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Discrete choice modeling of travel modes is an essential part of traffic planning and management. &us far, this field has been
dominated by multinomial logit (MNL) models with a linear utility specification. However, deep neural networks (DNNs), owing
to their powerful capacity of nonlinear fitting, are now rapidly replacing these models. &is is because, by using DNNs, mode
choice can be assimilated with the classification problems within the machine learning community. &is article proposes a newly
designed DNN framework for traffic mode choice in the style of two hidden layers. First, a local-connected layer automatically
extracts an effective utility specification from the available data, and then, a fully connected layer augments the feature rep-
resentation. Validated by a practical city-wide multimodal traffic dataset in Beijing, our model significantly outperforms the
random utility models and simple fully connected neural network in terms of the prediction accuracy. Besides the comparison of
the predictive power, we also present the interpretability of the proposed model.

1. Introduction

Discrete choice models (DCMs) have emerged as powerful
theoretical frameworks to analyze individual travel behavior
among a given set of discrete alternatives (e.g., taking a
subway instead of selecting a private car or bus). Since the
seminal paper by McFadden [1], for decades, the multino-
mial logit (MNL) model has been widely adopted for ex-
ploring individual decision-making. Despite its
oversimplified assumption of a linear utility specification in
regard to complex human choice behavior [1], this type of a
model still realizes practical applications because it enables a
high level of interpretability. However, the interpretability
gained from a linear expression is frequently at the expense
of the predictive power. Indeed, an assumed linear statistical
structure cannot adequately capture the potential regula-
tions in a dataset and will encounter the issue of dealing with
categorical explanatory variables (e.g., income level and
departure time range).

Typically, different from the MNL model, machine
learning methods, particularly deep learning models using a
data-oriented approach, are becoming increasingly prom-
inent in numerous research fields, including transportation
[2–4]. Deep neural networks (DNNs) are mathematical tools
that are loosely inspired by the functional aspects of bio-
logical neural systems. &ese models have repeatedly
demonstrated excellent performances in an extensive range
of specific transportation tasks, such as short-term traffic
flow prediction [5], license plate recognition [6], automobile
driving risk detection [7], ownership demand estimation [8],
and movement pattern inference [9]. Although some tra-
ditional algorithms with hand-crafted features are very ef-
fective for the given problems [10], well-recognized
guidelines to choose the appropriate features are not
available in general. &us, the deep learning technology
which leverages automatic feature learning is more scalable
and robust. Despite the success in the abovementioned
aspects, the achievements of DNNs in the subfield of travel
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behavior study are still reasonably limited. For this topic,
several previous works utilized a conventional fully con-
nected neural network (FCN) [11–14]. However, the ver-
satile architecture of DNNs particularly makes them well
equipped to deal with large volumes of (even unstructured)
data [15].

In this study, to compensate for the abovementioned
deficiency, we aim to propose a distinctive DNN approach
to understand transportation mode choice. Specifically, the
contributions of this paper are threefold. (i) An ingenious
four-layer DNN model is established, with the first layer
taking the input data, the second layer learning the utility
function for each traffic mode and exogenous information,
the third layer mining the correlation rules in the former
layer, and the last layer calculating the choice probability of
each mode. (ii) Testing on a real-world large-scale dataset
in Beijing (including the travels by subway, bus, private car,
and taxi), the proposed model remarkably achieves a better
predictive performance than the random utility and FCN
models. (iii) Based on the empirical results, we reveal that
the valuable insights about identifying the characteristic
factors of traffic mode choice can be obtained from our
model.

&e remainder of this paper is organized as follows.
Section 2 overviews the recent relevant studies. Section 3
describes the proposed model. Section 4 exhibits the dataset
and experimental results. Section 5 demonstrates the evi-
dence of model interpretability. Finally, Section 6 provides
the summary.

2. Literature Review

In the area of travel demand analysis, since the 1980s, the
MNL model has been predominantly used to examine
various types of choices, such as travel mode, driving route,
travel frequency, departure time, and usage of new transit
lines [16–21]. &e key components elicited from the MNL
include choice prediction, choice probabilities, probability
derivatives, and marginal rate of substitutes, all of which are
critical for policy formulation. Overall, both the prediction
accuracy and economic explanation are worth studying in
depth.

