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In large urban areas, the estimation of vehicular traffic emissions is commonly based on the outputs of transport planning models,
such as Static Traffic Assignment (STA) models. However, such models, being used in a strategic context, imply some important
simplifications regarding the variation of traffic conditions, and their outputs are heavily aggregated in time. In addition, dynamic
traffic flow phenomena, such as queue spillback, cannot be captured, leading to inaccurate modelling of congestion. As congestion
is strongly correlated with increased emission rates, using STA may lead to unreliable emission estimations. 'e first objective of
this paper is to identify the errors that STA models introduce into an emission estimation. 'en, considering the type and the
nature of the errors, our aim is to suggest potential solutions. According to our findings, the main errors are related to STA
inability of accurately modelling the level and the location of congestion. For this reason, we suggest and evaluate the post-
processing of STA outputs through quasidynamic network loading. 'en, we evaluate our suggested approach using the HBEFA
emission factors and a 19 km long motorway segment in Stockholm as a case study. Although, in terms of total emissions, the
differences compared to the simple static case are not so vital, the postprocessor performs better regarding the spatial distribution
of emissions. Considering the location-specific effects of traffic emissions, the latter may lead to substantial improvements in
applications of emission modelling such as dispersion, air quality, and exposure modelling.

1. Introduction

'e traffic situation in urban areas around the world is today
characterised by severe road congestion. Congestion in-
creases travel times, but usually also results in increased
energy usage and vehicular emissions. Exhaust emissions
from road traffic is an important contributor to the main air
pollutants, with significant effects on the urban air quality
[1]. A more efficient usage of the transportation systems is
therefore of great importance. By taking the correct deci-
sions and applying the appropriate measures, transportation
planners and policy makers can alleviate congestion and
hence reduce its negative impacts. Traffic models are useful
tools for the evaluation of changes in a traffic system. In the
case of analysing the impact on the environment or energy

use, traffic models are coupled with emission models. In this
integrated modelling framework, traffic models generate the
required emission modelling inputs, i.e., traffic state and
traffic activity, while emission models estimate energy use
and the amount of pollutant emitted per vehicle and
distance.

In large urban areas, traffic data used for exhaust
emission and air pollution analyses are commonly derived
by traffic assignment models. Traffic assignment models are
used for transport planning and economic appraisals, and
their aim is to generate traffic volumes on road segments,
relying on specific behavioural principles [2]. 'ey intrin-
sically describe the interaction between travel demand in-
frastructure supply employing two submodels, the route
choice and the network loading models. A fundamental
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classification of traffic assignment models concerns the
temporal dimension, categorising the models either as static
or dynamic [3].

Despite the extensive research on Dynamic Traffic As-
signment (DTA) during the last decades, Static Traffic As-
signment (STA) is still the most commonly applied approach
for analysing emissions or other externalities of traffic. STA
models are used for the strategic assessment of the current or
future state of a transportation network assuming a stationary
travel demand and infrastructure supply. 'ese types of
models have been proposed over 50 years ago, and their at-
tributes of efficiency, accountability, and robustness are well
studied andwidely accepted.'erefore, STAmodels have been
favoured by policy makers due to their ease of use, reduced
computational cost, and low requirements of input data.

However, several limitations of STA have also been
identified and discussed in many studies [4–8]. 'e un-
derlying assumptions of STA, related to the stationary de-
mand, long aggregation intervals, and static network
loading, can lead to unrealistic results when variations in
traffic conditions are high. Network loading is instanta-
neous, and thus many important dynamic traffic flow
phenomena, such as propagation of queues and spillback,
cannot be taken into account. 'is can result in an inac-
curate estimation of dynamic traffic variables, such as the
level and location of congestion, affecting emission esti-
mation analyses. Congestion is strongly correlated with
increased emission rates as it is associated with low speeds
and stop and go conditions. More specifically, in the case of a
bottleneck, all the time delays, and consequently the high
emission rates, are assigned by STAmodels at the bottleneck
link. 'e links upstream the bottleneck remain unaffected.
However, in reality, increased delays and emissions are
observed upstream the bottleneck due to the queue spillback.
Moreover, STA models may overestimate the emissions
downstream the bottleneck being unable to capture flow
metering effects.

STA models are still used for the purposes of strategic
transport planning relying on the hypothesis that accu-
mulated delays at the bottleneck could compensate the
delays, observed in reality elsewhere in the network. In the
cases where planning and policy making is based on travel
times, the accurate congestion’s location may not be so
crucial, since the total origin-destination travel times could
be accurately modelled by a well-calibrated STA model.
However, the accurate determination of the level and the
location of congestion is essential from an environmental
analysis perspective, since several applications of emission
modelling have location-specific effects.

Applications of emission modelling, such as dispersion
and exposure modelling, are sensitive to the spatial distri-
bution of emission rates. Dispersion models consider lo-
cation-specific background pollution and meteorology data.
In addition, different network links are associated with
different number of pedestrians, cyclists, and people living
or working by the roadside and are exposed to emissions.
'is could have a direct effect on an economic analysis, such
as a cost-benefit analysis, where the monetary cost of a gram
of pollutant emitted is analogous to the number of people

exposed and affected [9]. Accordingly, in such an analysis,
the travel time costs are associated with route travel times
(from origin to the destination) and the use of STA may be
sufficient. In most of the cases, though, STA models are used
for both travel time and emission estimation.

While STA models consider a single time period and the
traffic variables are expressed as averages over this period,
DTA models consider several shorter time periods. Addi-
tionally, in contrast to STA models, DTA can model spill-
back of the queues as traffic demand exceeds capacity and
dispersion of the queues when demand is below the capacity.
Trying to take advantage of the dynamic modelling benefits
and potentially improve emission estimation, Aziz and
Ukkusuri [10], Smit et al. [11], Aguilera and Lebacque [12],
Borge et al. [13], and Zhou et al. [14] applied dynamic traffic
models in order to generate inputs for emission models. A
review of the DTA models used for environmental analyses
can be found in Wismans et al. [8], while Wang et al. [7]
highlighted the methodological advantages of DTA in
emission modelling. Furthermore, in Wismans et al. [15], a
comparison between the emission estimations based on
static and dynamic traffic models is performed, resulting in
large absolute differences between the two approaches.

Although DTA approaches are acknowledged to be more
capable of modelling traffic congestion, their performance
heavily depends on the availability and the quality of the
input data. Complexity issues make dynamic modelling
computationally expensive and time consuming to calibrate,
discouraging their application in larger areas. In addition,
DTA models do not possess the property of unique link
flows, which is an important feature when using model
output for policy or project evaluations.

A middle-ground solution between static and dynamic
modelling could be the postprocessing of static models using
quasidynamic network loading approaches, such as the ones
described by Bliemer et al. [16] and Bundschuh et al. [17].
'ese models can be placed in the middle of STA and DTA
both in terms of computing efficiency and reliability. Quasi-
dynamic loading incorporates queue spillback and flow
metering effects by setting maximum density and capacity
constraints, respectively. 'erefore, such approaches may lead
to a more realistic location of congestion, which potentially
can improve the accuracy of emission estimations.

