA-II algorithm. 

4.2. Optimization Results Obtained by the NSGA-II 
Algorithm. We used a computer (CPU: Inter (R) Core (TM) 
i5-6100@3.7 GHz; 8 GB memory) to solve the proposed 
optimization problems. Speci�cally, we used the MATLAB 
so±ware to solve our multi-objective programming model 
with the NSGA-II algorithm. For this case, our parameters 
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Figure 7: �e framework of the NSGA-II algorithm.
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of the optimal quality of service timetable (OQOST). In 
addition, the optimized running time for the three phases 
in each section and the solution results of decision variables, 
which leads to the optimized dwell time, are provided in  
Tables 8 and 9.

4.3. Comprehensive Analysis of the Optimized Results. Figure 
10 shows the regenerative braking energy utilization ratio in 
each section of the current timetable. Figure 11 shows the 

�ey give 30 good solutions with di�erent weight ratios, 
respectively. Among them, Figure 8 shows 30 good solutions 
of the objective function in the case of ��/�� = 10 : 1 and the 
optimal solution is �total = 2228.55 kWh and �total = 728 s. �is 
is the optimal result of the optimal energy-saving timetable 
(OEST). Figure 9 shows 30 good solutions of the objective 
function in the case of ��/�� = 1 : 10 and the optimal solution 
is �total = 2292.81 kWh and �total = 0 s. �is is the optimal result 

Table 7: Input data of Yizhuang line in Beijing.

Note: “Up direction” represents traveling time in the up direction (M1 -> M13); “Down direction” represents traveling time in the down direction (M13 -> M1).

Station ID M1 M2 M3 M4 M5 M6 M7

Dwell time 40 40 40 40 40 40 40
Section length 2631 1275 2366 1982 993 1538 1280
Up direction 194 102 153 132 84 112 99
Down direction 195 105 157 135 90 111 101
Station ID M8 M9 M10 M11 M12 M13 Total
Dwell time 40 40 40 40 40 40 520
Section length 1354 2338 2265 2086 1286 21394
Up direction 102 158 146 137 99 1518
Down direction 103 162 150 141 100 1550
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Table 8: �e optimized running time of three phases in each section.

Up direction Accelerating 
time/s

Coasting 
time/s Braking time/s Down direc-

tion
Accelerating 

time/s
Coasting 

time/s Braking time/s

M1-M2 16.43 161.06 16.51 M13-M12 16.24 65.09 18.67
M2-M3 15.65 68.50 17.85 M12-M11 18.15 102.73 20.12
M3-M4 18.91 113.28 20.81 M11-M10 18.46 111.24 20.30
M4-M5 18.60 92.47 20.93 M10-M9 17.51 125.74 18.75
M5-M6 15.23 51.01 17.76 M9-M8 16.58 67.38 19.04
M6-M7 17.19 75.20 19.61 M8-M7 15.93 66.83 18.24
M7-M8 16.38 63.74 18.88 M7-M6 17.40 73.69 19.91
M8-M9 16.80 65.84 19.36 M6-M5 13.81 60.43 15.76
M9-M10 18.00 120.51 19.49 M5-M4 18.08 96.74 20.18
M10-M11 19.06 105.76 21.18 M4-M3 18.36 118.66 19.98
M11-M12 18.80 97.13 21.07 M3-M2 15.07 72.92 17.01
M12-M13 16.47 63.53 19.00 M2-M1 16.35 162.27 16.38
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provided by the OEST solution. �e CUT has the lowest, and 
the OQOST is between the two.

Table 10 presents a comparison of energy saving and the 
quality of service between the current timetable (CUT) and 
optimized timetables (OEST and OQOST). �e total energy 
consumption of the current timetable was 2441.53 kW, and the 

regenerative braking energy utilization ratio in each section 
of the OEST. Figure 12 shows the regenerative braking energy 
utilization ratio in each section of the OQOST. We conclude 
that the energy utilization ratio of regenerative braking in 
sections of optimized timetables is signi�cantly improved. �e 
highest average regenerative braking energy utilization rate is 

Table 9: �e optimized dwell time of optimized timetable.