&e machine learning community has also generated
tremendous interest in predicting various choices. A
mainstream practice holds the traffic mode choice as a
distinct case of the general classification problems. For in-
stance, Pirra and Diana employed the support vector ma-
chine (SVM) to recognize tour-based mode choice patterns
[22], whereas the random forests (RFs) and boosting method
are relied to predict the availability of sharing bikes and
airline itinerary choice [23, 24]. Subsequently, the data-
driven approaches were presented for modeling the mul-
timodal travel choice, which derived the explanatory vari-
ables from travel diary data [25–27]. Pekel and Soner Kara
performed a comprehensive review of the findings related to
a DNN relying on the public transport choice [28]. Not
surprisingly, these works yield outstanding results owing to
the big data fitting ability while neglecting tackling the issue
of interpretability.

Some of the most recent efforts have attempted to go
beyond simply targeting the accuracy and have conducted
innovative behavioral studies based on data-drivenmethods.
Wong et al. presented latent behavior attributes using a
restricted Boltzmann machine (BM) [29], and Van Cra-
nenburgh and Alwosheel initiated DNN-based approaches
to investigate the decision-rule heterogeneity between
travelers [14]. Two notable research studies bridge the gap
between a DCM and DNN. Wang and Zhao illustrated that
the MNL could be expressed as a shallow and sparse neural
network by deriving the equivalent mathematical expres-
sions and enabling the extraction of important economic
information from aDNN [12, 13]. Sifringer et al. integrated a
new nonlinear representation originating from a neural
network with the MNL to enhance the accuracy of the
prediction and parameter estimation [30].

&ese pioneering works prove that a DNN has the po-
tential for exploring the choice behavior. However, they do
not focus on the construction of a unique DNN structure
that allows high predictability while maintaining inter-
pretability. Inspired by the recent breakthroughs in the deep
learning domain, we orient to put forward a flexible and
general DNN framework for traffic mode choice that can
increase the overall predictive performance and acquire
shinning points to account for the choice behavior.

3. Methodology

3.1. Deep Neural Network. In a DNN, computations are
performed in terms of interconnected groups of artificial
neurons (also known as nodes), and processing information
is obtained by the so-called connectionist approach [31].
&ree types of layers are commonly distinguished: the input
layer, hidden layer, and output layer. Explanatory variables
are injected into the input layer, and the output layer
contains the dependent variables. In the context of the se-
lected models, the input nodes are concerned with the at-
tributes of the alternatives, whereas the output nodes include
the choice probabilities. &e data stream propagates in a
forward direction through links that connect the nodes with
learnable weights and biases. At each node, the weights are
multiplied with the input values from the previous layer and
then summed, and finally, the results are propagated to the
next layer, after passing through the activation function. By
default, a DNN includes more than one type of heteroge-
neous hidden layers.

Although the fact that an extensive variety of DNNs has
been invented to deal with numerous challenges, there seems
to be no particularly suitable solution for trafficmode choice.
&e household standard 2D convolution neural networks
(2D CNNs) and recurrent neural networks (RNNs) lead the
ground-breaking progress in the fields of computer vision
(CV) and natural language processing (NLP). However, they
are unsuitable for our problem since the designs of their
structures clearly deviate from our target. An FCN is fre-
quently considered as a generic method to solve any clas-
sification problem. Nevertheless, without incorporating
problemwise specific knowledge into the composition of a
DNN, the performance will definitely degrade and is
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typically unexplainable. In the absence of a suitable “off-the-
shelf” tool, the next subsection proposes a new DNN to-
pology that is particularly designed for multimodal traffic
choice.

