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In order to make the car-following model describe the driving behavior of vehicle on urban road more accurately, existing car-
following models are simulated using measured traffic data. According to the analysis of the simulation result, two new improved
car-following models based on the optimal velocity model (OVM) are proposed in this paper. 1e lateral vehicle’s influence is
introduced as the influence factor of driving behavior. By using of linear stability analysis, stability conditions of improved car-
following models are obtained. Nonlinear analysis is carried out to investigate the traffic performances near the critical point. 1e
result of numerical simulation indicates that stability of traffic flow is under the influence from lateral vehicle; the lesser the
influence, the greater the stability. New cooperative car-followingmodels are verified by the traffic flow data collected in Xi’an city.
It is shown that compared with the optimal velocity model, the simulation result of the second cooperative model, respectively,
gets 62.89% unbiased variance reduction, 66.39% maximum absolute error reduction, and 33.4% minimum absolute error
reduction.1erefore, the second cooperative model is more suitable to describe the vehicle’s actual behavior in car-following state.

1. Introduction

Car-following theory is one of the most important parts of
modern traffic theory, which describes the dynamic be-
haviors of one vehicle following the other, and usually used
in the study of microscopic traffic flow. 1e car-following
theory has developed rapidly in recent decades, and an
increasing number of models have been put forward, which
include the early nonlinear models proposed by Pipes [1],
Newell [2], the recent classic model presented by Bando et al.
[3], Helbing and Tilch [4] and Jiang et al. [5], and some
others in the literature [6–24]. Bando et al. [3] proposed a
remarkable car-following model called the optimal velocity
model (OVM) because it solves the problem of describing
the motion of successive vehicles. By considering both the
negative and the positive velocity differences, Jiang et al. [5]
developed a full velocity difference model (FVDM). Some
scholars considered more headway information of vehicles
ahead and proposed some extended optimal velocity models.

Based on OVM,Wagner [6] put forward a new model called
the looking forward model because it contains the location
information of multiple vehicles ahead. Hasebe et al. [7]
further expanded the OVM by introducing the headway
information of K vehicles ahead and proved that the new
model can improve the stability of traffic flow more than the
OVM from the perspective of the linear response. Chen et al.
[8] extended the single lane feedback model by introducing
improved lane-changing rules and analyzed the influence of
feedback signal on the stability of traffic flow. Li et al. [9]
proposed a heterogeneous car-following model with low-
and high-sensitivity vehicles by constructing the motion
equation of individual vehicle. In the proposed model, all
driver-vehicle units are described by the same model using
two different parameter values of sensitivity. Peng et al. [10]
explored the effect of the V2V communication and proposed
a delayed-feedback control method for the car-following
model. In our prior work [11], we developed an extended full
velocity difference model by taking the short-term driving
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memory into account. We found that short-term driving
memory can significantly affect the driver’s driving behavior.

Most of the above models are based on such basic as-
sumptions that the driver always keeps following the leading
vehicle and responds immediately to the change of the
driving state of the leading vehicle. In recent years, scholars
found that the driver is also influenced by the driving state of
the lateral adjacent vehicles. Tang et al. [12, 13] put forward a
new two-lane car-following model by taking the influence of
adjacent-ahead vehicle on the car-following behavior into
account. Ge et al. [14] believed that vehicles will be subject to
the friction interference from the vehicle of neighbor lane,
and the friction interference is related to the lateral distance
between the vehicle and its closest-ahead vehicle in the
neighbor lane. Based on this consideration, they investigated
an extended two-lane traffic flow with lane-changing be-
haviors and derived the stability condition by using the
control method.

With the consideration of influence of lateral vehicle, an
improved car-following model based on the OVM is pro-
posed in this paper. It is common to see in real traffic that for
some special reasons, for example, weather condition, health
conditions, driving technology, and personal habits, the
driver often does not keep up with the leading vehicle but
drives at a velocity similar to that of lateral vehicles to form a
stable vehicle group.1erefore, the lateral vehicles are in role
of auxiliary reference. 1is phenomenon is an incomplete
car-following behavior. In view of the above discussions, by
using the general force framework, the influence of both the
leading vehicle and the lateral adjacent vehicle is used as
stimulus in the new proposed model.1is paper is organized
as follows. In Section 2, the driving phenomenon is de-
scribed. In Section 3, an improved car-following model
based on the OVM is developed by taking into account the
lateral effect. Linear stability analysis is carried out in Section
4, and the stability condition of the improved model is
obtained. In Section 5, the MKDV equation near the critical
point is derived by using nonlinear analysis. In Section 6, a
series of numerical simulations are proposed to confirm the
theoretical results. Conclusions are given in Section 7.

2. Description and Analysis of
Driving Phenomenon

2.1.Description ofDrivingPhenomenon. In actual traffic, one
can often observe a phenomenon that although the headway
between vehicle and its leader vehicle is larger, the driver still
keeps a similar velocity to the surrounding vehicles and does
not accelerate to shorten the distance from the leader vehicle.
For example, the two investigated vehicles in Figure 1 are,
respectively, marked as car 1 and car 2. Obviously, the
driving state of car 2 is in accordance with the driving rules
that can be described by the classic car-following model.
However, despite a greater distance from the leader vehicle,
car 1 still keeps the same velocity as its adjacent car on the
right side. 1is phenomenon cannot be described by car-
following models mentioned above because car 1 did not
keep up with its leading car according to the rules describing
by those car-following models.

