
Research Article
Multiclock Constraint System Modelling and Verification for
Ensuring Cooperative Autonomous Driving Safety

Jinyong Wang ,1 Zhiqiu Huang ,1 Xiaowei Huang ,2 Yi Zhu,3 and Fei Wang1

1College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 General Avenue,
Jiang Ning District, Nanjing 211106, China
2Department of Computer Science, University of Liverpool, Ashton Street, Liverpool L69 3BX, UK
3School of Computer Science and Technology, Jiangsu Normal University, No. 101 Shanghai Road, Tongshan District,
Xuzhou 221116, China

Correspondence should be addressed to Zhiqiu Huang; zqhuang@nuaa.edu.cn and Xiaowei Huang; xiaowei.huang@
liverpool.ac.uk

Received 24 June 2020; Revised 22 October 2020; Accepted 24 October 2020; Published 7 December 2020

Academic Editor: N. N. Sze

Copyright © 2020 JinyongWang et al.-is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

CADS (cooperative autonomous driving systems) are software-intensive and safety-critical reactive systems and give great
promise to our daily life, but system errors may not be identified in the design stage until the implement stage, and the cost to
correct themwill be more expensive later than the early stage. For designing trustworthy autonomous software systems, we have to
deal with multiclock constraint models. SysML (System Modeling Language) meets increasing adoption in order to carry out
system-level modelling and verification against abstract representations, but it suffers from semantic ambiguities in the design of
safety-critical autonomous systems. -e main objective is to investigate methods for coping with the design and analysis models
simultaneously and to achieve semantic consistency based onmathematical foundations and formal model transformation. In this
paper, we propose a method to combine the requirement modelling process with analysis process together for CADS safety and
reliability guarantee. Firstly, we extend SysMLmetamodels and construct SysML profile for the CADS domain that could improve
modelling correctness and enhance reusability. An instantiated CADS model has been designed by means of adopting a profile
containing different key functional and nonfunctional attributes and behaviors. Secondly, we define formal syntax and semantic
notations for modelling elements in the SysML state machine diagram and show transformation rules between the state machine
diagram and the CCSL (Clock Constraint Specification Language) model. Semantic preservation is also proved using the
bisimulation relation between them for rigorous mapping correctness.-irdly, a cooperative autonomous overtaking driving case
study on the highway scenario is used for illustration, and we use the tool TimeSquare to simulate CCSL specification execution
traces at the system design stage.

1. Introduction

It can be anticipated that unmanned intelligent systems are
increasing rapidly. -ey can adapt to hostile or hazardous
environment and accomplish some extreme tasks, which are
difficult or impossible for humans, such as dangerous
conditions, extreme speed action or long-duration flights,
and cloudy or inclement weather [1]. In recent years, CADS
(cooperative autonomous driving systems) are widely used
in the connected traffic situation. -is application can im-
prove traffic safety and congestion by exchanging interior-

and intervehicle communication data. CADS require fre-
quent interaction with surrounding vehicles and the envi-
ronment. -ey are the implementation of reactive and
control systems and belong to globally asynchronous and
locally synchronous systems. We should endeavor in pro-
posing a modelling method for multiclocked and distributed
autonomous systems. So, we can analyze behavior events
through doing multiclock system verification to identify
design errors and predict unexpected faults.

Model-driven and model verification are main tech-
niques for developing safety-critical cooperative and

Hindawi
Journal of Advanced Transportation
Volume 2020, Article ID 8830752, 24 pages
https://doi.org/10.1155/2020/8830752

mailto:zqhuang@nuaa.edu.cn
mailto:xiaowei.huang@liverpool.ac.uk
mailto:xiaowei.huang@liverpool.ac.uk
https://orcid.org/0000-0002-6230-7388
https://orcid.org/0000-0001-6843-1892
https://orcid.org/0000-0001-6267-0366
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8830752

autonomous cyber-physical systems. Autonomous systems
can decide what to do or when to complete desired missions
individually or collaboratively and often continuously interact
with the environment. Safety-related properties, i.e., bad or
unexpected events, can never happen during software exe-
cution time and play an important role in people’s life and
property. When we develop an autonomous system, most of
errors are generated during the design stage. In addition,
system design and analysis are separated from each other, so it
will be very expensive and time-consuming to cope with
system errors until the implementation stage. SysML (System
Modeling Language) is a widely used modelling approach to
support discrete event system engineering, and CCSL (Clock
Constraint Specification Language) is the most commonly
used language for multiclock behavioral representation. -e
development and verification of formal multiclock constraint
models require deep knowledge about CCSL.We can take full
advantage of the twomodelling languages just mentioned and
show that behavioral models developed in the SysML state
machine diagram can be transformed into equivalent CCSL
multiclock models so that it is natural and conducive to apply
SysML design generality and CCSL verification capability [2].

-e complexity of autonomous software systems results
in the bottleneck of rigorous specification and verification.
Especially, in the first step of software requirements engi-
neering, natural language expressions are low levels con-
sistency and can lead to ambiguity. Although formal
languages provide consistent and precise syntax and se-
mantics, it remains a difficult mission for stakeholders to
understand and communicate [3–5].-emost shared way to
develop safe autonomous systems consists in model-driven
designing approach. Model transformation is the prime
technique during the process of model-driven software
development. -e latest practical solution in model trans-
formation is semantic equivalence proof, which can help
users to comprehend complicated software systems. We
should give special emphasis about model verification to
prove semantic consistency and properties preserved in the
target model. -ere are three kinds of common model
verification techniques, i.e., formal model checking, theorem
proving, and model simulation. -e main limitation of
theorem proving is that it is short of complete automation
and needs a lot of human interaction. Although formal
model checking can run automatically, it suffers from sig-
nificant defect, for example, state explosion problem [6].
Model simulation is based on symbolic execution which
requires the operational semantics defining model behavior
in reaction to input stimuli. It is a widespread technique
helping to generate certification evidence through verifying
assumptions.