'is paper aims to investigate the errors that static
modelling outputs introduce in the emission estimation
process and to suggest and evaluate improvements in the
modelling process. Preliminary results from this study have
earlier been presented at the Swedish transportation re-
search conference [18]. 'e paper extends Tsanakas et al.
[19] with methodological development and an extended case
study and is structured as follows. Section 2 provides a
description of macroscopic emission models and their use
with static traffic models, together with an overview of
developed methods for postprocessing static model data.
Section 3 describes the different sources of emission esti-
mation errors that static models can result in, with illus-
trative examples for a motorway stretch in Stockholm. In
Section 4, a quasidynamic approach for postprocessing the
emission estimates obtained from static models is described.
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'is approach is then evaluated for the same motorway
stretch in Stockholm. Finally, Section 5 provides some
conclusions and suggestions for further research.

2. Macroscopic Emission Models with Static
Traffic Data

2.1. Macroscopic Emission Modelling. Emission factors and
traffic activity are the basis of each macroscopic emission
model. Emission factors provide the amount of emitted
pollutants in relation to traffic activity, as a function of the
traffic state. Commonly, emission factors are given in terms
of grams of pollutant emitted per vehicle kilometre for each
vehicle and road category, while traffic activity is provided as
traffic flow in number of vehicles per time unit. 'e values of
emission factors are usually obtained from detailed vehicle
simulation of specific driving cycles. 'ese driving cycles
represent real-world driving for the specified vehicle and
road category. A detailed review of approaches used for
deriving emission factors is given by Franco et al. [20].

In Europe, HBEFA and COPERT are the two mainly
used macroscopic emission models. 'e two models are
based on the same model for microsimulation of emissions,
PHEM (Passenger Car and Heavy Duty Emission Model).
However, they differ in how the functional relationship
between the traffic state and emission factors is formulated
and in the development of the underlying driving cycles fed
to PHEM. For a detailed description of the two models, we
refer to Franco et al. [21].

HBEFA (Handbook on Emission Factors for Road
Transport) [22] was developed by Germany, Austria, Swit-
zerland, Norway, and Sweden and can be used for estimating
emissions on single roads, as well as on complete traffic
systems at regional and national level. HBEFA is essentially a
database which includes a large number of emission factors
corresponding to different vehicle classes, road categories, and
traffic situations.'e traffic situations are divided into the four
classes: Free flow, Heavy, Saturated, and Stop and go. Road
types are categorised by their road environment (rural or
urban) and their speed limit and road type (Motorway, Trunk
road/Primary, Distributor/Secondary, Local/Collector, and
Access/Residential). For each traffic situation, the emission
factor is constant, and each traffic situation is qualitatively
defined by a characterisation of the traffic situation. In
practice, this qualitative description needs to be quantified,
which is usually done by formulating thresholds based on
mean speed and/or traffic flow. 'us, the emission factors can
be viewed as discrete functions of speed and/or flow.

COPERT (Computer programme to calculate emissions
from road transport) [23] has been adopted by several
European countries to officially report their national in-
ventories of emissions from road transport. COPERT is also
the main emission model used in the EMEP/EEA Atmo-
spheric Emissions Inventory Guidebook [24]. Similar to
HBEFA, COPERT emission factors depend on vehicle class
and road type, but in contrast to HBEFA, the emission
factors are given as continuous functions of average speed.

For this study, HBEFA emission factors have been used
for estimating the emissions of five pollutants, HC, CO,

NOx, CO2, and PM10. Our study includes two different road
types, urban motorway speed limit 70 km/h and urban
motorway with speed limit 90 km/h.'e emission factors are
computed by weighting the emission factors of 15 different
vehicle classes of the Swedish vehicle fleet composition (see
Table 2 in Appendix A), both in terms of fleet mix and
mileage (only petrol, diesel, and alternative fuel cars are
included in this study). Figure 1 illustrates the HBEFA
emission factors for CO and NOx, corresponding to the
Swedish vehicle mix, while Table 3 in Appendix B contains
the full set of emission factors used in this study. We can
notice that for some pollutants, free flow conditions may
lead to higher emission factors compared to the corre-
sponding ones produced by heavy traffic conditions. In such
cases, a slight increase in congestion will possibly lead to
reduced emission rates.

2.2. Determining Traffic Situations Based on Static Traffic
Data. 'e traffic situation as well as the traffic activity has to
be determined first in order to apply the HBEFA emission
factors. 'e traffic situation is usually determined by traffic
analysis tools such as STAmodels. When an analysis is based
on an STA model, the traffic network is represented as a
directed graph, G � (N,A), which includes a set of nodes,
N, and a set of links, A, where each link is associated with
different attributes, such as capacity, Ca, and length, La. Let
R be the set of origin nodes associated with the origin zones,
R⊆N, andS be the set of destination nodes concerning the
destination zones, S⊆N. 'e desired number of move-
ments from an origin node, r ∈R, to a destination node,
s ∈ S, is denoted by qrs, and is expressed by an origin-
destination (O-D) matrix. Furthermore, letKrs be the set of
different alternative link sequences, called routes or paths
that connect each origin node, r ∈R, with a destination
node, s ∈ S. 'e problem of traffic assignment, then, con-
cerns how the demand, qrs, between each origin-destination
pair, rs, will be distributed among the possible paths
k, k ∈Krs, given that link travel time, ta, is a function of link
flow, Qa, for each a ∈ A [2].

'e assignment usually relies on behavioural principles,
such as the User Equilibrium (UE) [25]. UE is a stable
condition where all the available paths k, k ∈Krs, have the
same travel time and no traveller can improve his or her
travel time by unilaterally changing routes. To find the
equilibrium solution in a network, STA problem was
mathematically formulated as an optimisation problem
((1a)–(1d)), by Beckmann et al. [26]:

min z(x) � 􏽘
a∈A

􏽚
Qa

0
ta(ω)d(ω), (1a)

subject to

􏽘
k∈Krs

f
rs
k � qrs, ∀r, s, (1b)

f
rs
k ≥ 0, ∀k, r, s, (1c)

and the definitional constraint
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Qa � 􏽘
r∈R

􏽘
s∈S

􏽘
k∈Krs

f
rs
k δ

rs
a,k, (1d)

where frs
k is the number of travellers that chose the path k

between origin r and destination s and δrs
a,k is the so-called

incidencematrix, having the value of 1 if link a is part of path
k between r and s and 0 otherwise. Solving problem
((1a))–(1d)) will lead to optimal path demand f∗ rs

k and link
flows, Q∗a , where the travel cost between each O-D pair, rs, is
the minimum possible and equal for every k ∈Krs with
positive flow.

'e link travel time ta is considered as a function of link
volume Qa, known as the link cost function orVolume Delay
Function (VDF). VDF provides a mathematical relationship
between mean unit travel time, ta, and traffic volume, Qa,
representing the measure of the disutility of each corre-
sponding link. Beckmann also proved that the problem
((1a)–(1d)) has a unique solution if and only if

zta Qa( 􏼁

zQb

� 0, ∀a≠ b, (2)

zta Qa( 􏼁

zQa

> 0, ∀a. (3)

'erefore, according to equation (2), the travel time on
each link should not depend on the flow on other links, and
according to equation (3), VDF should be strictly convex.
'e latter means that travel time should only increase while
volume increases. Specifically, in most of the cases, travel
time strictly increases with the volume capacity ratio (V/C),
Qa/Ca. 'e function named Bureau of Public Roads (BPR,
equation (4)) is a commonly used function of this type:

ta xa( 􏼁 � t0 1 + c
Qa

Ca

􏼠 􏼡

θ
⎛⎝ ⎞⎠, (4)

where t0 is free flow travel time and c and θ are parameters.
HBEFA emission factors are given as a discrete functions

of speed and/or traffic flow.When an environmental analysis
is based on STA outputs, traffic volume is usually not used
directly, but as a ratio of volume to capacity V/C. In this

study, we use V/C thresholds (Table 1) presented in Tra-
fikverket [27].