2.2. Analysis ofDriving Phenomenon. Figure 1 is intercepted
from video captured by a camera. An overpass with 7.6
meter high in the South Second Ring Road of Xi’an City is
selected for the field data collection. 1e location of the
camera is identified as coordinate origin, and the distance
between the coordinate origin and the lower edge of
Figure 1 is 17.5 meters. For ensuring the measurement
accuracy, measurement range is set from 17.5 meters to
89.5 meters because the larger shooting distance will reduce
the measurement accuracy. 1e video is intercepted a set of
images by frame/0.2 seconds. With the method of geo-
metric transformation, one-to-one relationship can be
established between image coordinates and vehicle’s actual
position.

Data of the vehicles in Figure 1 can be seen in Table 1.
Since the data obtained from images are discrete data, av-
erage velocity of vehicle in every image can be calculated.
Velocity data are fitted by polynomial, and the function
curves of velocity-time are obtained in Figure 2.

Figures 2(a) and 2(b) are, respectively, the headway-time
curves and velocity-time curves of vehicles. From
Figure 2(a), the headway of car 1 is larger than that of car 2.
Most of the time, the headway of car 1 is larger than
15meters, while the headway of car 2 is smaller than 5
meters. From Figure 2(b), it can be found that the two
investigated vehicles always have similar velocity and that
the trends of velocity changes are roughly the same.

Two classical car-following models, optimal velocity
model (OVM) and full velocity difference model (FVDM),
are used to simulate the driving state of car 1 in Figure 1:

d2xj(t)

dt
2 � a V Δxj(t)􏼐 􏼑 − vj(t)􏽨 􏽩, (1)

d2xj(t)

dt
2 � a V Δxj(t)􏼐 􏼑 − vj(t)􏽨 􏽩 + λΔvj(t). (2)

Equations (1) and (2) are, respectively, the expressions of
OVM and FVDM, where a denotes sensitivity; xj(t) and
vj(t) are, respectively, the position and velocity of the vehicle
j at time t; Δxj(t) and Δvj(t) are the headway and the
velocity difference between the preceding vehicle and the
following vehicle, respectively; V(Δxj(t)) presents the op-
timal velocity function; and λ denotes the sensitivity of
velocity difference Δvj(t).

Car 1 Car 2

Figure 1: Real traffic.
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Before the simulation, the parameters in OVM and
FVDM need to be fitted. Parameters of OVM are the sen-
sitivity coefficient a, maximum velocity of vehicle vmax, and
safety distance hc. Parameters of FVDM are, respectively, a,

hc, and the sensitivity of velocity difference λ. 1e measured
data of car 2 in Figure 1 can be used for parameter fitting
because it is in accordance with most of vehicles’ driving
rules which are described by classic car-following models.

Table 1: Data of the vehicle in Figure 1.

Time
(s)

1e left lane 1e right lane

Position of
leading car

Position of
following

car
Headway Velocity of

leading car

Velocity of
following

car

Position of
leading car

Position of
following

car
Headway Velocity of

leading car

Velocity of
following

car
0 37.09 17.75 19.34 11.18 9.36 22.55 17.44 5.11 10.36 10.67
0.2 39.55 19.86 19.69 10.18 9.10 24.91 19.89 5.02 9.92 10.41
0.4 41.32 21.61 19.71 9.48 8.91 26.79 21.88 4.91 9.60 10.22
0.6 42.78 23.05 19.73 9.02 8.79 28.21 23.54 4.67 9.36 10.08
0.8 45 25.11 19.89 8.74 8.72 30.57 25.84 4.73 9.19 9.99
1.0 46.54 26.51 20.03 8.59 8.69 32.11 27.48 4.63 9.07 9.92
1.2 48.37 28.58 19.79 8.52 8.70 34.18 29.9 4.28 8.97 9.86
1.4 50.14 30.41 19.73 8.49 8.74 35.85 31.91 3.94 8.89 9.80
1.6 51.6 31.77 19.83 8.47 8.79 37.33 33.33 4 8.80 9.73
1.8 53.83 33.97 19.86 8.43 8.85 39.42 35.76 3.66 8.71 9.65
2.0 55.02 35.67 19.35 8.35 8.92 41.18 37.86 3.32 8.60 9.54
2.2 56.51 37.07 19.44 8.21 8.98 42.63 39.23 3.4 8.46 9.40
2.4 58.62 39.23 19.39 8.01 9.03 44.51 41.29 3.22 8.31 9.23
2.6 59.73 40.69 19.04 7.75 9.06 46.01 42.92 3.09 8.13 9.03
2.8 61.48 42.92 18.56 7.43 9.06 47.99 44.97 3.02 7.93 8.81
3.0 63.01 44.69 18.32 7.06 9.04 49.54 46.76 2.78 7.72 8.55
3.2 63.96 46.15 17.81 6.65 8.99 50.55 48.04 2.51 7.50 8.28
3.4 65.61 48.21 17.4 6.24 8.89 52.03 50.1 1.93 7.29 8.00
3.6 66.99 49.74 17.25 5.85 8.75 53.37 51.38 1.99 7.09 7.71
3.8 68.07 51.76 16.31 5.51 8.56 55.26 53.13 2.13 6.94 7.43
4.0 69.18 53.54 15.64 5.28 8.32 56.76 54.58 2.18 6.83 7.17
4.2 69.93 54.8 15.13 5.20 8.03 57.81 59.89 1.92 6.81 6.94
4.4 71.1 56.57 14.53 5.32 7.68 59.45 57.27 2.18 6.89 6.77
4.6 71.9 57.98 13.92 5.71 7.27 60.3 58.47 1.83 7.09 6.66
4.8 73.55 59.46 14.09 6.43 6.80 62.08 59.97 2.11 7.45 6.65
5.0 74.83 60.76 14.07 7.56 6.27 63.64 61.29 2.35 8.01 6.75
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Figure 2: Traffic data of car 1 and car 2: (a) headway-time curves of car 1 and car 2; (b) velocity-time curves of car 1 and car 2.