However, more and more features, such as concur-
rency, distribution, heterogeneity, and multicore, have
been introduced into autonomous software, which lead to
three important challenges in the development of CADS.
Firstly, it is important and difficult to mitigate ambigu-
ities between nonformal language requirements and
formal specification. Natural or semiformal language
statements often result in misinterpretations and may
lead to ambiguities [7, 8]. Secondly, designing

cooperative autonomous systems is a multidisciplinary
problem because we should consider dependability re-
quirements, emergent phenomena, accountability for
accidents, and supporting evolution. It is essential to
propose a special modelling language profile, which
customizes reference metamodel for a particular co-
operative autonomous domain [9, 10]. Last but not the
least, the most challenging issue is to prove semantic
preservation between the source and the target model
[11, 12]. Complexity of CCSL semantics makes it hard to
prove semantics consistency for model transformation.
Rigorous proof for semantics preservation will ensure the
correctness and effectiveness of communication and
understanding among application domain experts, model
designers, and system analysts [2, 13, 14].

For these three challenges, our research focuses on mul-
ticlock autonomous system specification and simulation to
overcome the problems mentioned. -ere are three main
contributions in this article. Firstly, we provide a cooperative
autonomous system modelling SysML profile including
a conceptual model and interrelationships. So, we can enjoy
the benefits of using SysML for breaking down the complex
systems into discrete pieces, which are conducive to com-
municate with disparate developers on different platforms and
enhance the understandability of CADS stakeholders. Sec-
ondly, we give the formal syntax and semantic notations for
modelling elements in SysML and transform the conducted
state machine diagram model into mathematically based
formal CCSL model. -e benefit of transformation is that we
can use different models and software safety and reliability
analysis tools without having to repeat modelling processes.
After presenting syntax and semantics of the SysML state
machine and CCSL, we must prove behavior preservation
through the proof of bisimulation relation.-irdly, in order to
obtain certification evidence for complex and safety-critical
autonomous systems, we adopt a commonly used simulation
method in this work. -e simulation tool TimeSquare is
specifically designed to verify and validate multiclock con-
straint CCSL models, and we make full use of it to generate
execution simulation results to analyze corresponding mul-
ticlock constrain autonomous systems.

-e structure of this paper is as follows: Section 1
introduces the background and objectives of this paper.
In Section 2, motivations and connections with the re-
lated work of multiclock constraint autonomous system
modelling and verification are given. In Section 3, we
present multiclock constraint systems and describe rel-
evant state-of-the-art concepts used for systems’ speci-
fication and verification, such as model-driven method,
CCSL, simulation tool TimeSquare dedicated to CCSL
analysis, and motivating scenario. We present the state
machine model for CADS, semantic mapping rules from
the state machine to the formal CCSL model, and bisi-
mulation proof for behavior equivalence in Section 4. In
Section 5, a case study, autonomous overtaking in the
highway scenario, demonstrates effectiveness of the
proposed method. In the last part of this paper, Section 6
discusses conclusions by summarizing contributions and
points out future work.

2 Journal of Advanced Transportation

2. Motivation and Related Work

With the rise and development of advanced driver assistance
systems, from almost pure human control to fully auton-
omous decision with minimal human interaction, they are
now being deployed in safety- andmission-critical scenarios.
In safety-critical systems, the massive use of software is
increasingly improving our daily life, and autonomous ve-
hicle manufacturers and suppliers already design and ensure
safety-critical software. Safety is one of the major non-
functional properties, and tremendous expectations and
increasing deployments lead us towards using formal
specification and formal verification to obtain evidence for
cooperative and autonomous systems [15]. In this section,
we describe motivation and short review research related to
modelling and verification for multiclock autonomous
systems.

2.1. System Modelling and Model Transformation.
Autonomous driving system is a kind of multiclock con-
straint system, so we should provide rigorous modelling
methods to ensure safety and correctness. Firstly, we discuss
relevant work involving system modelling and model
transformation. Bochmann et al. [16] presented the con-
troller synthesis and compositional verification for multilane
traffic maneuvers. Arcile et al. [17] proposed a framework
using timed automata and model checker UPPAAL (de-
veloped by Uppsala University and Aalborg University) to
verify safety and robustness properties. Kamali et al. [18]
constructed a spatial controller using hybrid agent archi-
tecture to model autonomous lane-change maneuvers for
real-time and spatial properties. Webster et al. [19] in-
troduced an approach combining formal verification and
flight simulation for autonomous unmanned aircraft.
Akhtar andMissen [20] demonstrated amethod to construct
a stepwise refinement multiagent model using process al-
gebra from abstract to concrete concepts incrementally and
showed how to ensure the safety and liveness properties for
concurrent and interacting cooperative autonomous sys-
tems. -e work in [21] introduced an abstract model for
autonomous urban traffic scenarios using multilane spatial
logic and showed that controllers modelled by extended
timed automata can be proved safe using spatial reasoning at
intersections. -e aforementioned papers mainly use formal
modelling methods directly at the beginning of requirement
engineering. However, semiformal modelling can bridge the
gap between natural requirements and formal models.