3.2. DNN for Traffic Mode Choice. Figure 1 shows the ar-
chitecture of our conceived DNN, which is a multilayer
perceptron with two distinct hidden layers. &e inputs are
divided into five classes: exogenous features (e.g., the de-
scriptions of the origin and destination (OD) and personal
information) and attributes of taking subway, taxi, bus, and
car (e.g., the travel time, cost, and variability for each travel
mode). Note that the discrete variables (e.g., the ID of an
OD pair, departure time period, age level, and income
level) cannot directly feed to neural networks. To deal with
this problem, we exploit the embedding method [32] to
transform each categorical attribute into a low-dimensional
real vector. Specifically, each categorical value, v ∈ |V|, is
mapped to a real space, RE×1 (known as the embedding
space), by multiplying a parameter matrix, Wembed ∈ RV×E.
Here, V represents the vocabulary size of the original
categorical value, whereas E is the dimension of the em-
bedding space (usually E≪V). &us, our model effectively
reduces the input dimension (compared to that of a one-
hot encoding) and is computationally more efficient when
encountering categorical values [33]. Following the em-
bedding preprocessing, the first hidden layer behaviorally
imitates the MNL to form the categorized utility specifi-
cation by an adaptive linear transformation, which can be
expressed as

Uk � 〈X ∗k ,W(1)
k 〉 + b

(1)
k , k ∈ S , (1)

where S denotes the set of all feature categories, e.g.,
S � exogenous, car, bus, taxi, subway􏼈 􏼉. X∗k ∈ R

dk is the
input feature vector of kth category after embedding, if
discrete variables are involved, the original features are
noted as Xk with dimensions of dk. W

(1)
k ∈ R

dk , b
(1)
k are the

learnable weight and intercept owned by the first hidden
layer to extract the utility specification of kth feature cate-
gory, i.e., Uk. 〈·, ·〉 is the inner product of two vectors.

On receiving the utility terms, the second hidden layer
refines the feature representation by a nonlinear fully
connected mapping. &erefore, it considers the relevance of
different types of utilities. Finally, the output layer calculates
the choice probabilities by the softmax activation [31], which
ensures that the sum of the outcomes is 1. &is procedure is
given as

H(1)
� Uexo, Usub, Ubus, Utaxi, Ucar􏼂 􏼃, (2)

H(2)
� σ H(1)W(2)

+ b(2)
􏼐 􏼑, (3)

σ(x) �
1

1 + e
− x, (4)

H(3)
� H(2)W(3)

, (5)

Pn �
e

H
(3)
n

􏽘
j∈Ce

H
(3)

j

, n ∈ C, (6)

where [·, ·] concatenates the scalars to compose the vector,
H(1) ∈ R5, of the first hidden layer. W(2) ∈ R5×l, b(2) ∈ Rl

are the weight and intercept parameters of the second
hidden layer, respectively, which mirror the utility function
into an l-dimensional hyper vector, H(2), along with the
sigmoid activation, σ(·). W(3) ∈ Rl×4 adjusts the output
dimension to match the number of options. H(3)

n is the nth

element of H(3), and Pn is the choice probability of mode n.
C � car, bus, taxi, subway􏼈 􏼉 is the choice set.

3.3. Model Training. &e objective function of the above-
defined network is to minimize the cross-entropy loss [34]
between the true choice and estimated choice probability, by
which the weighted and intercept parameters can be learnt.
It is expressed in the following equation:

min
W,b

− 􏽐
i

􏽐
n

yn(i) · logPn(i), (7)
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Figure 1: Designed DNN topology.
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where yn(i) is the observed choice variable (or true label)
and is equal to 1 if the individual, i, chooses the alternative, n;
otherwise it is 0. Pn(i) is the corresponding output proba-
bility of the model.

It is worth pointing out that a DNN always encounters a
vanishing gradient during the training stage. To overcome
this drawback, a well-known strategy called batch normal-
ization (BN) [35] is applied to the two hidden layers.
&erefore, equations (1) and (3) are accordingly changed to

􏽢Uk � BNc1β1 〈X
∗
k ,W(1)

k 〉 + b
(1)
k􏼐 􏼑,

􏽢H(2)
� σ BNc2β2 H(1)W(2)

+ b(2)
􏼐 􏼑􏼐 􏼑.

(8)

Focusing on a batch of samples, B � x1, x2, . . . , xm􏼈 􏼉, the
BN is implemented as

BNc,β xr( 􏼁 � c
xr − μΒ������

σ2Β + ε
􏽱 + β,

μB �
1
m

􏽘

m

r�1
xr,

σ2B �
1
m

􏽘

m

r�1
xr − μB( 􏼁

2
,

(9)

where μB and σ2B are the mean and variance of the un-
derlying batch, respectively. c and β are the parameters to be
learnt (commonly with initial values of 1 and 0), which focus
on reducing the internal covariate shift when forward
propagating through each layer [36].