Journal of Advanced Transportation 3



1e results of fitting are a � 0.0877, vmax � 16.7, and hc �

6.9781 for OVM, and a � 0.0593, hc � 13.0123, and
λ � 0.4332 for FVDM. Substituting above parameters into
OVM and FVDM, respectively, to simulate the velocity of
car 1 and comparing the simulation result with real velocity,
we can obtain Figure 3.

From Figure 3, we can see that there is a large error
between the simulation results of the two classic car-fol-
lowing models and this set of traffic data for car 1. 1e
simulation velocities of OVM continuously increase with the
increase of headway. 1e difference between simulation
velocity of FVDM and the velocity curve of car 1 keeps a
larger value. Moreover, the variation trend of simulation
velocity is opposite to that of real velocity after t� 3.8
seconds, which means an increasing error.

From the perspective of model structure, OVM only
considers the influence of headway, and FVDM takes into
account the influence of both headway and velocity dif-
ference between the following vehicle and its preceding
vehicle. 1e previous studies indicate that besides the in-
fluence of the leading vehicle, the driving behavior also can
be affected by the lateral adjacent vehicle. However, both
OVM and FVDM did not consider the factors of lateral
influence. With above consideration, new improved car-
following models accounting for the lateral influence are
proposed in the next section. In Section 6, new improved
models are validated by multiple sets of measured traffic
data.

3. Model

1e second-order car-following model belongs to the
stimulus response model, which can be expressed as follows:

d2xj

dt
2 (t) � fsti vj(t),Δxj(t),Δvj(t)􏼐 􏼑. (3)

Equation (3) expresses that the jth vehicle’s acceleration
depends on speed of the jth vehicle, the headway, and
relative velocity between the jth vehicle and the (j+ 1)th
vehicle. fsti represents response of the jth vehicle to the
(j+ 1)th vehicle. Real driving behavior is determined mainly
by the following two motivations: achieving an expectation
speed and maintaining an expected distance [22].

By using the general force framework, we, respectively,
put forward two improved car-following models, named
model 1 and model 2, and compared to choose the optimum
model.

1e new improved model with the general force
framework can be expressed as follows:

d2xj

dt
2 (t) � f

+
j (t) + f

−
j (t), (4)

where f+
j (t) and f−

j (t) represent the influence of the leading
car and the lateral vehicle’s effect, respectively. Because of
mainly depending on Δxj(t), f+

j (t) can be expressed as
OVM. f−

j (t) is determined by the impact of lateral adjacent
vehicle and plays a role only when headway Δxj(t) is in a
certain range. When hc>Δxj(t), in order to avoid the

danger of collision, the driver often neglects the influence of
lateral vehicle and changes the velocity to increase the
headway. Only when hc<Δxj(t), the driver will consider the
lateral effect.

f−
j (t) can be defined as

f
−
n (t) � c

∗ d
2
xj
′(t)

dt
2

, (5)

where xj
′(t) represents the position of the jth vehicle’s lateral

adjacent vehicle. Obviously, lateral vehicles can play an
auxiliary reference role only under certain conditions; for
example, the relative speed between the investigated car and
the lateral car is larger, or the distance is far. 1erefore, we
set the parameter c � const|Δvj(t)|< ζvj(t) or |Δxj(t)|<􏽮

Δxj
′(t), 0, other, where Δxj

′(t) � xj+1′ (t) − xj
′(t) is the

headway between the jth vehicle’s lateral adjacent vehicle
and its leading vehicle. Δxj(t) � xj

′(t) − xj(t) and Δvj

(t) � (dxj
′(t)/dt) − (dxj(t)/dt), respectively, represent the

headway and velocity difference between the jth vehicle and
its lateral adjacent vehicle. 0< ζ ≤ 0.1 is a constant. 1us, the
first improved model (model 1) is given as follows:

d2xj(t)

dt
2 � a V Δxj(t)􏼐 􏼑 −

dxj(t)

dt
􏼢 􏼣 + c

∗ d
2
xj
′(t)

dt
2

. (6)

According to Reference [25], the second improved
model (model 2) can be defined as

d2xj(t)

dt
2 � (1 − P)

∗
a V Δxj(t)􏼐 􏼑 −

dxj(t)

dt
􏼢 􏼣 + p

∗ d
2
xj
′(t)

dt
2

,

(7)

where 0≤p≤ 1 is a coefficient which represents the weight of
lateral effect. When p � 0, equation (7) is reduced to the
OVM. It means that the driver is completely unaffected by
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Figure 3: Comparison between simulation curves of classic car-
following models and the curve of real velocity.
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the lateral vehicle, and the driving state is determined only
by the driving state of the leading vehicle. When p � 1, the
driver is only affected by lateral vehicle, and the vehicle exits
the state of car-following.