Now, we will briefly discuss the relationships between our
work and existing work about modelling of cooperative au-
tonomous systems. Bernardi et al. [22] extended the UML
profile, which can specialize for the railway domain and then
used model transformation to generate repairable fault tree and
Bayesian network models. Kapos et al. [23] explored a de-
clarative approach and converted query/view/transformation-
relation SysML model to executable simulation models, fully
conforming model-driven architecture concepts. Caltais et al.
[24] wanted to link two worlds of modelling and formal ver-
ification through providing transformation rules from SysML to

Promela and prove the correctness based on ATL- (Atlas
Transformation Language-) based transformation. Dickerson
et al. [25] proposed a transformation metamodel between the
UML activity model and fault tree model for end-to-end safe
development process. Alshboul and Petriu [26] proposed an
approach to automatically transform SysML into fault tree
implemented in ETL (Epsilon Transformation Language),
which can realize the purpose to integrate safety analysis within
the system development process. Dias et al. [27] translated
software architecture description language based on SysML and
specialized profiles to process calculus CSP (communicating
sequential process), and the translation can guarantee safety and
liveness properties. -e aforementioned works show the latest
trend of model-based system development modelling and
SysML model transformation for software-intensive systems.
However, there is still lack of research onmodel transformation
methods for multiclock systems, and we should provide co-
operative autonomous system modelling profile and focus on
transformation mapping rules for multiclock constraint time-
critical systems, which is the first motivation of our work.

2.2. Multiclock System Specification and Semantic
Equivalence. After the natural language requirement model
is conducted, developers need to verify correctness and
confirmwhether it meets the customers’ expectations. In this
section, we review existing works about multiclock speci-
fication and semantic equivalence.

Multiclock timing behavior is critical for real-time cyber-
physical systems. In order to analyze them early in the design
stage, Goknil et al. [28] proposed a method that makes
model transformation twice for formal model checking
using model checker UPPAAL. -e work in [29, 30] pre-
sented an approach mapping CCSL to timed input/output
automata to verify safety-critical properties.-e work in [31]
proposed a method to combine synchronous specification
language Esterel to perform validation through observers
executing CCSL specification. [32–34] extended CCSL with
the stochastic semantics and translated it into UPPAAL
models to perform formal verification for verifying sto-
chastic and dynamic behaviors. -e work in [35] translated
probabilistic CCSL into proof objective models for sup-
porting multiclock probabilistic analysis. Chen et al. [36]
translated multiclock requirement modelling with CCSL
into NuSMV to verify its consistency.

-e mentioned works mainly use model transformation
for the multiclock CCSL model, and part of them gives the
semantic mapping rules, but most of them do not provide
rigorous proof for behavior equivalence and model bisi-
mulation. In this paragraph, we list several works consid-
ering behavior conservation through model bisimulation.
Lam and Padget [37] defined syntax and semantics of UML
statechart diagrams and π-calculus, translated statechart
diagrams into -calculus, and adopted open bisimulation to
check equivalence. Tolbi et al. [38] translated EHPNs (ele-
mentary hybrid Petri nets) into the hybrid automata model
in terms of timed transition systems and gave behavior
preservation proof in the form of timed bisimulation.
Bodeveix et al. [39] proved the correctness of transformation

Journal of Advanced Transportation 3

AADL (Architecture and Analysis Design Language) to the
target FIACRE language. Baouya et al. [40] introduced
a novel verification framework translating the SysML ac-
tivity diagram into the probabilistic model checker and
proved the correctness and soundness of transformation.
-e work in [41] proposed a method to model stochastic
processes with continuous states and proved the behavior
equivalence based on the structural operational semantic
rule. Bonchi et al. [42] introduced an enhancement up-to
bisimulation technique for proving equivalence of open
terms. Hülsbusch et al. [43] adopted two bisimularity
preservation proof techniques and discussed the proof
scalability issue. -e work in [44] discussed the bisimulation
approach to verify the semantic equivalence.

To sum up, model transformation is an indispensable
step of the model-driven development method for safety-
critical software, and it is necessary to prove semantic
preservation and equivalence between the source model and
the terminate model. As for multiclock constraint systems,
they are short of behavior reservation proof and simulation
at the design stage, which is the second motivation of this
work.

2.3. Model Verification for Multiclock Systems. According to
the model-driven development approach, after model
specification and model transformation, we should focus on
model verification before system delivery. For three com-
monly used model verification methods, because theorem
proving needs a lot of human interaction and formal model
checking encounters the state explosion problem [45], in this
paper, we adopt the model simulation method to perform
model verification for multiclock constraint systems.

We have carefully searched for previous work with re-
lation to this study. Do et al. [46] provided a survey on
simulation models to verify connected and automated in-
telligent vehicles and showed that simulation-based analysis
guides performance measures. Related works in [47, 48]
provided an approach for conjoint simulation to enjoy the
benefit of understanding multiclock systems’ synchroniza-
tion at the early design model. Mallet and De Simone [49]
proposed two different techniques to perform state-based
specification and conduct causal and temporal analysis in
the simulation engine. Morando et al. [50] adopted a sim-
ulation-based approach using the traffic microsimulator
surrogate safety assessment model and suggested that au-
tonomous vehicles can improve traffic safety significantly.
Shen et al. [51] proposed an early potential warning system
to guide driving behaviors and verified reliability by means
of cosimulation. Luo et al. [52] presented an approach to
enhance traffic safety through rear-end collision models and
numerical simulation. -e work in [53] proposed a pre-
dictive control model for multivehicle lane-change co-
operative maneuver to improve safety of intelligent traffic.

In conclusion, as for multiclock constraint and safety-
critical autonomous systems, software concepts, assump-
tions, and terminologies may be inconsistent because of the
limitation of real data. -e emergent autonomous systems
are composed of multiple clocks, events, and entities which

benefit from agent-based modelling and simulations [54],
and simulation results provide guidance to identify and
avoid potential deadlocks, errors, and hazards as early as
possible in the design phase, which is another motivation for
our work.