Up direction
Optimized dwell time/s

Down direction
Optimized dwell time/s

OEST OQOST OEST OQOST
M1 40 40 M13 40 40
M2 45 45 M12 30 30
M3 45 45 M11 21 21
M4 29 35 M10 40 45
M5 30 45 M9 45 45
M6 36 36 M8 45 45
M7 45 45 M7 45 45
M8 45 45 M6 37 37
M9 45 45 M5 30 37
M10 40 45 M4 27 45
M11 24 24 M3 45 45
M12 30 30 M2 45 45
M13 40 40 M1 40 40
Total time/s 494 520 Total time/s 490 520
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Figure 10: �e regenerative braking energy utilization ratio in each section of the CUT.
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and OQOST). Figures 13 and 14 present the timetabling of 
the urban rail transit system under the CUT and under the 
optimized timetables (OEST and OQOST). Figure 13 shows 
a comparison of the CUT and the OEST. Table 11 gives the 
optimized timetable for the �rst train of the OEST. We identi�ed 
the deviation of train running time in one circle between the 
timetables of 56 s. Figure 14 presents a comparison of the CUT 
and the OQOST. Table 12 gives the optimized timetable for 
the �rst train of the OQOST. We identi�ed the deviation of 
train running time in one circle between the timetables of 0 s. 
�erefore, we conclude that if the decision-makers are more 
concerned about energy saving than the quality of services, 

deviation of trains running time in one circle was 0 s. �e total 
energy consumption of OEST was 2228.55 kWh, and the devi-
ation of trains running time in one circle was 728 s, thus indi-
cating energy savings of up to 8.72%. Nonetheless, the deviation 
of train running time in one circle of 728 s, impacts the quality 
of service negatively. �e total energy consumption was 
2292.81 kWh, and the deviation of train running time in one 
circle was 0 s in OQOST. �is indicates energy savings of up to 
6.09%, without increasing the deviation of train running time.

4.4. Comprehensive Analysis of the Optimized Timetables. We 
compared the CUT and the optimized timetables (OEST 
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Figure 12: �e regenerative braking energy utilization ratio in each section of the OQOST.

Table 10: Comparison of energy saving and quality of service between the current timetable and optimized timetables.

Current timetable
Optimized timetables

OEST OQOST
Direction Up Down Up Down Up Down
Overlapping time/s 492.05 502.71 1380.08 1401.14 1114.88 1140.36
Available regenerative braking energy/(kWh) 53.95 52.78 161.72 157.95 128.24 126.26
Average regenerative braking utilization ratio 0.18 0.19 0.46 0.49 0.38 0.40
Total energy consumption/(kWh) 2441.53 2228.55 2292.81
�e deviation of trains running time in one circle/s 0 728 0
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Figure 13: A comparison of the CUT (red lines) and the OEST (blue 
lines).
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algorithm has some randomness, but these slight changes do 
not a�ect the e�ectiveness of the algorithm.

4.6. Sensitivity Analysis of the Main Parameters. With 
the continuous progress and development of science and 
technology and the growing advocacy for green transportation, 
graphene is expected to be used in urban rail transit systems in 
the future. Graphene’s most useful characteristic, in this regard, 
is that its resistivity is almost zero (Ferrari et al. [34]). It is thus 
a perfect conductive material. If graphene could be used in the 
power supply systems of urban rail transit systems, it would 
greatly reduce the transmission and consumption of electric 
energy. In terms of the variable of this study, it would greatly 
improve �. �erefore, we conducted a sensitivity analysis for 
the regenerative braking energy conversion rate, �. To this end, 
it is assumed that the sensitivity range of � is 0.7–1.0 and that 
the step length is 0.05. In addition, the ������ given in Table 5 

the OEST is better than the OQOST. On the contrary, if the 
decision-makers prioritize the quality of services above energy 
saving, the OQOST is better than the OEST.