Next, the two improved models are verified by the
measured data to select the optimal model. In this paper, the
least square method is used for parameter fitting. Result of
fitting is as follows: a � 0.0877, hc � 6.9781, p � 0.7993, and
c � 1.0246. 1e fitted parameters are taken into the models,
and velocity of the vehicle is simulated by the two improved
models. Simulation results are compared with the actual data
in Figure 4.

Figure 4 shows the comparison between simulation
results of improved models and a set of traffic data for car 1
in Figure 1. 1e solid line is the curve of real velocity data,
and the dashed line is the simulation result obtained by using
the improvedmodels. From Figure 4, we can find that for the
data of car 1 in Figure 1, the curve of simulated velocity by
using the first improved model has an increasing deviation
from the real velocity after 3.6 seconds, while the curve
obtained by the second improved model is close to the
measured velocity curve during most of the time.

4. The Linear Stability Analysis

1e linear stability theory is applied to derive linear stability
condition of the improved model by the linear stability
theory.1e uniform traffic flow is defined by such a state that
all vehicles on lane l move with the optimal velocity
Vl(Δxl,n(t)) and the identical headway hl. 1e solution
x

(0)
l,j (t) is given by

x
(0)
l,j (t) � hl + V hl( 􏼁t, (8)

where l � 1, 2, hl � D/Nl, D is length of road section, and Nl

represents the total number of vehicles in lane l. Assuming
xl,j(t) � x

(0)
l,j (t) + yl,j(t), where x

(0)
l,j (t) � hl + V(hl)t, and

yl,j(t) be a small deviation from the steady state x
(0)
l,j (t), then

we can rewrite the two improved models (equations (6) and
(7)) as

d2yl,j(t)

dt
2 � al V′ hl( 􏼁Δyl,j(t) −

dyl,j(t)

dt
􏼢 􏼣 + c

d2yl′ ,j(t)

dt
2 ,

d2yl,j(t)

dt
2 � (1 − p)al V′ hl( 􏼁Δyl,j(t) −

dyl,j(t)

dt
􏼢 􏼣 + p

d2yl′ ,j(t)

dt
2 ,

(9)

where Δyl,j(t) � yl,j+1(t) − yl,j(t), yl′,j(t) � y3− l,j(t). For
convenience of calculation, we set y3− l,j(t) � μyl,j, μ � h3− l/
hl.Expanding yl,j(t) in the Fourier-modes yl,j(t)∝ exp
(iklj + zlt), we have

z
2
l (1 − μc) − al V′ hl( 􏼁 exp ikl( 􏼁 − 1( 􏼁 − zl􏼂 􏼃 � 0, (10)

z
2
l (1 − μp) − (1 − p)al V′ hl( 􏼁 exp ikl( 􏼁 − 1( 􏼁 − zl􏼂 􏼃 � 0.

(11)

Substituting zl � z1l(ik) + z2l(ik)2 + · · · into equations
(10) and (11), we obtain the first- and second-order terms of
coefficients in the expression of zl as follows:

z1l � V′ hl( 􏼁,

z2l �
V′ hl( 􏼁

2
−

(1 − μc)V′
2

hl( 􏼁

al

,

z1l � V′ hl( 􏼁,

z2l �
V′ hl( 􏼁

2
−

(1 − μp)V′
2

hl( 􏼁

al(1 − p)
.

(12)

According to the long wave theory, the uniform steady
state will become unstable when z2l is negative. 1us, the
neutral stability curves for model 1 and model 2 are given by

als � 2(1 − μc)V′ hl( 􏼁, (13)

als �
2(1 − μp)V′ hl( 􏼁

1 − p
. (14)

For model 1, the uniform traffic flow will be stable if

al > 2(1 − μc)V′ hl( 􏼁. (15)

For model 2, the uniform traffic flow will be stable if

al >
2(1 − μp)V′ hl( 􏼁

1 − p
. (16)

When c � 0 and P � 0, the stability condition (equations
(15) and (16)) is reduced to the stability condition in the
literature [3].

Figure 5 shows the neutral stability line in the headway-
sensitivity space (Δx, al) with μ � 0.5 and different sets of
parameters of lateral influence, where (a) and (b) are, re-
spectively, for model 1 and model 2. 1e apex of each curve
represents the critical point (hc, alc). It can be seen clearly
from Figure 5(a) that for model 1, the critical points decrease
with increasing c. It means that with decrease of lateral
influence, traffic flow is more stable. On the contrary, from
Figure 5(b), we can find that critical points rise with in-
creasing p. It is in accordance with common sense that
lateral interference can affect driving.