3. State of the Art for Multiclock Systems’
Specification and Verification

In this section, we mainly focus on relevant developing
methods and technologies for autonomous system design
and analysis.

3.1. Model-Driven Development and SysML/MARTE.
MDD (model-driven development) is an approach for de-
signing complex software systems, especially cyber-physical
systems and autonomous software systems. According to
this development method, lower-level systems’ artifacts,
such as source code, are derived from high-level abstract
modelling artifacts. System engineers could not only reduce
time consumption through reusability and modularity for
researchers and practitioners but also enhance safety and
security of the whole system.MDD is based onmodel-driven
architecture and dedicated to innovative system
development.

-e basic idea of MDD is that everything is a model, and
software developing process is driven by system modelling
behavior. A model is the abstraction and representation of
reality for a given purpose. Although it cannot represent all
aspects of the real world, it allows us to deal with problems
through avoiding the complexity and improving reusability.
-ese different models stand for different abstract levels for
system development. Model-driven developing process is
presented in Figure 1. At the beginning of MDD, system
engineers perform requirement analysis according to sys-
tems’ requirements in the form of natural language. Next,
they construct a transformation requirement model by
sorting out the basic concepts and relationships among all
system specifications in the process of the CIM (Compu-
tational Independent Model). -en, they transform the CIM
into the transformation design model belonging to the PIM
(Platform-Independent Model) through M2M (Model-to-
Model) transformation, which can transform the source
model into another object model [55, 56]. PIM considers
logical data that can be abstracted nothing to do with any
application platforms. We obtain a platform-specific model
(PSM) by adding concrete and related platform information
in the PIM. -rough the subsequent M2M transformation,
PIM can be transformed into PSM. Finally, source code (or
other code-related software artifacts) is obtained through
Model-to-Text transformation. In the process of PIM-to-
PSM transformation, metamodel and profile support dif-
ferent abstraction model construction, and transformation
metamodel defines the abstract syntax and static semantics
of the corresponding metalanguage. -e profile defining the
concrete syntax of the language extends a reference meta-
model to adapt for specific platform, particular domain, or
a software development method. -e transformation model

4 Journal of Advanced Transportation

consisting of transformation rules conforms to the trans-
formation metamodel and maps constructors from the
source model to constructors of the target model, which are
in conformance with the source metamodel and target
metamodel, respectively. When transformation is executed,
transformation function receives the source model in-
stantiated from the PIM as the input and generates the target
model instantiated from the PSM as the output.

-ere are many languages supporting MDD, such as
UML (Unified Modeling Language), SysML, CCSL, AltaR-
ica, and AADL. SysML is a graphical modelling language
based on general purpose, and it supports modelling
hardware and software codesign, coping with high com-
plexity and avoiding traditionally time-consuming devel-
opment [57]. -e purpose of SysML is to describe, analyze,
design, and verify complex systems. CADS are a safety-
critical and complex system, so it is necessary to perform
formal analysis at the stage of design phase for ensuring
safety of autonomous systems. One step of model trans-
formation is needed to transform the informal or semiformal
model into the formal model for rigorous and compre-
hensive analysis. A model transformation is similar to
a program responsible for transforming one representation
into another. Main M2M transformation approaches in-
clude relational/declarative, imperative/operational, graph-
based, and hybrid. -is work mainly pays attention to re-
lational/declarative approaches, and transformation speci-
fication languages focus on the mapping relationship
between input elements and their corresponding output
elements. So, we should define the mapping relationship
using mathematical specification predicates and input-
output constraints [58].

MARTE system (Modeling and Analysis of Real-Time
and Embedded system) combines the latest research results
of industry and academia in the embedded field, and it is an
open and extensible modelling specification through ste-
reotype, tagged-value, and constraint to extend SysML’s
modelling capability. Its architecture can be classified into
two categories dealing with quantitative and qualitative
aspects, respectively, and it is composed of some subprofiles,
as is shown in Figure 2. It mainly contains four subextension
packs, including foundations, design model, analysis model,
and annexes, in the MARTE library. Time package including
in MARTE foundations is the main profile for modelling

real-time behaviors, which defines time structure, time ac-
cess, time usage, and other necessary time modelling ele-
ments and methods. Time access defines concepts and
specifications of representing time structures among these
time packages related to this work, such as clock, clock type,
and current time. -e “foundations” package is made up of
the following profiles: (1), core elements which support to
model the systems’ operational modes; (2), nfp profile which
provides modelling constraints for specifying, defining, and
applying nonfunctional information to a SysML model; and
(3), time profile which contains concepts of time structure,
time access, and time usage, which are the main modelling
and verifying modes for embedded real-time systems. When
CCSL starts to appear, it is a textual specification and
companion language complementary to the time profile
allowing us to describe the clock constraints in MARTE
annexes, and now, CCSL has been fully developed as an
independent specification language for logical clock and
chronometric clock. -en, we introduce CCSL relevant
definitions and concepts and give primary syntax and se-
mantics of the CCSL.

3.2. Syntax and Semantics of the CCSL. Clocks in the CCSL
can be seen as events, and their instants stand for event
occurrences.-ey can be logical or physical clocks and dense
or discrete clocks [48]. In this paper, we mainly consider
discrete clocks. Clocks with the arrival of logical sequence
describe behaviors of systems instead of arrival of physical
data. In order to describe multiclock systems more conve-
niently, CCSL allows each clock to be defined independently
and only needs to describe existing system behavior and
logical restriction relationship between clocks, without as-
suming total reference clock of a system, which is more
conducive to the flexibility of system description. CCSL can
specify constraints and evolutions among clocks, which are
presented in the form of clock relations or clock expressions.
-e clock relation may be synchronous or asynchronous,
and we can use clock expression to define new clocks based
on other existing clocks. -e core concept of multiclock
constrained language CCSL is that a logical clock consists of
a series of moments (instants), a moment corresponding to
a tick of the clock. Now, we elaborate on preliminary
definitions.