All the training steps are provided in Algorithm 1.

4. Case Study

4.1. Dataset

4.1.1. Study Area. &e study site is chosen as a closed region
bounded by the 4th Ring Road in Beijing, which covers a
302 km2 downtown area. We partition this area into 123
traffic zones which regard the subway stations as centroids,
and the positions of all subway stations are shown in Fig-
ure 2. &e ODs of the trips within each traffic zone are
assumed as the centroids.

4.1.2. Data Collection and Preprocess. In this research, the
data are derived from the public transportation system, taxi
orders, and anonymous navigation users of AMAP [37] in
Beijing, comprising the travels from a bus, subway, taxi, and
private car. To reveal the regular and relatively stable patterns of
travelers, we set the morning peak hours (06:00–11:00) of
weekdays as the departure time interval. Because the content,
format, structure, and information redundancy vary with the
raw data source and different traffic modes, we process the
massive heterogeneous data to ensure that the effective choice
set for each traveler is composed of four modes (i.e., bus,
subway, taxi, and private car). By indexing each piece of data,
eliminating entries with abrupt changes, and implementing a

joint query among multiple datasets, we match the OD in-
formation of all the modes to the centroids. &us, we acquire
the dataset satisfying the requirement that all the mode choices
are available for each traveler. In the operation of data cleaning,
we eliminate some entries that are beyond the research scope,
those with missing attributes, and those that are duplicates.

4.1.3. Data Fusion. In the last step, we fuse the data from the
different sources, having different formats and with different
characteristics, into one comprehensive multimode trans-
portation choice dataset, with fields as listed in Table 1. &e
features {f1–f4, f17–f21} are exogenous information and {f5,
f9, f13}, {f6, f10, f14}, {f7, f11, f15}, and {f8, f12, f16} are the
attributes of the bus, taxi, private car, and subway,
respectively.

To make up the different penetrations between each data
source, namely, the records of buses, subways, taxis, and
private cars accounting for 90%, 85%–90%, 50%, and 5%–
10% of the total number, respectively, a sampling expansion
method based on the urban-trip summation [38] is availed to
balance them. Although our dataset is formed from a
sampled data source, its quantity far exceeds the traditional
questionnaires by a sample ratio of approximately 2-3%.
From the perspectives of expense, timeliness, and conve-
nience, this approach is superior to a traffic survey.

4.2. Experiment Settings

4.2.1. BenchmarkModels. To test the effect of our model, it is
compared with four prevalent baselines.

MNL:&e standardMNLmodel constitutes a linear-in-
parameter utility specification with properties f5–f16,
as listed in Table 1. It is formulated as

Vn(i) � 〈Xn, αn〉, n ∈ C, (10)

Pn
′(i) �

e
Vn(i)

􏽘
j∈Ce

Vj(i)
, (11)

where Vn(i) is the utility of individual i associated with
alternative n. αn is the vector of the preference pa-
rameters, which will be estimated by the maximum
likelihood.
NL: &e nested logit model considers the correlation
between alternative choices, which is the most widely
known relaxation of the MNL model [39]. Because the
travel time of private car, bus, and taxi highly depend on
the traffic state of road network, we divide them into the
same nest and subway into another. It is formulated as

Pn
″(i) �

e
Vn(i)/λl( )

􏽘
k∈Bl

e
Vk(i)/λl( )

×
e
λlΓl

􏽘
M

m�1e
λmΓm

,

Γl � ln 􏽘
k∈Bl

e
Vk(i)/λl ,

(12)
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where Bl denotes the nest l, i.e.,
B1 � car, bus, taxi{ }, B2 � subway􏼈 􏼉. M is the total
number of nests, i.e., 2. λl measures the correlation of
alternatives in the nest l. Vn(i) keeps the same with
definition in equation (10).
FCN: A three-layer fully connected neural network is
set up, and the details are shown in Figure 3. &emodel
structure is very similar to [12, 13], except for the
number of hidden layers.
RF: Random forest is a well-known ensemble decision
tree model, which is proven to achieve superior per-
formance in a board range of data mining tasks. Since
the RF model is able to deal with discrete features, we
directly utilize all the features (i.e., f2–f21). &e number

of decision trees is set as 100, and the maximum depth
of the tree is set as 10, which achieves a balance between
accuracy and efficiency on the validation set.