'e assigned flow obtained from the solution of problem
((1a)–(1d)) is used to determine the emission factor,
e

p
a (Q∗a /Ca), for every link a and pollutant p in g/vehkm.
Next, the emission factor multiplied by the traffic activity
expressed in vehicle kilometre travelled, Q∗a · la, gives the
total grams of each pollutant, p, emitted at link a, Ep

a :

E
p
a � e

p
a

Q∗a
Ca

􏼠 􏼡 · Q
∗
a · la. (5)

2.3. Location-Specific Effects of Emissions. A volume delay
function should satisfy the conditions expressed by equation
(2). Any link interactions and thus traffic flow phenomena,
such as spill-back, are therefore neglected. 'e latter can
result in an inaccurate modelling of congestion’s level and
location. However, several studies [28–30] have highlighted
and demonstrated that increased traffic congestion levels
leads to high emission rates. Besides the congestion’s level,
its location can also be an influential factor as emissions have
location-specific effects.

'e estimated emissions derived from the traffic analysis
together with the so-called dispersion models determine the
air quality at a specific location. 'e accurate estimation of
location and extent of congestion then becomes even more
important, considering the nature of the dispersion. Based
on the mass of pollutant emitted per vehicle, mathematical
and physical models describe the dispersion of the pollutant,
leading to pollutant concentrations at specific locations. One
of the simplest and most frequently used approaches of
dispersion modelling is the street canyon model [31], where
the pollutants’ concentration depends on the so-called aspect
ratio, which is the height of road side buildings by the width
of the road. Meteorological conditions, such as the wind
speed, are also an important factor affecting the dispersion of
the vehicular emissions. In addition, different network links
are associated with different number of pedestrian and
cyclists affected by the emissions. Together with the pe-
destrians and cyclists’ exposure, the exposure of people
living or working by the roadside is also a local

URB/MW-City/90 URB/MW-City/70

CO emission factors (g/vehkm)
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(a)

URB/MW-City/90 URB/MW-City/70

NOx emission factor (g/vehkm)

0
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Figure 1: HBEFA emission factors for CO and NOx [19].
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characteristic. Usually, at a street canyon, the high buildings
are associated with denser population, and therefore
alongside the increased pollutants’ concentration, more
people are affected [32]. 'is could have a direct effect
during an economic analysis, such as a cost-benefit analysis,
where the monetary cost of a gram of pollutant emitted is
analogous to the number of people exposed and affected [9].

'erefore, applications of emission modelling such as
dispersion and exposure modelling may be sensitive to the
spatial allocation of the emission rates. A necessity of spa-
tially accurate emission estimation is thus emerged, con-
tradicting the STA assumptions about the location of
congestion. It should be noted here that not all the emitted
pollutants have local effects, for instance, CO2 has long-term
and global effects, and therefore the spatial distribution of
emissions is not of high importance in this case.

2.4. Postprocessing of Static Model Outputs. As static models
cannot describe dynamic phenomena of traffic flow, there is
a risk of introducing considerable errors, especially in
conjunction with air quality and exposure modelling.
Conversely, dynamic traffic models include components to
model dynamic phenomena at various levels and might
therefore be better suited for estimating emissions. However,
suchmodels cannot guarantee a unique equilibrium solution
and often are unsuitable for policy analyses. Also, they are
more time consuming to calibrate and run and require a
high amount of input data. An alternative approach with
lower computing cost is to postprocess the static models’
outputs in order to provide a more detailed representation of
traffic conditions and thus more accurate emissions.

'e problem of using outputs from static models in
emission estimation has been addressed in the literature by
various postprocessing techniques. One approach is con-
gestion correction techniques, capable to reflect the spa-
tiotemporal variability of speeds [11, 33–35]. 'e approach
suggested by Negrenti [33] is based on a congestion cor-
rection factor, representing the speed variability along a link,
which can improve the accuracy of emissions estimations.
Additionally, the proposedmodel in Nesamani et al. [34] can
provide a more precise prediction of emissions by capturing
traffic variations. Focusing on a set of factors that correlate
congestion on each link, a dynamic variation in speed was
constructed. Smit et al. [11] also highlighted the significant
underestimations of emissions when using assignment
outputs such as the average link speed. 'ey identified that
speed may vary on a link, supporting that the emission

estimation can be improved by using speed distributions
instead of a mean link speed. Finally, Ryu et al. [35] sug-
gested a corrected average speed model by analysing the
traffic characteristics that can cause serious emission esti-
mation errors.

Bai et al. [4] developed direct speed postprocessing
techniques for improving emission estimates derived from
the STA, based on intersection delays and queuing analysis
approaches. 'eir methods mainly rely on the alternative
forms of speed-flow curve and queuing analysis proposed in
Akcelik [36] and Dowling and Skabardonis [37]. 'ey
concluded that different postprocessors generate dissimilar
impacts on emissions. However, spillback phenomena are
not taken into account by these methods, as queues are
represented as vertical points, which is noted by Dowling
and Skabardonis [37].

A common characteristic of the presented post-
processing techniques is that they focus solely on single link
speeds, without considering network topology and link
interactions. 'us, queue spillback is not taken into account
which may also lead to an erroneous location of congestion.
An alternative approach would be to consider a post-
processing technique which includes a spatial description of
the queuing in the network. 'is could be achieved by
applying a one-shot simulation-based network loading,
relying on the known route choices from the static model.
Micro, meso, or macro dynamic traffic simulation ap-
proaches could be used for this purpose, but with the
downside of increased computational time and dynamic
demand as input. Depending on the loading technique,
various levels of additional calibration would be required.
Even the macroscopic approaches would require time-dy-
namic input in order to be able to reproduce congestion
patterns. Nevertheless, quasidynamic network loading ap-
proaches allow for link interaction to be taken into account,
without employing a full-time dynamic model. Such ap-
proaches have been applied with static models in Bliemer
et al. [16] and Bundschuh et al. [17] for improving travel time
estimation on routes. 'e output from such approaches are,
however, not straightforward to apply to macroscopic
emission models.

3. Analysis of Errors Originating from Static
Traffic Models

'e purpose of this section is to identify and quantify errors
introduced by a static model into the emission estimation
procedure. We distinguish these errors by their source into
two major categories: errors due to aggregated traffic con-
ditions both at a temporal and spatial level (Section 3.2) and
errors coming from the static loading and the incorrect
location of congestion (Section 3.3). Section 3.1 describes
our methodology by introducing the case study.

3.1. Methodology. A 19-km long section of the E4 mo-
torway, located north of Stockholm city, has been adopted
for our case study (see Figure 2). We divided the section in
27 homogeneous links based on the location of the on-

Table 1: Volume/capacity ratio thresholds for the traffic situation
determination [27].