5. Nonlinear Analysis

In this section, nonlinear analysis is carried out to investigate
the traffic performances near the critical point (hc, ac) of
improved car-following model 2. 1e mKdV equation is
deduced to describe the traffic congestion in the unstable
area of traffic flow. For extracting slow scales with the space
variable n and the time variable t, the slow variables X and T

are defined as follows:

X � (j + bt),

T � ε3t,
(17)
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where b is a constant to be determined.We set the headway as

Δxn(t) � hc + εR(X, T). (18)

We rewrite equation (7) as follows:

d2Δxj(t)

dt
2 � (1 − p)a V Δxj+1(t)􏼐 􏼑 − V Δxj(t)􏼐 􏼑􏽨

− −
dΔxj(t)

dt
􏼣 + p

d2Δxj
′(t)

dt
2

. (19)

For convenience of calculation, we assume that the
vehicles around the investigated vehicle are in normal
driving process and have similar driving state. 1erefore, the
driving condition of the lateral vehicle can be approximately
expressed by that of other vehicles around it. In view of
above considerations, we set (d2Δxj

′(t)/dt2) � λ1(d
2Δxj+1

(t)/dt2) + λ2(d
2Δxj− 1(t)/dt2), where λ1 and λ2 are constant,

and λ1 + λ2 � 1. Substituting equations (17) and (18) into
equation (19) and making the Taylor expansion to the fifth
order of ε lead to the following expression:
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Figure 5: Critical stability curves: (a) for model 1; (b) for model 2.
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Figure 4: Comparison between simulation curves of improved models and the curve of real velocity: (a) velocity-time curves of improved
model 1; (b) velocity-time curves of improved model 2.
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ε2a(1 − p) b − V′(h)( 􏼁 zXR + ε3 b
2

−
1
2

a(1 − p)V′(h) − pb
2

􏼔 􏼕z
2
XR

+ ε4 a(1 − p) zTR −
1
6

V′(h)z
3
XR −

1
6
V″′(h)zXR

3
􏼒 􏼓 − p λ1 − λ2( 􏼁b

2
z
3
XR􏼔 􏼕

+ ε5 2b(1 − p)zTzXR −
1
2

b
2
z
4
XR − a(1 − p)

1
24

V′(h)z
4
XR +

1
12

V″′(h)z
2
XR

3
􏼒 􏼓􏼔 􏼕.

(20)

Near the critical point (hc, ac), taking ac/a � (1 + ε2),
b � V′(hc), and eliminating both the second-order and the
third-order term of ε, equation (14) can be simplified as

zTR − g1z
3
XR + g2z

3
XR + ε g3z

2
XR + g4z

4
XR + g5z

2
XR

3
􏽨 􏽩 � 0,

(21)

where

g1 �
1
6

+
p λ1 − λ2( 􏼁V′

a(1 − p)
􏼠 􏼡V′,

g2 � −
1
6
V′″,

g3 � −
1
2
V′,

g4 �
4V′ − a( 􏼁

12a
V′″,

g5 �
V′
3a

+
2p λ1 − λ2( 􏼁

a
2
(1 − p)

V′
2

−
V′

2a(1 − p)
−

1
24

􏼠 􏼡V′.

(22)

Making such transformations as T � (1/g1)Tm and
R �

�����
g1/g2

􏽰
Rm, we obtain the modified KDV equation with

a o(ε) correction term:

zTRm − z
3
XRm + g2zXR

3
m

+
ε

g1
g3z

2
XRm + g4z

4
XRm +

g1g5

g2
z
2
XR

3
m􏼢 􏼣 � 0.

(23)

If we ignore o(ε) term, this is just the modified KDV
equation, and the solution is as follows:

R(X, T) �

����
g1

g2
B

􏽲

tanh
��
B

2

􏽲

X − Bg1T( 􏼁􏼢 􏼣, (24)

where B � (5g2g3/2g2g4 − 3g1g5).1us, we obtain the kink
solution of the headway:

Δxn(t) � hc +

�����������
g1B

g2

ac

a
− 1􏼒 􏼓

􏽳

× tanh
���������
B

2
ac

a
− 1􏼒 􏼓

􏽲

􏼨

× n + V′ hc( 􏼁t − Bg1
ac

a
− 1􏼒 􏼓t􏼔 􏼕􏼛.

(25)

6. Numerical Simulations

6.1. Model Validation with Measured Data. In this subsec-
tion, the OVM and improved models are, respectively,

verified by using real traffic data. 1e traffic data can be seen
in Tables 2–5. 1e model parameters need to be fitted by
using the least square method. Due to the difference of
driving behavior, the model parameters obtained from
different sets of data are different. Hence, the data of each
group need to be fitted, respectively, and the fitting results
are shown in Table 6.

1e skewness test and kurtosis test of the fitted pa-
rameters are carried out. U1 and U2 are, respectively, denote
sample skewness and sample kurtosis of the fitted param-
eters. Calculation results for skewness and kurtosis are
shown in Table 7.

We set the significant level as α � 0.05, so the reject
region is (− ∞, 1.96)∪ (1.96, +∞). From Table 2, it can be
seen that the calculation results of U1 and U2 are all outside
the reject region. 1erefore, the fitted parameters obey
normal distribution.

In order to compare the performance of the models, we
substitute the fitted parameters into OVM and two im-
proved models, respectively, carry out simulation by using
the three models, and then obtain the curves of velocity.
Comparing the simulation curves with the measured ve-
locity curve, we obtain Figure 6.

In Figure 6, real line is the measured velocity of vehicle,
“.” represents the curve of OVM, and “+” and “∗ ” denote
the curve of improved model 1 and model 2, respectively.
1e simulation results show that the velocity curves of the
two improvedmodels are more close to the real velocity than
that of the OVM and that in the comparison of the two
improved models, and the velocity curve of the improved
model 2 is closer to the actual speed.

In this paper, the following three performance indexes
are used to evaluate the simulation results: the mean square
error, the maximum absolute error, and the minimum
absolute error.