4.5. Main Parametric Analysis of the Algorithm. To verify 
the robustness of results, we analyze the main parameters, 
Generations (G) and the Optimal Individual Coe�cient 
(OIC), of the algorithm. By changing the values of parameters � and OIC, we get Pareto solutions of OEST and OQOST 
under di�erent parameters, as shown in Figures 15–23. In 
addition, we compare and analyze all ������ and ������ of the 
di�erent optimization timetables under di�erent parameters, 
as shown in Table 13. From Table 13, we get the following 
results: when � is unchanged, ������ increases slightly with an 
increase of OIC, while ������ basically does not change. When 
OIC is unchanged, ������ decreases slightly with an increase 
of �, while ������ basically does not change. We infer that the 

Table 11: �e optimized timetable for the �rst train of the OEST.

Up M1 M2 M3 M4 M5 M6 M7
Dwell (s) — 45 45 29 30 36 45
Arrival (s) — 194 341 539 700 814 962
Departure (s) 0 239 386 568 730 850 1007
Up M8 M9 M10 M11 M12 M13 —
Dwell (s) 45 45 40 24 30 — —
Arrival (s) 1106 1253 1456 1642 1803 1932 —
Departure (s) 1151 1298 1496 1666 1833 — —
Down M13 M12 M11 M10 M9 M8 M7
Dwell (s) — 30 21 40 45 45 45
Arrival (s) — 2332 2503 2674 2876 3024 3170
Departure (s) 2232 2362 2524 2714 2921 3069 3215
Down M6 M5 M4 M3 M2 M1 —
Dwell (s) 37 30 27 45 45 — —
Arrival (s) 3326 3453 3618 3802 3952 4192 —
Departure (s) 3363 3483 3645 3847 3997 — —

Table 12: �e optimized timetable for the �rst train of the OQOST.

Up M1 M2 M3 M4 M5 M6 M7
Dwell (s) — 45 45 35 45 36 45
Arrival (s) — 194 341 539 706 835 983
Departure (s) 0 239 386 574 751 871 1028
Up M8 M9 M10 M11 M12 M13 —
Dwell (s) 45 45 45 24 30 — —
Arrival (s) 1127 1274 1477 1668 1829 1958 —
Departure (s) 1172 1319 1522 1692 1859 — —
Down M13 M12 M11 M10 M9 M8 M7
Dwell (s) — 30 21 45 45 45 45
Arrival (s) — 2358 2529 2700 2907 3055 3201
Departure (s) 2258 2388 2550 2745 2952 3100 3246
Down M6 M5 M4 M3 M2 M1 —
Dwell (s) 37 37 45 45 45 — —
Arrival (s) 3357 3484 3656 3858 4008 4248 —
Departure (s) 3394 3521 3701 3903 4053 — —
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the increase of train weight, the total energy consumption of 
the operation increases signi�cantly.

5. Conclusions

�is study focused on developing an optimal train energy-sav-
ing strategy and timetable optimization method to improve 
the overlapping time between following trains and thus, 
increase the utilization of regenerative braking energy. 
Considering that timetable changes may a�ect the quality of 
the transport service, we proposed a multi-objective optimi-
zation model for urban railways, which is designed to mini-
mize the total energy consumption of trains, while maximizing 