Speed limit
(km/h)

Free
flow Heavy Saturated Stop and go

90 <0.65 0.65–0.85 0.85–1.35 ≥1.35
70 <0.39 0.39–0.84 0.84–1.35 ≥1.35
<50 <0.52 0.52–0.78 0.78–1.22 ≥1.22
Each row is associated with a different road type indicated by the speed
limit.
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ramps and off-ramps. During the morning peak, one of the
links becomes an active bottleneck resulting in spillback of
queues over several upstream links. For this reason, we set
our analysis period to be the morning peak between 6:30
and 9:30, which is a long enough time interval for the
complete formation and dissolution of queues. Addi-
tionally, this motorway section is densely equipped with
radar sensors, providing one-minute average speed and
flow per lane. 'e sensor data provide a sufficiently re-
alistic description of the traffic conditions, and thus we
used these data to construct the ground truth for our
experiments. Specifically, we consider counts from three
months (January, February, and March of 2013). We
initially estimate our ground-truth emissions for the
motorway section based on the traffic state and traffic
activity obtained by the radar sensors’ counts of speed and
flow. Next, for the same stretch, we estimate emissions
based on V/C ratio thresholds resulting from a static
model, considering a stable demand during the analysis
period. By comparing these emissions with the ground
truth, we can estimate the errors that static traffic models
introduce in the emission modelling.

To construct a more reliable ground truth together with
sensors data we use a traffic state estimator. Radar sensors are
stationary, providing cross-sectional data, available only at
specific locations (the sensors are located approximately at
every 500 meters). In addition, the measurements are noisy,
and since emissions are not linearly related to speed, a small
error in the speed counts can cause considerable errors
regarding the emissions. 'erefore, we apply a traffic state
estimator to reconstruct the traffic state, reduce the mea-
surements noise, and accordingly obtain a more reliable
ground truth for our experiments.

'e traffic estimator is based on the spatiotemporal
interpolation and smoothing approach suggested and de-
scribed by Treiber and Helbing [38] and Treiber and Kesting
[39]. 'e method relies on a discrete convolution, with a
symmetric exponential function as the weighted kernel,
operating actually as a low-pass filter, smoothing temporal
variation, and spatial fluctuations. More specifically, we used
the adaptive smooth method (ASM) [38, 39], where two
smoothed fields of the traffic variables are considered,
concerning different propagation velocities, one for free and
one for congested traffic. 'e estimator takes into account
that information in free-flowing conditions travels down-
stream, while in congested conditions perturbations prop-
agate upstream.'e resulting average traffic variable value is
a superposition of the two fields. 'e final output of the
interpolation method is a complete speed, Vκ,τ , and flow,
Qκ,τ , field as a function of the discretised space κ and time τ.
Let the lengths of the space and time discretisation intervals
be denoted by λ and μ, respectively. Figure 3 illustrates the
reconstructed speed field, obtained from the ASM traffic
estimation model with λ � 1 meter and μ � 1 minute, for the
morning peak hours of a typical day at the motorway stretch
under investigation. 'e y-axis denotes the location of each
discretised space interval, with the reference point 0 being
the starting point of the segment, at the most north point in
Figure 2. Accordingly, x-axis denotes the discretised time
during the morning peak hours.

In practice, there is a need to use longer discretisation
intervals, due to both computational burden and emission
modelling issues. Regarding the latter, HBEFA emission
factors are not instantaneous, and they rather represent
aggregated situations relying on average conditions during a
driving cycle. 'erefore, they should be applied on stable
traffic conditions. We chose the spatiotemporal interval
lengths of λ � 50 meters and μ � 5 minutes, assuming that
they are representative of the HBEFA traffic situations and at
the same time the traffic variations can be sufficiently
characterised.

'e V/C thresholds of the HBEFA traffic situations are
developed to be used with static model outputs. 'e
threshold for the stop and go situation (see Table 1) can be
greater than 1. 'is is because STA models allow the volume
to be higher than the capacity of the road; the underlying
VDF represents travel times as a function of demand rather
than the actual flow. 'us, the V/C thresholds as illustrated
in Figure 4(a) cannot directly be applied to the ASM output.

In order to apply the definition of HBEFA emission
factors, we suggest to distinguish the different traffic situ-
ations based on the fundamental diagram. 'e fundamental
diagram more realistically captures the relationship between
flow, density, and speed. In contrast to VDF, the relationship
between flow and speed is not monotonic. Low flows can
correspond to either low speeds, in the case of saturated
conditions, or to high speeds, in the case of nonsaturated
conditions. 'us, flow by itself is not sufficient to determine
the traffic situation and we cannot apply the V/C depended
emission factors, ep. For this reason, we translate the V/C
ratio thresholds into speed thresholds, using a hyperbolic-
linear fundamental diagram suggested by Work et al. [40].

Direction of traffic

00.51 2 3
Kilometers

Motorway section
Radar sensors

N

W E

S

Figure 2: Modelled motorway section and the sensors’ position.
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'erefore, emission factors are now expressed as a function
of average speed, gp. Figure 4(b) illustrates this process,
where the flow thresholds are projected to the speed axis to
determine the speed thresholds. A more detailed description
of the process of deriving speed thresholds can be found in
Tsanakas et al. [19].

Based on the reconstructed speed and flow space-time
field, we are now able to compute the corresponding
emission space-time field for each pollutant. Let V

η
κ,τ and

Qη
κ,τ be the estimated from ASM average cell speed and flow

in km/h and veh/h respectively, where η is the day index,
η ∈H, andH a set of the considered days. As ground truth,
we assume the average emissions among 35 representative
weekdays belong into the three months period (January,
February, and March 2013). 'e daily average mass in grams
of pollutant, p, emitted at each space and time interval, κ, τ,
can be estimated as

E
p
κ,τ �

1
|H|

􏽘
η∈H

Q
η
κ,τ · λ · μ · g

p
κ V

η
κ,τ􏼐 􏼑􏽨 􏽩, (6)

where λ and μ are the length of the discretisation space and
time intervals in km and h (λ � 50/103 km, μ � 5/60 h) and
g

p
κ(Vκ,τ) is the emission factor of pollutant p in g/vehkm, as

function of average speed Vκ,τ according to the speed limit of
κ space interval. A more detailed description of emission
estimation based on ASM reconstructed fields can be found
in Tsanakas et al. [41].