Table 8 shows the comparison of three performance
evaluation indices for each group of data. From Table 8, we
can find that for mean square deviation and maximum
absolute error, numerical values of OVM are the largest in
four sets of data, while the numerical values of improved
model 2 are the smallest. Moreover, least absolute errors of
improved model 1 are larger than that of OVM in the 1st and
3rd sets of data, while improvedmodel 2 has the smallest least
absolute errors in all four sets of data. Compared with the
OVM, the simulation result of improved model 2, respec-
tively, gets 62.89% unbiased variance reduction, 66.39%
maximum absolute error reduction, and 33.4% minimum
absolute error reduction, while that of improved model 1
only gets 27.53% unbiased variance reduction, 28.4%
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Table 2: 1e first sets of vehicle data.

Time (s)
1e left lane 1e right lane

Position of
leading car

Position of
following car Headway Velocity of

following car
Position of
leading car

Position of following
car Headway Velocity of following

car
0 26.22 18.93 7.29 6.85 40.71 18.27 22.44 8.43
0.2 27.85 20.5 7.35 6.86 42.65 20.18 22.47 8.30
0.4 29.02 21.56 7.46 6.84 43.76 21.46 22.3 8.19
0.6 30.65 23.17 7.48 6.79 45.54 23.45 22.09 8.11
0.8 31.61 24.24 7.37 6.72 46.81 24.68 22.13 8.04
1.0 33.2 25.82 7.38 6.63 48.66 26.55 22.11 7.99
1.2 34.5 27.15 7.35 6.54 50.29 28.18 22.11 7.94
1.4 35.8 28.43 7.37 6.45 51.84 29.73 22.11 7.91
1.6 36.99 29.78 7.21 6.36 53.26 31.38 21.88 7.88
1.8 37.94 30.82 7.12 6.28 54.33 32.64 21.69 7.86
2.0 39.28 32.01 7.27 6.21 55.9 34.17 21.73 7.84
2.2 40.83 33.55 7.28 6.16 57.56 36.2 21.36 7.82
2.4 41.85 34.5 7.35 6.12 58.81 37.4 21.41 7.79
2.6 43.62 36 7.62 6.10 60.65 39.21 21.44 7.77
2.8 44.78 37.1 7.68 6.09 62.03 40.75 21.28 7.74
3.0 45.85 38.17 7.68 6.10 63.48 41.92 21.56 7.70
3.2 47.63 39.53 8.1 6.13 64.99 43.82 21.17 7.66
3.4 49.02 40.74 8.28 6.17 66.26 45.32 20.94 7.61
3.6 50.48 42.02 8.46 6.22 67.91 46.78 21.13 7.55
3.8 51.84 43.39 8.45 6.27 69.29 48.34 20.95 7.48
4.0 53.05 44.4 8.65 6.33 70.37 49.5 20.87 7.40
4.2 54.77 45.77 9 6.39 71.85 51.26 20.59 7.31
4.4 56.13 46.9 9.23 6.43 72.62 52.56 20.06 7.22
4.6 57.81 48.44 9.37 6.46 74.2 54.14 20.06 7.12
4.8 59.32 49.7 9.62 6.47 75.43 55.81 19.62 7.01
5.0 60.38 50.84 9.54 6.44 76.7 56.69 20.01 6.89
5.2 61.75 52.23 9.52 6.38 77.13 58.3 18.83 6.77

Table 3: 1e second sets of vehicle data.

Time (s)
1e left lane 1e right lane

Position of
leading car

Position of
following ca Headway Position of

leading car
Position of following

car Headway Position of leading
car

Position of following
car

0 22.5 17.21 5.29 8.09 35.89 19.07 16.82 9.35
0.2 24.29 18.8 5.49 7.46 38.02 20.96 17.06 8.89
0.4 26.03 20.44 5.59 7.02 40.13 22.97 17.16 8.60
0.6 27.25 21.49 5.76 6.73 41.55 24.23 17.32 8.44
0.8 29.08 23.08 6 6.57 43.55 26.22 17.33 8.38
1.0 30.33 24.11 6.22 6.50 45.05 27.55 17.5 8.39
1.2 31.93 25.45 6.48 6.49 46.82 29.31 17.51 8.44
1.4 33.59 26.75 6.84 6.52 48.54 31.05 17.49 8.52
1.6 35.42 28.35 7.07 6.57 50.58 33.08 17.5 8.60
1.8 37.09 29.67 7.42 6.64 52.12 34.82 17.3 8.67
2.0 38.53 30.72 7.81 6.70 53.5 36.2 17.3 8.72
2.2 40.22 32.07 8.15 6.75 55.21 37.99 17.22 8.75
2.4 42.33 33.69 8.64 6.79 57.02 39.96 17.06 8.76
2.6 43.55 34.73 8.82 6.82 58.39 41.33 17.06 8.73
2.8 45.67 36.38 9.29 6.84 60.41 43.55 16.86 8.69
3.0 47.07 37.5 9.57 6.87 61.63 44.9 16.73 8.63
3.2 48.75 38.9 9.85 6.91 63.21 46.63 16.58 8.58
3.4 50.55 40.3 10.25 6.98 64.88 48.34 16.54 8.54
3.6 52.47 41.92 10.55 7.11 66.27 50.36 15.91 8.54
3.8 54.07 43.42 10.65 7.32 68.1 52.18 15.92 8.61
4.0 55.75 44.62 11.13 7.63 69.24 53.54 15.7 8.77
4.2 57.54 46.19 11.35 8.09 70.83 55.17 15.66 9.05
4.4 59.73 48.02 11.71 8.72 72.48 57.37 15.11 9.49
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Table 4: 1e third sets of vehicle data.