Transformation
design model

Transformation
model

Model2Model
transformation

Transformation
code

Model2Text
transformation

InstanceOf InstanceOf

Transformation
metamodel

Transformation
model TargetModel

ConformsTo

Source Target

Source
metamodel

Target
metamodel

ConformsTo

SourceModel

ConformsTo

System
requirements

Transformation
requirements model

Requirements’
analysis

Model2Model
transformation

Figure 1: Modeling process and transformations in MDD.

Journal of Advanced Transportation 5

At the beginning, we give the definition of the logical
clock and multiclock constraint system referring to syn-
chronous modelling language SIGNAL [59]. Logical clock,
introduced by L. Lamport, is the central concept in CCSL,
which abstracts physical time to partial order of SysML
events. Clock constraint system can be divided into two
categories, Monoclock system and multiclock system.

Definition 1 (logical clock). In CCSL, a logical clock is
a quintuple notation, 〈Ins, < , Lab, λcl, U〉, which represents
a set of ordered instants. Formally, a clock
c � 〈Ins, < , Lab, λcl, U〉, where Ins is a sequential set of
instants, < is a quasi-order relation on Ins, Lab is a set of
labels, λcl: Ins⟶ Lab is a labeling function, and U stands
for logical clock units and is often called tick abstractly. For
any discrete logical clock, c(i) denotes ith instant in Insc, and
for each c(i) ∈ tick, idle{ }, Insc is the set of occurrences or
ticks for clock c. Now, we give relevant definitions for initial
and terminal instants, respectively.

(1) i ∈ Insc is the initial instant of clock c if and only if
∀j ∈ Insc/ i{ }, (i, j) ∈ < c

(2) i ∈ Insc is the terminal instant of clock c if and only if
∀j ∈ Insc/ i{ }, (j, i) ∈ < c

For any instant i ∈ Insc, ∘ i and i∘ stand for the pre-
decessor and successor of i in Insc, respectively. If i is neither

the initial instant nor terminal instant, ∃m ∈ N, N is the set
of natural numbers, which makes c(m) � i, then
c(m − 1) � ∘ i, c(m + 1) � i∘; and if i ∈ Insc is the initial
instant, then there is only successor instant, and there is no
predecessor for i; if i ∈ Insc is the terminal instant, then there
is only predecessor instant, and there is no successor for i.
Now, we give an example for the logical clock, and the
graphical representation of clock April is shown in Figure 3.

clock April � (1, 2, . . . , 29, 30{ },

< , 2020.4.1, 2020.4.2, . . . , 2020.4.29, 2020.4.30{ }, λ, day).

(1) <: i< j, i ∈ 1, 2, . . . , 29{ }∧j ∈ 2, 3, . . . , 30{ }∧
j � i + 1.

(2) λcl: Ins⟶ D, ∀i ∈ I, λcl(i) � 2020.4.i.

Definition 2. Monoclock system and multiclock system
A monoclock system is a system in that all activations of

subsystems (also called subclocks) are controlled by a single
and global master clock; a multiclock system is a system
composed of several functionally independent systems, in
which each system holds its own activation clock, and there
is no master clock existing in the whole system.

In a monoclock model, each component’s clock would
have a strict dependency relationship to the system’s global
master clock, which would result in tight coupling between
subsystem clocks and the global clock. Once one

<<profile>>
NFP

<<profile>>
Time

<<profile>>
CoreElements

<<profile>>
……

<<profile>>
……

<<profile>>
……

<<profile>>
……

<<model
Library>>

MARTE Library

<<profile>>
TimeStructure

<<profile>>
TimeAccess

<<profile>>
TimeUsage

<<profile>>
TimeStructure

(i) Time base

(ii) Multiple time bases
(iii) Instants
(iv) Time structure relations

<<profile>>
TimeAccess

Clocks

Logical clocks
Chronometric clocks
Current time

<<profile>>
TimeUsage

Timed elements

Timed events
Timed actions
Timed constraints

MARTE design model

MARTE annexes

MARTE foundations

MARTE analysis model

Time package

(iii)

(i)

(ii)

(iv)
(iii)

(i)

(ii)

(iv)

Figure 2: View of MARTE architecture and time package.

6 Journal of Advanced Transportation

component’s clock frequency changes, the global clock and
other subclocks also need to be adjusted accordingly.
Multiclock systems are globally asynchronous and locally
synchronous distribute systems, which are called the formal
modelling framework polychrony [60, 61]. Components
contained in the multiclock system obey to multiple clock
rates, it has no global clock, and each component works
according to its own clock, which is loosely coupled with
other clocks, and clock synchronization takes place only
between components that interact. A clock in the timed
automata model captures physical real-time value proper-
ties, which will be elapsed as transition execution, and all
clocks evolve according to the same rate [62]. -erefore,
a multiclock model is suitable for modelling distributed or
highly parallel systems. In monoclock and multiclock sys-
tems, the clock mainly represents logical time properties,
and graphical representation for them is shown in Figure 4.

Definition 3 (clock schedule). A schedule is a function
Sched: N⟶ 2c. Given an execution step i ∈ N and clock
schedule σ ∈ Sched, σ is an infinite or finite sequence
σ(0)σ(1), . . . , σ(i), . . . , i ∈ N, C is a finite set of clocks, and
each σ(i) ∈ 2c denotes a set of clocks that tick at step i.