3.2. Errors of Emission Estimations due to Spatiotemporal
Aggregation. As we have mentioned in the introduction of
this section, we categorise the errors that static modelling
can introduce to the emission estimation in two types: errors
that concern the spatiotemporal resolution of average speed
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Figure 3: Speed field as a function of space and time, for the morning peak hours of a typical day.
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and flow and errors related to inaccurate congestion loca-
tion. If we assume that STA can accurately predict the traffic
conditions, similar to the ASM, but aggregated over longer
spatial and temporal intervals, we can isolate the errors that
concern the first category. We hypothesise that longer ag-
gregation intervals influence the emission estimations as
emission factors have a nonlinear relationship with the
average speed. To test our hypothesis, we first aggregate the
estimated by ASM flows, Qη

κ,τ , and speeds, V
η
κ,τ , spatially and

temporally, over a link level and a three-hour level, re-
spectively. Let Q

η
κ,τ and V

η
κ,τ be the aggregated flows and

speeds, respectively, given by

Q
η
κ,τ �

1
Da,κ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|T|

􏽘

κ′∈Da,κ

􏽘

τ′∈T

Q
η
κ′,τ′ ,

V
η
κ,τ �

1
Da,κ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|T|

􏽘

κ′∈Da,κ

􏽘

τ′∈T

V
η
κ′,τ′,

(7)

where T � 1, 2, . . . , nτ􏼈 􏼉 and nτ is the number of the time
intervals contained in the analysis period (nτ � 36 in this
case), a is the link that includes κ, and Da,κ is the set of the
space intervals included in link a. 'en, based on such
averaged traffic conditions, we estimate the emissions
similar to equation (6) as

E
p

κ,τ �
1

|H|
􏽘
η∈H

Q
η
κ,τ · λ · μ · g

p
κ V

η
κ,τ􏼐 􏼑􏽨 􏽩. (8)

If we assume that an STA model is accurate and the
errors are only related to the spatiotemporal aggregation, the
emissions E

p

κ,τ correspond to the emissions derived from this
“perfect” STA model. To quantify the influence of using
longer aggregation intervals, we compare the emissions E

p

κ,τ
with the ground truth, E

p
κ,τ . For a more illustrative way to

present our result, we introduce here the term Emission
Errors due to Spatial and Temporal Aggregation, ESTA, given
by

ESTAp
κ,τ �

E
p

κ,τ − E
p
κ,τ

E
p
κ,τ

100. (9)

ESTA represent the percentage emission over or un-
derestimations, caused by spatiotemporal aggregation, for
pollutant, p, and for each space and time interval, κ, τ.

Being consistent with our initial hypothesis, Figure 5(a)
demonstrates that longer aggregation periods significantly
affect the emission estimation. 'e underestimation at
specific locations can reach up to 40% for pollutants such as
HC and CO which are more sensitive to the variations of
traffic conditions. 'e higher underestimations are mainly
located where the congestion is observed, namely, upstream
the bottleneck. Speed variations are higher at the congested
parts, and thus there is a clear correlation between ESTA and
congestion. Moreover, the error depends on the link length,
since in long links the spatial average speed may not be
representative of the link’s conditions. 'erefore, even if we
assume that a static model would accurately predict the same
speeds and flows with the measurements, there are still

substantial errors because of the low spatiotemporal
resolution.

One possible source of such errors is the discrete nature
of the HBEFA emission factors. Slight changes in traffic state
may trigger a transition to another traffic situation and
generate significant differences in terms of emissions. In
order to avoid large changes among the emissions factors for
small changes in the traffic state, we suggest a continuous
version of HBEFA. We derive the new continuous emission
factors, ep(Q/C) and gp(V), relying on the linear inter-
polation between emission factors that correspond to ad-
jacent traffic situations, similar to the interpolation
performed by Wismans et al. [15]. By applying the con-
tinuous version of HBEFA, the errors caused by the tem-
poral resolution can be significantly reduced. According to
Figure 5(b), the emission calculations become less sensitive
to the aggregation period when the interpolated version is
used. We should highlight here that the subsequent analyses
described in the next sections are performed based on the
continuous emission factors.

Figure 6 illustrates the space-time emission field, when
the HBEFA emission factors are given as continuous
function of speed. Considering this figure, it would be
helpful here to give a small description of the network’s
traffic situation during the morning peak. 'e upstream end
of the bottleneck link is located at the position of 10.8 km,
where it is also the starting point of the downstream
propagated queues. 'e four lanes upstream this point,
become two downstream, decreasing the capacity and cre-
ating a lane-drop bottleneck. 'e bottleneck is mainly active
during the second hour of our analysis period. 'e position
of 12.1 km is associated with the downstream end of the
bottleneck link.

3.3. Errors of Emission Estimations due to Static Loading.
In this section, we attempt to identify and quantify emission
errors which come from the unrealistic location of con-
gestion modelled by static models. For this reason, we
compare our ground truth with emission estimations de-
rived from a static loading procedure for the same case study
segment. It should be highlighted here that we focus only on
the loading phase of an STAmodel; there are no route choice
alternatives in the considered segment. In this way, we can
isolate the errors caused by the static loading and exclude
any possible error coming from an inaccurate route-choice
modelling.

Given that there is no queue formed before the start of
the first hour as well as that all the queues have been dis-
charged after the end of the third hour of the analysis period,
we assume that the three-hour demand is equal to the total
three hours inflow of the segment. Hence, the three-hour
ODmatrix is obtained by the observed inflow from the radar
sensors located at the starting point of the segment and at
each on-ramp. However, according to Figure 6, in reality, the
bottleneck is active only during the second, intermediate
hour of the considered analysis period. Traffic conditions
during the first and the third hour are stable, and since no
dynamic traffic flow phenomena were observed, we assume
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that a static model can lead to sufficiently accurate emission
estimations. 'erefore, the first and the third hour are ex-
cluded from our experiments. 'e OD-matrix period is split,
then, into three smaller, one-hour ODmatrices based on the
demand variation indices suggested by Björketun and
Carlsson [42]. Specifically, to the first hour (6.30–7.30), 27%
of the total demand was assigned, while to the second
(7.30–8.30) and the third (8.30–9.30), 37.5% and 35.5% of
the total demand were assigned, respectively. 'e capacities,
as well as the other parameters of the static model, are

estimated from calibration using the flow and the speed
counts from the radar sensors.

For a comprehensible illustration of the results, we in-
troduce the term Excess due to Congestion Emission factors
ECEp

κ , defined for the ground truth as

ECEp
κ �

1
|H||T|

􏽘
η∈H

􏽘
τ∈T

g
p
κ V

η
κ,τ􏼐 􏼑 − g

p
κ V

0
κ􏼐 􏼑, (10)

while the percentage ECE is given by

ECEPp
κ �

1
|H||T|

􏽘
η∈H

􏽘
τ∈T

g
p
κ V

η
κ,τ􏼐 􏼑 − g

p
κ V

0
κ􏼐 􏼑⎛⎝ ⎞⎠

100
gp
κ V0

κ( 􏼁
,

(11)

where V0
κ is the free flow speed of space interval κ and gp

κ(V0
κ)

is the emission factor, if at time τ and space κ there was not any
congestion. 'erefore, ECEP expresses the differences over
space in emission estimates between the current situation and
the hypothetical situation where there would be no congestion
at all. In this way, we can isolate the additional emissions
exclusively originated from congestion and obtain their exact
location.We select to express our results here in terms of ECEP
in order to show the effect that the location of congestion can
have to the emission estimates. Accordingly, in the case of an
STA model, ECEP can be computed as

ECEPp
a �

ep
κ Q∗a /Ca( 􏼁 − ep

κ(0)

ep
κ(0)

100. (12)
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Figure 5: Average emission errors due to spatial and temporal aggregation (ESTA) when HBEFA emission factors are expressed as (a)
discrete and (b) continuous functions of average speed.
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'e optimal link volumes, Q∗a , regard averaged in time
and space (over a link-level) traffic conditions. 'us, errors
due to spatiotemporal aggregation may also be reflected in
STA ECEP. In order to mitigate these errors and isolate the
effect of the loading procedure, we employ here the con-
tinuous emission factors, both for the ground truth in
equation (11) and STA ECEP in equation (12). As we show in
the previous section, using such continuous emission factors
can effectively moderate the errors due to spatiotemporal
aggregation.