Time (s)
1e left lane 1e right lane

Position of
leading car

Position of
following car Headway Position of

leading car
Position of following

car Headway Position of leading
car

Position of following
car

0 39.86 19.14 20.72 9.62 24.11 17.48 6.63 9.62
0.2 41.72 21.24 20.48 8.88 26.22 19.61 6.61 9.22
0.4 43.34 22.94 20.4 8.40 27.97 21.46 6.51 9.01
0.6 44.63 24.31 20.32 8.12 29.35 22.9 6.45 8.92
0.8 46.16 25.99 20.17 7.98 31.09 24.76 6.33 8.93
1.0 47.8 27.65 20.15 7.94 32.87 26.55 6.32 8.98
1.2 49.19 29.37 19.82 7.96 34.59 28.4 6.19 9.05
1.4 51.05 31.32 19.73 8.01 36.69 30.6 6.09 9.11
1.6 52.44 32.64 19.8 8.06 37.94 32.07 5.87 9.15
1.8 54.11 34.35 19.76 8.09 39.63 33.85 5.78 9.14
2.0 55.44 35.93 19.51 8.08 41.47 35.67 5.8 9.09
2.2 57.56 37.89 19.67 8.02 43.34 37.69 5.65 8.97
2.4 58.81 39.53 19.28 7.92 45.08 39.53 5.55 8.80
2.6 60.11 40.75 19.36 7.77 46.32 40.86 5.46 8.58
2.8 61.75 42.41 19.34 7.59 47.97 42.53 5.44 8.33
3.0 63.48 44.49 18.99 7.39 49.92 44.49 5.43 8.06
3.2 64.69 45.75 18.94 7.18 51.25 45.89 5.36 7.80
3.4 66.58 47.71 18.87 7.01 52.85 47.71 5.14 7.58
3.6 67.91 49.16 18.75 6.91 54.11 49.16 4.95 7.42
3.8 68.94 50.19 18.75 6.90 54.99 50.36 4.63 7.38
4.0 70.73 51.99 18.74 7.05 56.84 51.99 4.85 7.49
4.2 71.85 53.34 18.51 7.40 58.3 53.34 4.96 7.82
4.4 73.8 55.39 18.41 8.01 59.84 55.17 4.67 8.41

Table 5: 1e fourth sets of vehicle data.

Time (s)
1e left lane 1e right lane

Position of
leading car

Position of
following car Headway Position of

leading car
Position of following

car Headway Position of leading
car

Position of following
car

0 36.38 16.42 19.96 10.50 26.35 16.53 9.82 10.14
0.2 38.26 18.56 19.7 10.52 28.27 18.65 9.62 10.21
0.4 39.98 20.64 19.34 10.53 30.13 20.73 9.4 10.19
0.6 42.12 22.72 19.4 10.54 31.94 22.76 9.18 10.11
0.8 44.05 24.85 19.2 10.53 33.86 24.7 9.16 9.97
1.0 45.85 26.91 18.94 10.51 35.67 26.71 8.96 9.79
1.2 47.63 29.05 18.58 10.47 37.41 28.56 8.85 9.60
1.4 49.37 31.21 18.16 10.41 39.18 30.46 8.72 9.40
1.6 51.25 33.17 18.08 10.34 40.97 32.32 8.65 9.21
1.8 52.85 35.23 17.62 10.24 42.76 34.15 8.61 9.02
2.0 54.77 37.36 17.41 10.12 44.21 36 8.21 8.85
2.2 56.13 39.33 16.8 9.99 45.92 37.63 8.29 8.71
2.4 57.56 41.65 15.91 9.84 47.95 40 7.95 8.58
2.6 58.81 42.92 15.89 9.67 48.54 40.99 7.55 8.48
2.8 60.92 45.12 15.8 9.49 50.58 42.97 7.61 8.40
3.0 62.31 47.08 15.23 9.30 52.12 44.4 7.72 8.34
3.2 64.08 48.88 15.2 9.10 53.74 46.25 7.49 8.29
3.4 65.62 50.64 14.98 8.91 55.21 47.91 7.3 8.24
3.6 67.24 52.34 14.9 8.72 56.76 49.51 7.25 8.18
3.8 68.94 54.16 14.78 8.54 57.84 51.03 6.81 8.09
4.0 70.73 56.34 14.39 8.39 59.53 52.64 6.89 7.97
4.2 71.48 57.5 13.98 8.25 60.71 54.14 6.57 7.80
4.4 73.01 58.96 14.05 8.16 62.25 56.19 6.06 7.55
4.6 74.2 60.76 13.44 8.10 63.54 57.4 6.14 7.21
4.8 75.85 62.39 13.46 8.10 64.88 58.67 6.21 6.75
5.0 77.13 64.11 13.02 8.16 66.27 59.99 6.28 6.15
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Table 6: Fitting parameters in every sets of data.

a hc c p

1e 1st sets of data 0.0233 8.4482 0.4259 0.9263
1e 2nd sets of data 0.1544 9.0074 0.6004 0.8195
1e 3rd sets of data 0.0298 16.6818 1.1886 1
1e 4th sets of data 0.1293 9.4227 0.7689 0.6038

Table 7: 1e skewness and kurtosis of the fitted parameters.

a hc c p

U1 0.1091 1.9093 0.9596 − 0.9933
U2 − 1.1630 0.8365 0.2085 0.1299
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Figure 6: Comparison of simulation result: (a) the first sets of data; (b) the second sets of data; (c) the third sets of data; (d) the fourth sets of
data.
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maximum absolute error reduction, and 19.97% minimum
absolute error reduction, respectively. 1e results indicate
that improved model 2 is more suitable than OVM and
improved model 1 for describing the traffic phenomena
mentioned in this article.