σ(i) �
∅, i � 0
c|c ∈ C∧c(i) � tick{ }, i≥ 1􏼨 .

Definition 4 (clock history). Given any schedule σ, the clock
history Hσ is a function Hσ : C × N+⟶ N, which keeps
inductive record of the number of ticks for each clock up to
current time. It is defined recursively as

Hσ(c, i) � j|j ∈ N+
, j≤ i, c ∈ σ(j)􏼈 􏼉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�

Hσ(c, 0) � 0, i � 0,

Hσ(c, i + 1) � Hσ(c, i), ∀i ∈ N, c ∉ σ(i),

Hσ(c, i + 1) � Hσ(c, i) + 1, ∀i ∈ N, c ∈ σ(i).

⎧⎪⎪⎨

⎪⎪⎩

(1)

Definition 5 (CCSL specification). A CCSL specification is an
ordered pair relation Spec � 〈C,Cons〉, where C is the set of
logical clocks in Definition 3, and Cons is a finite set of clock
constraints, which include clock relations and clock expressions.
Clock relation consists of the connection of the logical clock and
the binary operator and can be synchronous or asynchronous.
-e basic clock relation syntax is defined as follows.

Rel⩴c1≺c2|c1#c2|c1⊆c2|c1 ≡ c2|c1 ∼ c2|c1≼c2, where
c1 and c2 are any clocks belonging to the set C. -e semantics
of clock relations is shown in Table 1.

-e semantic interpretations of clock relations are
explained informally as follows: “precedence” means that

each instant of c2 can only occur after the corresponding
instant of clock c1; “exclusion” means that any two clocks
c1, c2 cannot happen at the same instant; “subclock” means
that c1 is a subclock of its superclock c2, and every instant of
clock c1 coincides synchronously with one of the instants of
clock c2; when clock c1 and clock c2 satisfy c1⊆c2∧c1⊇c2, two
clocks are said to be synchronous and can be denoted as
c1 ≡ c2; “causality” means that when an event causes another
one, the result event cannot occur if the cause event does not
happen, so every clock c1 has to precede clock c2 in the same
instant in schedule σ; and “alternation” relation ∼ is derived
from the precedence relation ≺ shown in Table 1. ∼ is
a form of bounded ≺, and clock c1 alternates with c2 which is
denoted as c1 ∼ c2 or c1≺1c2, and an instant of c1 precedes
the same instant of c2 which in turn precedes the next instant
of c1. A possible schedule of clock relations is shown in
Figure 5. In the result of simulation of TimeSquare presence,
there are two kinds of links between two different ticks: red
link, which stands for coincidences (strongly synchronous)
and blue arrows, which stand for causalities (weakly
synchronous).

Clock constraints can either be clock relations or clock
expressions. Every clock expression is a set of clock defi-
nitions, and we can use an expression to define a new clock
based on a set of parameters. -e basic clock expression
syntax is defined as follows.

Exp⩴c1 + c2|c1 ∗ c2|c1 ▶ c2|c1 ↯ c2|c1∨c2|c1∧c2|c∧1n,
where c1 and c2 are any clocks belonging to the set C. -e
semantics of clock expressions is shown in Table 2.

-e semantic interpretations of clock expressions shown
formally in Table 2 are explained in natural language in-
formally as follows: the result of the “Union” is a clock c0
which ticks whenever either c1 or c2 ticks; “Intersection”
expression defines a clock c0 which ticks whenever both c1
and c2 tick at the same instant; expression “DelayFor” de-
fines a clock c0 which is synchronous with part of the delay
clock c2, and every tick of the base clock c1 starts up the
counter d which will be decreased with every tick of the delay
clock c2; when the counter d reaches 1, the clock c0 will occur
along with the delay clock c2 at the same time; “PeriodicOn”
defines a clock c0 which ticks periodically every pth tick of
another base clock c1; “Sample” produces the fastest clock c0

Clock
April

2020.4.1

2020.4.2

2020.4.3 2020.4.24

2020.4.25

2020.4.29

2020.4.30

Figure 3: Graphical representation of clock April.

Master clock

Subclock3

Subclock1 Subclock2

Subclock4

(a)

Subclock3

Subclock1 Subclock2

Subclock4

(b)

Figure 4: (a) Monoclock system and (b) multiclock system.

Journal of Advanced Transportation 7

slower than c1 that is a subclock of base clock c2, and it is
synchronous with the base clock c2; it is easy to show that
c0⊆c2∧c1≼c0; “StrictSample” defines a clock c0 that satisfies
the formula c0⊆c2∧c1≺c0; “Supremum (Infimum)” defines
the slowest (fastest) clock c0 which is faster (slower) than
both clocks c1 and c2; “Preemption (UpTo)” produces
a resulting clock c0 ticking in coincidence with the clock c1
and dying as soon as the clock c2 starts to tick; and “Wait”
defines a clock c0 which will tick only once nth for the
corresponding base clock c1, and then the resulting clock
dies forever. A possible schedule of clock expressions shown
in Table 2 is presented in Figure 6.

3.3. Model Verification and TimeSquare. After the system
model is built according to the model-driven develop-
ment method, one of real problems is that we need to
perform model validation and verification to ensure
correctness and safety of the whole system. -ere are
various techniques used to perform model validation and
verification, such as formal model checking, theorem
proving, abstract interpretation, simulation, and emu-
lation. Among these model verification techniques,
simulation models are comparatively flexible to find
unexpected problems at the system design phase and can
be modified to accommodate changing environment to
a real situation. In this paper, we focus on model sim-
ulation after constructing a conceptual model. Time-
Square is an Eclipse and model-driven software

environment to cope with the MARTE time model and
CCSL. -is Eclipse plugin can be used to perform in-
teractive clock-related specification, check clock con-
straints, and give a waveform solution [47].