Figure 7 illustrates the value of ECEP at every location of
the segment for each one of the pollutants. Considering the
ground truth (Figure 7(a)), the excess emissions due to
congestion are located between the positions of 10.8 km and
9.6 km, namely, at the first links upstream the bottleneck.
Additionally, there are also some excess emissions upstream
the location of 9.6 km because of the queue spillback. Es-
pecially, for some pollutants sensitive to congestion, such as
HC, the excess emissions are high even for the first kilo-
metres of the segment.

In contrast to the ground truth, the static model, without
considering any capacity or density constraints, assigns all
the delays at the bottleneck link, due to the link’s high V/C
ratio (equation (4)). Consequently, the excess emissions are
also gathered at the same location, at the bottleneck link.
Figure 7(b) demonstrates this fact since the highest excess
emissions are located between the positions of 10.8 km and
12.1 km, namely, at the bottleneck link. Static loading is not
able to capture the propagation of the queues, neglecting an
important part of the network’s emissions.

It also becomes interesting that according to the static
model, higher than the ground-truth excess emissions, es-
pecially for CO, are estimated downstream the bottleneck.
'e demand ratio may be high compared to the capacity for
some links downstream the bottleneck, but in reality, the
inflow rate at those links is restricted to the bottleneck’s
capacity. 'e static model, by not taking any capacity
constraint into account, loads the entire demand instanta-
neously and neglects the metering effect, overestimating the
emissions downstream the bottleneck.

Although the differences in the total network’s emis-
sions, between the ground truth and static loading, are low
(the differences range from 1.30% to 1.42% depending on
the pollutant), the location of excess emissions differs sig-
nificantly, leading to the effects discussed in Section 2.3.
'erefore, from an emission modelling perspective, an ideal
model should be able to propagate the queues and as well as
to block the paths after the bottleneck up to bottlenecks
capacity, leading to a more realistic location of congestion.

4. Quasidynamic Loading as a
Postprocessing Technique

In the previous section, we show that the use of static traffic
models in emission modelling emission may lead to con-
siderable errors, related mainly to the location of congestion.
For a more reliable modelling of emissions of spatial dis-
tribution, we suggest the use of a quasidynamic loading
model as a postprocessor over the static assignment results.

In this way, the route choice is based on the traditional VDF
considered by STA, providing the required link inflows for
the network loading, which is not static anymore but
quasidynamic. 'e distribution of the static demand, qrs,
along the paths k, k ∈Krs, can therefore be computed
solving problem ((1a)–(1d)) similar to STA. Assume that
Drs,k is the set containing the consecutive links of path k,
k ∈Krs. 'e term quasidynamic means that part of the
optimal path demand f∗ rs

k is loaded in the path k instan-
taneously, similar to the static case, until a link flow, Qa,
a ∈ Drs,k, reaches its capacity, Ca. 'en, path k is blocked at
the upstream end of the link and the rest of the demand f∗ rs

k

is forming a queue propagating upstream of link a dy-
namically. Real-time variable does not exist, but the prop-
agation of the queues is based on pseudo time from the time
that the flow of link a reaches the capacity Ca. Our hy-
pothesis now is that excess due to congestion emissions can
be estimated more accurately by modelling propagation of
queues during the loading phase.

4.1. Static Assignment with Queuing. Static assignment with
queuing (STAQ) [16] is a quasidynamic model which em-
ploys traffic flow dynamics, but at the same time, it considers
two important static assumptions. 'e network loading
submodel consists of two phases, the squeezing and the
queuing phase. During the squeezing phase, each path share
f∗ rs

k of the static (first static assumption) demand, qrs, is
loaded instantaneously (second static assumption) into the
network through a path-based network loading model [43],
which ensures that no link flow, Qa, a ∈ Drs,k, exceeds
capacity. 'e squeezing phase is formulated as a fixed point
problem which is iteratively solved [43, 44], aiming at de-
termining a set of consistent, path-desegregated sending and
receiving flows for any network node.

'e queuing phase is based on the LWR first-order traffic
flow model [45, 46]. Traffic flow is treated as a one-di-
mensional compressible fluid, and the basic dynamic vari-
ables, in correspondence to fluid dynamics, are the density
ρ(x, t), the flow Q(x, t), and the mean speed V(x, t), with
the independent variables being the location x and the time
instant t. 'e conservation law defines the basic relationship
between flow and density as

zρ
zt

+
zQ

zx
� 0, (13)

describing how a change in density over time relates to a
change in flow over space. Lighthill and Whitham [45] and
Richards [46] introduced a static relation between flow and
density, Q � Qf(ρ), known as the fundamental diagram of
traffic flow. 'erefore, the conservation law becomes

zρ
zt

+
dQf(ρ)

dρ
zρ
zx

� 0. (14)

'e space-mean speed, V, is computed by the hydro-
dynamic flow relation, V � Q/ρ, considering the assumption
that traffic conditions at location x and time t are in steady
state. Solving equation (14) with the method of character-
istics curves [47, 48] implies that traffic state remains
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constant along a characteristic curve or wave. At the
boundary between two different traffic states, a shock wave is
formed propagating with a velocity of

w �
dQf(ρ)

dρ
. (15)

Daganzo [49] proposed the Cell Transmission Model
(CTM) which constitutes a time and space discrete nu-
merical solution scheme for the LWR model, where space is
divided in homogeneous cells. Accordingly, Link Trans-
mission Model (LTM) [50] is a discrete time model, but
instead of cells, space is now divided into links. Yperman
adopted the simplified wave theory suggested by Newell
[48], an alternative way to keep track of the traffic state by
relying only on link boundary conditions.

Figure 8 illustrates the way that the link model of LTM
propagates the traffic states in a network using equation (14)
and the simplified wave theory of Newell [48]. Consider two
simple consecutive links j and j + 1, where the inflow of link
j, for the state 1, Q1

j , is greater than the capacity of link j + 1,
Cj+1. Because link j + 1 cannot receive flow greater than its
capacity, the actual flow that will be transmitted from link j
to link j + 1, Q2

j , equals to the capacity of link j + 1, Cj+1.
LTM blocks the link’s upstream boundary up to link’s ca-
pacity, by applying a node model that is associated with node
capacity, sending and receiving flows, similar to the supply-
demandmethod used in CTM.'erefore, Cj+1Δt vehicles are
actually transmitted during a time period Δt from link j to
link j + 1 (sending flow), and the remaining vehicles,

(Q1
α − Cj+1)Δt, form a queue (state 2), with higher density

ρ2j > ρ1j . 'e fundamental diagram of Figure 8 has two re-
gimes, one of them associated with uncongested and one
with congested traffic conditions.'e density at the state 1 is,
according to the inverse of the fundamental diagram, ρ1j �

ρj(Q1
j | uncongested) (if we assume that Q1

j <Cj) and the
speed V1

j � Q1
j/ρ

1
j , while the state 2 is associated with a flow

Q2
j , a density ρ2j � ρj(Q2

j | congested) and a speed
V2

j � Q2
j/ρ

2
j . 'e transition between the two states is prop-

agating through the link j with a speed of

w
1⟶2

�
Q2

j − Q1
j

ρ2j − ρ1j
. (16)

'e time discretisation of the CTM was also eliminated
by the event-based solution algorithm (eLTM), proposed by
Raadsen et al. [51]. Instead of calculating the link boundary
conditions at each time step, the algorithm calculates them
only for specific discrete events when a change of the sate
occurs. An event is triggered when a backwardmoving shock
wave hits the upstream end of a link, when a forwardmoving
shock wave hits the downstream end of a link, or when two
shock waves meet each other.