4.2.2. Hyperparameter. In our DNN framework, the num-
ber of hidden layers and its nodes, learning rate, and batch
size are crucial hyperparameters for the model performance.
We referred to the suggestions by standard practices [40, 41]
and tuned the hyperparameters manually through a 5-fold
stratified cross validation. Figure 4 shows the heatmap of
model performances with different hidden layers and nodes
in cross validation. Although the model performances

Input &e feature vectors, Xexo,Xcar,Xbus,Xtaxi,Xsub􏼈 􏼉.
Observations of the individual choice, Y � y(1), y(2), . . . , y(R)􏼈 􏼉.

Output &e model with learnt parameters.
(1) Procedure DNN model Train.
(2) Initialize the parameter matrix: Wembe d for embedding.
(3) Embedding categorical values: X∗k ⟵Xk, k ∈ exo, car, bus, taxi, sub{ }.
(4) Initialize a null set: Q⟵∅.
(5) for all available individual sample i(1≤ i≤M)do.
(6) Xinput(i)⟵ [X∗exo(i),X∗car(i),X∗bus(i),X∗taxi(i),X∗sub(i)].
(7) Ylabel(i)⟵y(i), y(i) ∈ car, bus, taxi, subway􏼈 􏼉.
(8) A training sample (Xinput(i), Ylabel(i)) is placed in Q.
(9) end for
(10) Initialize all the weight and intercept parameters.
(11) Initialize c1, c2 � 1, β1, β2 � 0 for BN.
(12) repeat.
(13) Randomly extract a batch of samples Qb from Q.
(14) Update the parameters by minimizing the equation (7) by the mini-batch gradient descent algorithm within Qb.
(15) until convergence criterion is met.
(16) end procedure.

ALGORITHM 1: Training the model.

Figure 2: Centroids in the traffic zone.

Table 1: Fields of the traffic mode choice dataset.

Index Field
f1 Observation of mode choice
f2 Length level of trip
f3 Departure time interval
f4 House price of origin
f5 Bus travel time
f6 Taxi travel time
f7 Private car travel time
f8 Subway travel time
f9 Bus ticket
f10 Taxi price
f11 Private car fare
f12 Subway ticket
f13 Bus travel time fluctuation
f14 Taxi travel time fluctuation
f15 Private car travel time fluctuation
f16 Subway travel time fluctuation
f17 No. of origin rings
f18 No. of destination rings
f19 Distance between ODs
f20 Index of origin
f21 Index of destination

Journal of Advanced Transportation 5



slightly improve with more hidden layers and nodes, a
complex structure will considerably increase the training
time. As the result, our model is facilitated by one fully
connected hidden layer with 32 nodes, the Xavier initiali-
zation [42], and Adam optimization [43] with a learning rate
of 0.01 and weak to 0.9 after 100 training steps, early
stopping as regularization, and mini-batch size� 217.

4.2.3. Measurement. To evaluate the performance of each
model, the dataset is divided into two independent subsets:
the data from 80%OD pairs serve as the training set, whereas
the remaining 20% is leveraged as the testing set, which are
approximately 800,000 and 200,000 observations, respec-
tively. &e prediction accuracy is defined as the proportion
of correctly predicted samples to that of the total number of
samples in the testing set, which can be computed as

accuracy �
􏽘

i
τi

|T|
,

τi �

1, argmax
n

Pn(i) � y(i),

0, else,

⎧⎪⎪⎨

⎪⎪⎩

(13)

where τi is a binary variable to identify whether a sample i is
correctly predicted and |T| is the cardinality of the testing
set.