6.2.DensityWave. In order to check the validity of the above
theoretical results, we discuss the space-time evolution of the
headway for various values of p by using the Euler method in
this section. In two adjacent lanes which are named lane 1
and lane 2, all vehicles drive in the same direction with the
constant headway h � 4.0m. Under the periodic boundary
condition, the following initial conditions in the two lanes
are given as follows:

Δx1,j(0) � Δx1,j(1) � · · · � Δx1,j(n) � 4.0, (26)

Δx2,j(0) � Δx2,j(1) � 4.0, for n≠ 50, 51,

Δx2,j(1) � 4.0 + 0.1, for n � 50,

Δx2,j(1) � 4.0 − 0.1, for n � 51.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(27)

Equations (26) and (27) are, respectively, the initial
conditions in lane 1 and lane 2. 1e total number of vehicles
in each lane is n � 100.1e safety distance is hc � 4.0. Other
input parameters for the simulation are a � 2, vmax � 3. In
order to simplify the experiment, we consider the vehicles in
lane 2 are in normal driving process; therefore, the driving
state of those vehicles can be described by the classic car-
following model. 1e vehicles in lane 1 are investigated.
1en, space-time evolution of the headway in lane 1 after a
sufficiently long time and the corresponding hysteresis loops
will be obtained in Figures 7 and 8.

Table 8: Comparison of evaluation indexes.

Mean square deviation Maximum absolute error Minimum absolute error
OVM Model 1 Model 2 OVM Model 1 Model 2 OVM Model 1 Model 2

1e 1st sets 2.6328 2.4439 1.7159 3.1469 2.9731 1.7604 1.6116 1.6270 1.6094
1e 2nd sets 5.2631 4.4345 1.6431 6.7589 6.0942 1.8630 2.1185 1.6717 1.3226
1e 3rd sets 2.5156 0.8557 0.5722 3.7024 1.1396 0.8146 0.7803 0.1869 0.0462
1e 4th sets 3.8783 2.6183 1.3696 6.9491 4.5116 2.4711 0.1439 0.2392 0.1219
Average value 3.5713 2.5881 1.3252 5.1393 3.6796 1.7273 1.1636 0.9312 0.7750
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Figure 7: Space-time evolution of the headway after t � 10000 s for small disturbance with different p: (a) p � 0, (b) p � 0.2, (c) p � 0.4, and
(d) p � 0.6.
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Figure 7 shows the space-time evolution of the headway
for different sets of p after t � 10000 s. 1e patterns (a)–(d)
are, respectively, corresponding to p � 0, 0.2, 0.4, and 0.6.
Muramatsu and Nagatani [26] present the solution of
MKDV equation can be exhibited as kink-antikink wave.
From Figure 7, because of the lateral influence from the
vehicles in lane 2, disturbance generates in the uniform flow
in lane 1. Small disturbance added to the uniform traffic flow
is amplified, and the kink-antikink wave appears as traffic
jam. Only parts of the vehicles in lane1 are affected by the
lateral vehicle, so the amplitudes of the density wave are not
uniform. In addition, it can be seen clearly from Figure 7 that
the amplitudes of the density wave increase with increasing
p. It indicates that the greater the lateral influence, the more
unstable the traffic flow is.

Figure 8 exhibits the hysteresis loops after t � 10000 s
with different sets of p. 1e solid line and dotted line are,
respectively, obtained with p � 0 and p � 0.6. Hysteresis
loop has a larger size means that the stability of traffic flow is
lower, and the stability of traffic flow is improved with the
decrease of the size of the loop. From Figure 8, we can see
that the hysteresis loop obtained with p � 0.6 is much larger
than that with p � 0. 1e result indicates that by taking
lateral influence into account, the stability of the traffic flow
decreases, which is in accordance with the linear stability
analysis and nonlinear analysis in Sections 4 and 5,
respectively.

7. Conclusion

In this paper, we describe a kind of traffic phenomenon that
the driver often does not keep up with the leading vehicle but
drives at a velocity similar to that of the surrounding ve-
hicles. Because of special reasons such as weather condition,
health conditions, driving technology, and personal habits,
the driver does not always keep up with the leading vehicle

but maintains a larger distance from the leading vehicle to
leave more reaction time. 1is phenomenon is an incom-
plete car-following behavior. With the consideration of the
lateral vehicle’s influence, we put forward two improved
models with different structures on the base of the OVmodel
in this paper. 1e new improved models are verified by
multiple sets of measured data. Linear stability analysis and
nonlinear analysis are carried out to study the traffic
characteristics. 1e results of linear stability analysis and
numerical simulation show that with increase of lateral
influence, traffic flow is more unstable, which is in accor-
dance with the traffic phenomenon that lateral interference
can affect driving.
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