In practice, nodesmay bemore complicated than the one
illustrated in Figure 8, having several incoming and outgoing
links. 'erefore, a possible downstream supply reduction
should be distributed among the incoming links, restricting
their outflow accordingly. Node models perform this task by
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Figure 7: Excess due to congestion emissions based on (a) the ground truth and (b) static loading.
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maximising the total node flow and ensuring consistency
between demand and supply constraints imposed by the
incoming and outgoing links. From an emission estimation
perspective, node models may be equally important to the
link models as they can influence the propagation of con-
gestion. 'e eLTM link model is coupled with the node
model suggested by Tampère et al. [52].

'e queuing phase of STAQ adopts an event-based
solution algorithm, similar to eLTM. Starting from the
sending and receiving flows computed in the squeezing
phase, the node model calculates the actual transition rates
and determines inflow and outflow rates for each link. 'en,
a shock wave is generated from any possible difference
among such inflows and outflows, as a boundary between
the two different traffic states. 'erefore, the first events are
triggered at the starting time of the algorithm, while the
propagation velocity of each shock wave reveals the time for
the next candidate events, namely, the expected arrival time
of each shock wave to the upstream node of a link. 'us,
horizontal queues are built up in front of the bottlenecks
which may also spillback to several upstream links. 'is
loading process ends when all traffic demand has reached its
destination.

'e network loading submodel of STAQ results into link
travel times, derived from the cumulative inflow and outflow
curves as it is described in the simplified wave theory of
Newell [48]. A route-choice submodel, then, computes new
path demand shares which are inputs to the squeezing phase,
and the procedure is repeated until some convergence cri-
terion is satisfied. Brederode et al. [44] demonstrated that
STAQ can improve the modelling accuracy in congested
networks compared to STA, without losing in robustness
and accountability. Additionally, STAQ keeps the input and
computational requirements at lower levels compared to
DTA models.

Nevertheless, STAQ considers link interactions, and
therefore uniqueness of the solutions is not guaranteed,
leading to undesired effects when evaluating different policy
scenarios. For this reason, in this study, we solely use the
network loading submodel as a postprocess and only for
emission estimation purposes.'e route choice is exogenous
to the model and relies on the traditional VDF, satisfying the
uniqueness conditions.

'e suggested quasidynamic loading postprocessing
approach is based on the first order LWR model similar to
the STAQ loading submodel. For the static relationship

between flow and density, we use a hyperbolic linear fun-
damental diagram. Although the transition between two
traffic states is not described in detail and may be unrealistic
in the LWR model, shock-wave positions are accurately
described [39]. For the needs of this study, the latter is more
important, since HBEFA emission factors are functions of
speed, and the acceleration variations are implicitly mod-
elled, being included in the associated driving cycle. A more
complicated emission model, sensitive to deceleration and
acceleration, would require a better description of the state’s
transitions, for instance, by a second-order traffic flow
model. Consequently, considering the nature of HBEFA, we
use a first-order model, assuming that infinite acceleration
can happen instantaneously at the transitions as that does
not affect the emission estimates.

4.2. Determination of Emission Factors Based on Queuing
Information. Figure 9 illustrates all the possible event types
considered in the event-based loading algorithm for a typical
network link, a ∈ A. 'e events are associated with the
transition between four different traffic states, and the
propagation speed of those transitions is based on the
fundamental diagram of Figure 9. Figure 10 illustrates the
cumulative inflow, 􏽥U(t), and outflow, 􏽥V(t), curves for the
boundaries of link a, while Figure 11 shows the evolution of
the shock waves in the space-time domain. At event time ε1,
a backward moving shock wave with speed w1⟶2

a hits the
downstream end of link a, aL, while a faster backward shock
wave with speed w2⟶3

a hits the same point at time ε2. 'e
second wave will finally meet the first one, and a new event
will occur at time ε3. 'e new wave that will be formed from
their merging will then meet a forward moving wave at ε5.
'e latter had previously hit the upstream end, a0, at ε4.
Finally, at time ε6, a new forward wave will reach the
downstream end aL.

'e main output of the event-based loading algorithms
described in Bliemer et al. [16] and Brederode et al. [44] is
average link travel times computed from the cumulative
inflow and outflow curves. Besides the travel times, cu-
mulative flow curves can provide some additional infor-
mation on inflow and outflow rates and spatial average link
densities. Nevertheless, such densities are spatially averaged
and regard the entire link. 'ere is no indication as to which
part of a link is congested and what are the queues’ length.
Considering the location-specific effects of emissions,
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Figure 8: Backward moving shock wave created by reduced capacity on link j + 1.
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spatially averaged link speeds may be insufficient for esti-
mating emission at long links.

In our study, to make the model outputs suitable for
emission estimation, we employ information coming from the
evolution of the shock waves in the space-time domain
(Figure 11), instead of using the cumulative flow curves
(Figure 10). By applying the event-based loading algorithm of
STAQ, it is also possible to keep track of the spatial position of
the shock wave whenever an event occurs. From the time-
distance plot, we can notice that the shock waves divide a link
into different smaller areas, each one of them associated with
different traffic state, [ρ, Q(ρ), V(ρ)]. Particularly, in the case
of Figure 11, the link a is divided into four areas. Each area is
related to a specific density ρ, flow Q(ρ), as well as to a specific
average speed V(ρ) and emission factor gp[V(ρ)]. Hence, the
crucial average link speed, used for the emission estimation,
acquires spatial and temporal variability.

LetM � 1, 2, . . . , N − 1{ }, where N is the total number of
events during the analysis period. Every link of the network,
a ∈ A, at each step n ∈M, is divided into Pn

a parts depending
on the number of shock waves, Wn

p, (P
n
a � Wn

p + 1) traversing
the link at time of the nth event, εn. Let Pn

a � 1, 2, . . . , Pn
a􏼈 􏼉

and Wn
a � 1, 2, . . . , Wn

a􏼈 􏼉. 'e algorithm keeps track of the
position, namely, the distance from the downstream end of
the link, hn

a,j, and the shock-wave speed, wn
a,j, of every shock

wave, j ∈Wi
a, as well as of the traffic conditions, ρn

a,i, Qn
a,i, and

Vn
a,i, for each part of the link, i ∈ Pn

a. Since in steady-state
conditions, shock-wave speeds are constant along the
characteristic curves, the transitions between the different
traffic states are linear in the space-time domain, and they
can be expressed through linear equations of the form
y1 � m · y2 + b. 'e slope m is by definition equal to the
shock-wave speed wn

a,j, j ∈Wi
a, while the constant b

equals to hn
a,j − wn

a,jεn, j ∈Wi
a. Hence, the area in the

space-time domain, Rn
a,i, of each part i ∈ Pn

a, which is
defined between two shock waves and two time steps, can
be computed as

R
n
a,1 � 􏽚

εn+1

εn

w
n
a,1ω + h

n
a,1 − w

n
a,1ε

n
􏼐 􏼑dω,

R
n
a,i � 􏽚

εn+1

εn

w
n
a,iω + h

n
a,i − w

n
a,iε

n
􏼐 􏼑dω

− 􏽚
εn+1

εn

w
n
a,i− 1ω + h

n
a,i− 1 − w

n
a,i− 1ε

n
􏼐 􏼑dω,

∀i ∈ Pn
a/ 1, P

n
a􏼈 􏼉,

R
n
a,Pn

a
� aL − a0( 􏼁 εn+1

− εn
􏼐 􏼑

− 􏽚
εn+1

εn

w
n
a,Wn

a
ω + h

n
a,Wn

a
− w
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a
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Figure 9: Spatiotemporal evolution of shock waves and cumulative flows.
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'e area multiplied by the flow rate at step n,
Qn

a,i, i ∈ Pn
a, gives the vehicle kilometres travelled for the

specific state. Finally, for each link a, the grams of pollutant,
p, emitted can be estimated as

􏽢E
p

a � 􏽘
n∈M

􏽘
i∈Pn

a

R
n
a,i · Q

n
a,i · g

p
a V

n
a,i􏼐 􏼑.