4.3. Results. &e prediction accuracies of the five compared
methods are listed in Table 2. Because the neural networks
and random forest model are influenced by the randomness,
we separately run these models five times and report the

average results and standard deviation.We further utilize the
t-test to verify whether the performances between each
model are significantly different. &e results are shown in
Table 3. Since the P values are all less than 0.05, the model
performances are statistically variant. From the comparison,
the following conclusions can be drawn: (1) Apparently, our
model exhibits significant superiority than the MNL, NL,
FCN, and RF in terms of the prediction accuracy. (2) &e
neural network-based method surpasses the random utility
models in terms of the predictive performance, which is
consistent with the conclusions from [12–14, 30]. Figure 5
displays the curves of the accuracy achieved on the training
set with the training steps. It can be seen that the FCN
rapidly reaches saturation, whereas our model continuously
makes breakthroughs. Both the models are approximately
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accurate on the training set and testing set, which testifies
they are not overfitted.

5. Model Interpretation

In this section, based on the empirical results, we further
confirm the interpretability of the developed model. &is is
discussed from the perspectives of the utility term and
economic explanation.

5.1. Influential Input Factors. Focusing on equation (1), the
explanatory variables with higher absolute values of weight
W(1)

k will contribute more to the utility specification, Uk.
&us, the absolute values of a local-connected weight can
measure the relative feature importance [5, 44, 45]. &e
relative importance of the qth attribute belonging to the
feature category, k, is delineated as

R
q

k �

􏽧W(1)
k [q]|

􏽧W(1)
k

�����

�����1
, k ∈ S,

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(14)

where 􏽧W(1)
k is the local-connected weight vector after the

training stage and 􏽧W(1)
k [q] is the corresponding qth element.

‖ · ‖1 and | · | return the L1 norm of the vector and absolute
value of the scalar, respectively.

Figure 6 shows the relative importance of the explana-
tory variables pertaining to each traffic mode (reliability is
determined by the volatility of the travel time).&e following
interesting phenomena can be observed: (1) All the surface
transports (i.e., bus, taxi, and private car) are sensitive to the
travel time owing to the severe traffic jams during morning
peak hours. (2) For the bus mode, the inexpensive tickets
along with the travel time and its uncertainty are the dis-
tinguished characters. (3) In contrast, as the other option for
public transit, the choice of a subway is only affected by the
ticket because the travel time and variation are highly stable.
(4) &e expensive fare to hail a taxi is concerned about when
the commute trip is planned. (5) Private car owners do not
care about the fuel charges, which is much less than the fee of
a taxi.

5.2.Economic Information. In this subsection, we discuss the
use of numerical methods to probe how the behaviorally
intuitive choice probabilities change with economic factors
(e.g., travel time and travel cost). A short trip from origin
No. 1 to destination No. 3 with a 3.8 km distance between 7:
00 and 8:00 and a long trip from origin No. 60 to destination
No. 65 with a 9.7 km distance between 6:00 and 7:00 are
treated as two examples. &e detailed attributes of each
transportation mode in these two trips are presented in
Tables 4 and 5.

First, we alter the bus travel time from 12.7min and
16.5min (the minimum travel time among the four modes)
to 25.7min and 36.7min in the short and long trip instances,
respectively. Figure 7 depicts the variation curve of the
choice probability with the bus travel time. In general, the
choice probabilities of a bus, taxi, and private car exhibit a
similar descending trend, whereas that of a subway is op-
posite. From this, we can infer that the developed model
takes the travel time of a bus as one index for the condition of
the surface traffic. &erefore, a subway is a substitution for a
congested surface transportation. It is worth emphasizing
that the travel times of the surface transports identically
increase or decrease in the training set. Based on this prior
fact, the abovementioned results actually reflect that our
model can capture the correlation rules in the dataset. By a
simple analysis, it is easy to find that the designed DNN
avoids the shortcoming of the independence of irrelevant
alternatives (IIA). &e aforementioned two properties are
exhibited by the second fully connected hidden layer. &e
nonlinearity of the variation curve is also discriminative to
the MNL, which is more substantial in the long trip.

Figure 8 visualizes the relationship between the proba-
bilities of choosing a bus and its ticket. &e colored dotted

Table 2: Experimental results.