CCSL has rigorously formal semantics making CCSL
multiclock constraint specification executable in Time-
Square. According to Definition 4 (clock history), we call
Hσ(c, i) a configuration of clock c at instant i. So,
a configuration is a set of enabled clocks (ticking) at
a given step. At each step, the result of TimeSquare
consists of a Boolean solution and a set of all valid
configurations. If the polychromous clock constraint is
deterministic, it will produce only one valid configura-
tion; if it is nondeterministic, one of the possible con-
figurations will be chosen in accordance with the solution
policy, which is offered by TimeSquare among several
simulation policies. When the clock specification is
correct, TimeSquare will generate a valid sequence of
steps, and this means that there exists a trace to satisfy
clock constraints. If deadlocks are found by the solver
after a finite sequence of steps in the waveforms, in-
consistent specification should exist in clock constraints.
-e resulting traces are shown in the VCD (Value Change
Dump) format, which is an IEEE standard format used by
logic simulation tools. -e relations between clocks
provided in the TimeSquare tool are partial-order traces,
and this illustrates that clocks (events) satisfy constraint
specifications during simulation, early design validation,
and verification.

Table 1: -e semantics of clock relations.

Relation name Notation Kind of relation Semantics of relations
Precedence c1 ≺ c2 Asynchronous ∀i ∈ N+, (Hσ(c1, i) � 0∧Hσ(c2, i) � 0)∨ (Hσ(c1, i)>Hσ(c2, i))

Exclusion c1#c2 Asynchronous ∀i ∈ N+, c1 ∉ σ(i)∨c2 ∉ σ(i)

Subclock c1 ⊆ c2 Synchronous ∀i ∈ N+, c1 ∈ σ(i)⟶ c2 ∈ σ(i)

Coincidence c1 ≡ c2 Synchronous ∀i ∈ N+, c1 ∈ σ(i) � c2 ∈ σ(i)

Causality c1 ≼ c2 Asynchronous ∀i ∈ N+, Hσ(c1, i)≥Hσ(c2, i)

Alternation c1 ∼ c2 Asynchronous ∀i ∈ N, c1(i)≺ c2(i)∧ c2(i)≺ c1(i + 1)

Newfile::main::C1

Newfile::main::C2

0 10 20

(a)

Newfile::main::C1

Newfile::main::C2

0 10 20

(b)

Newfile::main::C1

Newfile::main::C2

0 10 20

(c)

Newfile::main::C1

Newfile::main::C2

0 10 20

(d)

Newfile::main::C3

Newfile::main::C4

0 10 20

(e)

Newfile::main::C1

Newfile::main::C2

0 10 20

(f)

Figure 5: A possible schedule of clock relations: (a) c1≺c2, (b) c1#c2, (c) c1⊆c2, (d) c1 ≡ c2, (e) c1 ≼ c2, and (f) c1 ∼ c2.

8 Journal of Advanced Transportation

3.4. Motivating Scenario: ;e Architecture of CADS. An
autonomous car can be considered as a computer-aided and
computer-controlled vehicle which monitors, percepts
surroundings, guides itself, makes decisions, and is fully
controlled and operated without any human interactions

[63]. In fact, CADS are a kind of intelligent systems, such as
reactive systems, self-adaptive systems, cyber-physical sys-
tems, and ubiquitous intelligent operating systems. -ese
types of systems have a common characteristic that requires
constant interaction with the environment continuously, but

Newfile::main::C0

Newfile::main::C1

Newfile::main::C2

0 10 20

(a)

Newfile::main::C0

Newfile::main::C1

Newfile::main::C2

0 10 20

(b)

Newfile::main::C0

Newfile::main::C1

Newfile::main::C2

0 10 20

(c)

Periodicitynewfile::...

Periodicitynewfile::...

0 10 20

(d)

Newfile::main::C0

Newfile::main::C1

Newfile::main::C2

0 10 20

(e)

Strictsamplenewfile::...

Strictsamplenewfile::...

Strictsamplenewfile::...

0 10 20

(f)

Newfile::main::C0

Newfile::main::C1

Newfile::main::C2

0 10 20

(g)

Newfile::main::C0

Newfile::main::C1

Newfile::main::C2

0 10 20

(h)

Newfile::main::C0

Newfile::main::C1

Newfile::main::C2

0 10 20

(i)

Newfile::main::C0

Newfile::main::C1

0 10 20

(j)

Figure 6: A possible schedule of base clock expressions: (a) c0 ≜ c1 + c2, (b) c0 ≜ c1 ∗ c2, (c) c0 ≜ c1 , (d) c0 ≜ c1∝p, p � 3, (e) c0 ≜ c1⊳c2, (f)
c0 ≜ c1▶c2, (g) c0 ≜ c1∨c2, (h) c0 ≜ c1∧c2, (i) c0 ≜ c1↯c2, and (j) c0 ≜ c1∧n, n � 6.

Table 2: -e semantics of clock expressions.