(18)

A more detailed description of the algorithm can be
found in Tsanakas [53].

4.3.STAQResults for theCaseStudySegment. Our hypothesis
is that the application of quasidynamic loading as a post-
processing technique could potentially reduce the emissions
estimation errors introduced by static models. To test our
hypothesis, we applied the suggested postprocessing

approach for the same Stockholm’s test site. 'e results are
illustrated in Figure 12, expressed in ECEP terms, with the
STAQ ECEP being computed as

ECEPp
a � 􏽘

n∈M
􏽘

i∈Pn
a

􏽢u
n
a,ig

p
a V

n
a,i􏼐 􏼑 − g

p
a V

0
a􏼐 􏼑⎛⎝ ⎞⎠

100
gp

a V0
a( 􏼁

, (19)

where V0
a is the free flow speed of link a and 􏽢un

a,i is a
weighting factor that reflects the spatiotemporal variability
of the emission factors by relating the area of part i, i ∈ Pn

a,
with the total space-time area of link a,

􏽢u
n
a,i �

Rn
a,i

aL − a0( 􏼁T
, (20)

where T is the total duration of the analysis period.
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Figure 12: Average excess due to congestion emissions (ECEP) for (a) the ground truth, (b) static loading with queuing, and (c) static
loading.

14 Journal of Advanced Transportation



As it is depicted in Figure 12(b), the excess emissions are
estimated upstream the bottleneck while the queues are
propagated backwards, spilling back to several links. 'ere-
fore, in contrast to the static case (Figure 12(c)), the higher
excess emissions are located almost at the same positions as the
ground truth. Figure 12 demonstrates that postprocessing the
static assignment outputs can actually lead to a more accurate
spatial distribution of emissions for our case study motorway
section. It is clear that the errors are now significantly reduced,
especially for the links upstream the bottleneck. In terms of
total segment emissions, we also notice an improvement since
the differences with the ground truth now range from 0.23% to
1.05% depending on the pollutant.

5. Conclusions and Future Research

For large-scale emission estimation analyses, the required
traffic conditions are usually obtained by static models. In this
paper, we show that their simplified way of representing traffic
can lead to considerable emission estimation errors. Aggre-
gated over time and space, average traffic conditions tend to
underestimate the emissions, especially in the case of a discrete
emission model such as the HBEFA. Nevertheless, we dem-
onstrate that using a continuous emission model, the spatio-
temporal resolution problem can be satisfactorily moderated.

In addition, the inability of static models to describe
dynamic traffic flow phenomena can also cause significant
emission estimation errors. 'ese errors are mainly associated
with the inaccurate modelling of congestion’s location which
may lead to an unreliable spatial distribution of emissions.
Even though STA results may be sufficient for travel time-
based analyses, in the case of emission estimation, we support
that STA outputs need supplementary postprocessing. Since
the problem is identified at the network loading, we suggest the
use of a quasidynamic loading model for postprocessing the
STA results. Our results show that this approach could lead to
more accurate spatial allocation of emissions.

For aggregated applications of emission modelling, such
as annual emission inventories, the spatial distribution may
not be so important. Other factors, e.g., vehicles fleet
composition, can be more influential. 'erefore, in such
cases, STA without postprocessing could be adequate to
generate inputs for the emission model. However, for ap-
plications such as dispersion and exposure modelling, where
spatial variations of emission rates are vital, postprocessing
could offer considerable improvements.

It would be interesting for the future to estimate
emissions for a large-scale network using the quasidynamic
loading and evaluate the effect for applications like air
quality modelling. Future studies could also investigate the
association between the spatial distribution of emissions due
to postprocessing with the damage cost of a pollutant and
evaluate the use of quasidynamic loading in economic
appraisals.

We should note here that in this study, we consider
spatially and temporally constant vehicle fleet mixture. In
addition, we do not take into account the heavy-duty ve-
hicles, which constitute almost 5% of the total fleet. 'e
inclusion of heavy-duty vehicles and a varied in time and

space vehicle fleet could affect our results, without influ-
encing our main findings related to the location of the excess
emissions.

Appendix

A. Vehicle Fleet Composition in Sweden

'e vehicle composition for passenger cars is given in
Table 2.

Table 2: 'e considered vehicle composition for passenger cars
(PC) (petrol (P) and diesel (D)) according to the European
standards for light-duty vehicles.

Vehicle class % of the total fleet
PC-P-Euro-0 0.93
PC-P-Euro-1 1.14
PC-P-Euro-2 7.63
PC-P-Euro-3 4.25
PC-P-Euro-4 24.25
PC-P-Euro-5 9.09
PC-P-Euro-6 0.25
PC-alternative fuel 14.55
PC-D-Euro-0 0.03
PC-D-Euro-1 0.06
PC-D-Euro-2 0.37
PC-D-Euro-3 1.11
PC-D-Euro-4 12.35
PC-D-Euro-5 23.00
PC-D-Euro-6 0.99

Table 3: 'e HBEFA emission factors used for this study in grams
of pollutant emitted per kilometre for five pollutants (HC, CO,
NOx, CO2, and PM10), four traffic situations (Free flow, Heavy,
Saturated, and Stop and go), and for two road types, urban mo-
torway with a speed limit of 70 km/h (URB/MW/70) and urban
motorway with a speed limit of 90 km/h (URB/MW/90).

Pollutant Traffic situation URB/MW/70 URB/MW/90

HC

Free flow 0.016 0.016
Heavy 0.022 0.016

Saturated 0.022 0.021
Stop and go 0.073 0.057

CO

Free flow 0.167 0.278
Heavy 0.337 0.219

Saturated 0.261 0.336
Stop and go 0.711 0.622

NOx

Free flow 0.174 0.194
Heavy 0.240 0.189

Saturated 0.223 0.220
Stop and go 0.524 0.406

CO2

Free flow 109.95 127.98
Heavy 132.88 121.50

Saturated 133.30 132.69
Stop and go 290.80 229.54

PM10

Free flow 0.0027 0.0037
Heavy 0.0038 0.0032

Saturated 0.0034 0.0037
Stop and go 0.0075 0.0058
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B. HBEFA Emission Factors

'e HBEFA emission factors used for this study is given in
Table 3.
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'e traffic data used to support the findings of this study are
available from the corresponding author upon request.
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