Model Accuracy on testing set
MNL 53.5%
NL 55.8%
FCN 57.8% (±0.33%)
RF 64.2% (±0.13%)
Customized DNN 69.5% (±0.56%)

Table 3: P value of welch’s t-test of performances between each
model.

MNL NL FCN RF
FCN 1.4×10−5 2.8×10−4

RF 9.0×10−9 2.4×10−8 4.3×10−10

Customized DNN 9.6×10−12 3.3×10−11 4.0×10−10 7.7×10−8
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Figure 5: Curve of the training accuracy.
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curves are the results of five separate estimations, and the
black one is from the ensembled model aggregated over
them. All the curves are generated by varying the bus ticket

while holding the other variables at their original levels. &e
majority curves are intuitive and reasonable, resembling the
standard S-shaped curve from the MNL model. However,
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Figure 6: Relative feature importance of the four travel modes. (a) Bus. (b) Taxi. (c) Subway. (d) Private car.

Table 4: Travel information of a short trip.

Mode/attribute Travel time Fare Relative standard deviation of travel time
Bus 25.7min ¥1 68.7%
Taxi 12.7min ¥15.9 13.5%
Private car 12.7min ¥5.06 13.5%
Subway 10.4min ¥3 0

Table 5: Travel information of a long trip.

Mode\attribute Travel time Fare Relative standard deviation of travel time
Bus 36.4min ¥1 60.6%
Taxi 16.5min ¥25.5 19.5%
Private car 16.5min ¥10.5 19.5%
Subway 18.6min ¥4 0
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some particular individual estimations suffer the inter-
pretability problem (e.g., red line) because the choice
probability increases with the ticket increase, which is
inconsistent with our general knowledge. Compared to
each individual estimation, the ensembled model is more
monotonic and smoother, showing a nonlinear decrease
with the ticket increase. Furthermore, we can deduce that
¥1 to ¥2 and ¥1.5 to ¥3 are the sensitive ranges of the bus
ticket in the short and long trip travels, respectively.
Concurrently, the choice probability of a bus is less sen-
sitive to the price in a long trip because its slope is relatively

less. Wang and Zhao [12, 13] also offered the evidence that,
at the disaggregate level, the choice probability curves of
DNN models could be nonmonotonically decreasing with
the costs and be highly sensitive to the particular estimation
owing to the irregularity of the probability fields and large
estimation variances.

On basis of the abovementioned results, when facing
large-scale datasets along with numerous categorical fea-
tures, it is considerable to implement the ensembled DNN
model for the travel choice behaviors analysis and unknown
cases prediction.
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Figure 7: Variation curve of the choice probability with the bus travel time. (a) Short trip. (b) Long trip.
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Figure 8: Variation curve of the bus choice probability with the bus ticket. (a) Short trip. (b) Long trip.
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6. Conclusions and Future Work

&is paper develops a new general and flexible DNN
framework that integrates two elaborate hidden layers for
traffic mode choice. Using real-world multimodal trans-
portation data, we demonstrate our model significantly
improves the prediction performance compared to the
random utility models, FCN and RF. It stresses the necessity
of designing a particular DNN architecture according to the
problemwise requirements, which is exactly our motivation.

Another substantive contribution is that we examine the
model interpretability in depth. &e important findings can
be concluded into three sides: (1) the first local-connected
hidden layer partially replaces the manual utility specifica-
tion and allows for automatically discovering the influential
explanatory variables for each traffic mode from the avail-
able data. (2) &e second fully connected hidden layer en-
ables the model to capture the correlated relationship in the
dataset and eliminate the IIA problem. (3) Researchers and
practitioners can obtain the stable economic information
from complex human decision-making processes with the
aid of the ensemble DNN model.

Subject to the dataset, the effects of individual properties
on traffic mode choice are not involved in this study. Future
research may be directed to apply our model to the stated
preference (SP) survey data, in which the individual attri-
butes will be treated as a new feature category when feeding
to the input layer. &e results can help us better understand
the role of individual properties in the travel choice decision.
In addition, it is worth exploring how to use the DNN for
analyzing travelers’ path choice behavior [46]. From the
application aspect, predicting the passenger flow of the
public transit via the proposed model may be helpful to
urban safety management during the important events [47].
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