is only the total weight of an empty train, but the actual weight 
of a train consists of the weight of an empty train and the 
total weight of the passengers on the train. According to the 
data in Yin et al. [23], the total weight of a train at full load is 
282375 kg, so we assume that the sensitivity range of ������ is 
194295 kg–284295 kg and that the step length is 10000 kg. We 
obtained a trade-o� between the main parameters and ������, as 
shown in Figure 24. Figure 24 considers three timetables: CUT, 
OEST, and OQOST. �e horizontal axis represents the total 
weight of the train, the vertical axis represents the regenerative 
braking energy conversion rate, and the color depth in the 
�gure represents the total energy consumption of all trains. 
We can see that, with the increase of �, the total energy 
consumption of the operation decreases signi�cantly. With 
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Figure 15: �e Pareto front under � = 150 and OIC = 0.2. (a) �e Pareto solutions of the OEST. (b) �e Pareto solutions of the OQOST.
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Figure 16 : �e Pareto front under � = 150 and OIC = 0.3. (a) �e Pareto solutions of the OEST. (b) �e Pareto solutions of the OQOST.
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Figure 17: �e Pareto front under � = 150 and OIC = 0.4. (a) �e Pareto solutions of the OEST. (b) �e Pareto solutions of the OQOST.
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Figure 18: �e Pareto front under � = 200 and OIC = 0.2. (a) �e Pareto solutions of the OEST. (b) �e Pareto solutions of the OQOST.
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Figure 19: �e Pareto front under � = 200 and OIC = 0.3. (a) �e Pareto solutions of the OEST. (b) �e Pareto solutions of the OQOST.
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Figure 20: �e Pareto front under � = 200 and OIC = 0.4. (a) �e Pareto solutions of the OEST. (b) �e Pareto solutions of the OQOST.
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Figure 21: �e Pareto front under � = 250 and OIC = 0.2. (a) �e Pareto solutions of the OEST. (b) �e Pareto solutions of the OQOST.
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Figure 22: �e Pareto front under � = 250 and OIC = 0.3. (a) �e Pareto solutions of the OEST. (b) �e Pareto solutions of the OQOST.
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practical case study was selected to verify the e�ectiveness of 
the proposed model, as well as to evaluate the advantages of 
the OEST and the OQOST. In the future, the proposed model 
may be solved by more advanced algorithms or simulation 
methods. In order to satisfy the requirements of the real-world, 
future research should strengthen the proposed model so that 

the quality of service. Furthermore, considering the con�icting 
requirements of decision-makers, we added weight factors to 
the objective functions to re�ect decision-makers’ preferences 
for energy-saving and the quality of services. During the 
model solving process, the NSGA-II algorithm was selected 
as an e�ective method to obtain optimal solutions. Finally, a 
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Figure 23: �e Pareto front under � = 250 and OIC = 0.4. (a) �e Pareto solutions of the OEST. (b) �e Pareto solutions of the OQOST.

Table 13: �e values of OEST and OQOST with di�erent main parameters of the algorithm.

Generations (G) Optimal individual coe�cient (OIC)
OEST OQOST������/kWh ������/s ������/kWh ������/s

150
0.2 2230.10 728 2293.80 0
0.3 2233.05 728 2294.11 0
0.4 2238.30 738 2296.13 0

200
0.2 2228.40 728 2292.67 0
0.3 2228.55 728 2292.81 0
0.4 2230.42 728 2295.01 0

250
0.2 2227.21 729 2292.50 0
0.3 2227.52 728 2292.71 0
0.4 2229.46 728 2293.12 0
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Figure 24: A comparison between the main parameters and total energy consumption under di�erent timetables.
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it will be able to integrate timetabling optimization, ener-
gy-saving ramp planning, and other practical constraints.

Data Availability

�e data are available by contacting wenchao@swjtu.cn.

Conflicts of Interest

�e authors declare that they have no conflicts of interest.

Acknowledgments

�is work was supported by the National Key R&D Program 
[grant number 2017YFB1200700], �e National Natural Science 
Foundation of China [grant number U1834209 and 71871188]. 
We acknowledge the support of the State Key Laboratory of 
Rail Traffic Control [grant number RCS2019K007] and the 
China Scholarship Council. We are grateful for the useful con-
tributions made by our project partners.

References

  [1] � Q. Gu, T. Tang, F. Cao, and Y.-D. Song, “Energy-efficient 
train operation in urban rail transit using real-time traffic 
information,” IEEE Transactions on Intelligent Transportation 
Systems, vol. 15, no. 3, pp. 1216–1233, 2014.

  [2] � P. Howlett, I. Milroy, and P. Pudney, “Energy-efficient train 
control,” Control Engineering Practice, vol. 2, no. 2, pp. 193–200, 
1994.

  [3] � R. R. Liu and I. M. Golovitcher, “Energy-efficient operation 
of rail vehicles,” Transportation Research Part A: Policy and 
Practice, vol. 37, no. 10, pp. 917–932, 2003.

  [4] � S. Su, T. Tang, L. Chen, and B. Liu, “Energy-efficient train control 
in urban rail transit systems,” Proceedings of the Institution of 
Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 
vol. 229, no. 4, pp. 446–454, 2015.

  [5] � E. Khmelnitsky, “On an optimal control problem of train 
operation,” IEEE Transactions on Automatic Control, vol. 45, 
no. 7, pp. 1257–1266, 2000.

  [6] � M. Peña-Alcaraz, A. Fernández, A. P. Cucala, A. Ramos, and R. 
R. Pecharromán, “Optimal underground timetable design based 
on power flow for maximizing the use of regenerative-braking 
energy,” Proceedings of the Institution of Mechanical Engineers, 
Part F: Journal of Rail and Rapid Transit, vol. 226, no. 4, pp. 
397–408, 2012.

  [7] � X. Yang, X. Li, Z. Gao, H. Wang, and T. Tang, “A cooperative 
scheduling model for timetable optimization in subway 
systems,” IEEE Transactions on Intelligent Transportation 
Systems, vol. 14, no. 1, pp. 438–447, 2013.

  [8] � X. Li and H. K. Lo, “An energy-efficient scheduling and speed 
control approach for metro rail operations,” Transportation 
Research Part B: Methodological, vol. 64, pp. 73–89, 2014.

  [9] � A. Higgins, E. Kozan, and L. Ferreira, “Optimal scheduling of 
trains on a single line track,” Transportation Research Part B: 
Methodological, vol. 30, no. 2, pp. 147–161, 1996.

mailto:wenchao@swjtu.cn


Journal of Advanced Transportation22

[25] � H. Ye and R. Liu, “Nonlinear programming methods based 
on closed-form expressions for optimal train control,” 
Transportation Research Part C: Emerging Technologies,  
vol. 82, pp. 102–123, 2017.

[26] � X. Yang, A. Chen, X. Li, B. Ning, and T. Tang, “An energy-
efficient scheduling approach to improve the utilization of 
regenerative energy for metro systems,” Transportation Research 
Part C: Emerging Technologies, vol. 57, pp. 13–29, 2015.

[27] � M. Miyatake and H. Ko, “Optimization of train speed profile for 
minimum energy consumption,” IEEJ Transactions on Electrical 
and Electronic Engineering, vol. 5, no. 3, pp. 263–269, 2010.

[28] � X. Yang, A. Chen, J. Wu, Z. Gao, and T. Tang, “An energy-
efficient rescheduling approach under delay perturbations 
for metro systems,” Transportmetrica B: Transport Dynamics,  
vol. 7, no. 1, pp. 386–400, 2019.

[29] � Z. Hou, H. Dong, S. Gao, G. Nicholson, L. Chen, and  
C. Roberts, “Energy-saving metro train timetable rescheduling 
model considering ATO profiles and dynamic passenger flow,” 
IEEE Transactions on Intelligent Transportation Systems, vol. 20,  
no. 7, pp. 2774–2785, 2019.

[30] � R. Chevrier, P. Pellegrini, and J. Rodriguez, “Energy saving in 
railway timetabling: A bi-objective evolutionary approach for 
computing alternative running times,” Transportation Research 
Part C: Emerging Technologies, vol. 37, pp. 20–41, 2013.

[31] � W. Li, Q. Peng, Q. Li, C. Wen, Y. Zhang, and J. Lessan, “Joint 
operating revenue and passenger travel cost optimization 
in urban rail transit,” Journal of Advanced Transportation,  
vol. 2018, Article ID 7805168, 15 pages, 2018.

[32] � K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and 
elitist multiobjective genetic algorithm: NSGA-II,” IEEE 
Transactions on Evolutionary Computation, vol. 6, no. 2,  
pp. 182–197, 2002.

[33] � J. Jemai, M. Zekri, and K. Mellouli, “An NSGA-II algorithm 
for the green vehicle routing problem,”  European Conference 
on Evolutionary Computation in Combinatorial Optimization, 
Springer, Berlin, Heidelberg, pp. 37–48, 2012.

[34] � A. Ferrari, J. Meyer, V. Scardaci et al., “Raman spectrum 
of graphene and graphene layers,” Physical Review Letters,  
vol. 97, no. 18, Article ID 187401, 2006.



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