Clock expression name Notation Kind of expression Semantics of expressions
Union c0 ≜ c1 + c2 Synchronous ∀i ∈ N, c0 ∈ σ(i)⟺ (c1 ∈ σ(i)∨c2 ∈ σ(i))

Intersection c0 ≜ c1 ∗ c2 Synchronous ∀i ∈ N, c0 ∈ σ(i)⟺ (c1 ∈ σ(i)∧c2 ∈ σ(i))

DelayFor c0 ≜ c1 Synchronous or asynchronous ∃i ∈ N, c0 ∈ σ(i)⟺ c2 ∈ σ(i)∧∃j≤ i,

c1 ∈ σ(j)∧Hσ(c2, i) − Hσ(c1, j) � d

PeriodicOn c0 ≜ c1∝p Synchronous or asynchronous ∀i ∈ N, c0 ∈ σ(i)⟺Hσ(c1, i) � p∗
Hσ(c0, i)∧c1 ∈ σ(i)

Sample c0 ≜ c1⊳c2 Synchronous or asynchronous ∀i ∈ N, c0 ∈ σ(i)⟺ (c2 ∈ σ(i)∧(∃0< j≤ i)(∀j≤ k< i)·

(c1 ∈ σ(j)∧c2 ∉ σ(k)))

StrictSample c0 ≜ c1▶c2 Synchronous or asynchronous
∀i ∈ N, c0 ∈ σ(i)⟺ (c2 ∈ σ(i)∧
(∃0< j< i)(∀j≤ k< i)·

(c1 ∈ σ(j)∧c2 ∉ σ(k)))

Supremum c0 ≜ c1∨c2 Synchronous or asynchronous ∀i ∈ N, Hσ(c0, i) � min(Hσ(c1, i), Hσ(c2, i))

Infimum c0 ≜ c1∧c2 Synchronous or asynchronous ∀i ∈ N, Hσ(c0, i) � max(Hσ(c1, i), Hσ(c2, i))

Preemption (UpTo) c0 ≜ c1↯c2 Synchronous ∀i ∈ N, c0 ∈ σ(i)⟺ (c1 ∈ σ(i)∧∀0< j≤ i, c2 ∉ σ(j))

Wait c0 ≜ c1
∧n Synchronous c0 ∈ σ(n)∧∀i ∈ N, i> n, c1 ∉ σ(i)

Journal of Advanced Transportation 9

the main difference and advantage of the autonomous system
are that it can “see” or percept the environment, “hear” or
communicate with surroundings, and react fast enough and
control independently without humans or other individual
intervention. -e purpose of autonomous driving system
emergence is to improve driving safety, reduce environmental
pollution, and ease the traffic congestion situation, but if these
systems only act autonomously and lack connectivity and co-
operativeness, autonomous driving systems may lead to colli-
sion, chaos, and collapse in the case of high densities and large-
scale situation. -erefore, autonomous driving system must be
designed not only to be interconnected but also to be co-
operative. In this paper, we only consider connected and co-
operative autonomous driving system because this kind of
system can negotiate with other infrastructures and vehicles to
share common information for safety and driving comfort level.

CADS can communicate with other vehicles and in-
frastructures to obtain environment information; the system
reacts fast enough to produce corresponding outputs. -e
system must cope with input events and output events, and
inputs must precede outputs strictly. Events can be seen as
multiclocks, and consumed time of computations and com-
munications can be abstracted as instantaneous. Every com-
putation time can be treated as an instant rather than a time
interval; in other words, we can abstract and assume that each
calculation time is zero, andmeanwhile, the sequence of events
(or clocks) must satisfy functional specification. -is kind of
model is a synchronous model. It is a type of PIM, which does
not care about calculation time but only focuses on the se-
quence of the input event. So, synchronousmodel for real-time
systems only cares about system functional properties and
provides a high-level abstract model for system modelling and
verification. In order to introduce the process of specification
and simulation for CADS, we should present the architecture
and basic elements in the autonomous driving system. SysML
profile for the CADS architecture model and knowledgemodel
is designed and shown in Figure 7. In the design stage of system
development, it is necessary tomodel structural and behavioral
aspects in autonomous systems.

-e architecture model contains all blocks and func-
tional operations regarding the user, environment, and
autonomous vehicles. Model safety is found on the basis of
formal description. -e detailed definition is as follows.

Definition 6. -e autonomous architecture model (AAM) is
a quadruple notation AAM⩴(BA, RA, EA, CA):

(1) BA refers to the finite set of autonomous system
blocks and is constructed based on the extended
BDD (Block Definition Diagram) stereotype. BA can
be expressed as

BA � Perception,Understanding,Planner,􏼈

Actuator,User,Environment,KnowledgeBase􏼉.

(2)

(2) RA refers to the finite set of autonomous system
relationships, which represent connections be-
tween functional blocks. RA can be expressed as

RA ⊆BA × BA, RA � monitor, trigger, precedence,􏼈

stimulus, response, invoke}, which is used to de-
scribe the interaction between autonomous soft-
ware blocks, and its semantic interpretation is
shown in Table 3.

(3) EA refers to the function of autonomous system
operation OA⊆BA · OA evolution, which stands for
each functional block operation type. Different
blocks have different functional operations and be-
long to their own operation subset which is related to
the corresponding attributes and will evolve when
activities of operation occur. EA: BA × RA⟶ BA

stands for the state transition; as for any operation
BA · OA, when it occurs and satisfies transition
conditions, the system will evolve to the next state.
For example, if the vehicle’s operations occur in
block perception, such as Vehicle-to-Vehicle (V2V),
Vehicle-to-Infrastructure (V2I), and other perceive
actions through sensor tools (Lidar, Radar, Cameras,
VisualSensors, etc.), for perceiving TrafficSnapshot
(OccupyLane, ClaimLane, Position, Speed, Accel-
eration, and SafetyDistance), the operations (Ob-
serve, DataProcess, and Conform) will be triggered
according to TrafficRule and PrioriInformation.

(4) CA refers to the finite set of conditions, which
defines constraint information in the process of
autonomous software execution. As for the
<<stereotype>> Knowledge Base, SA � Invariant,{

Precondition,Postcondition}.

4. Proposed Methodology in This Paper

In practice of model-driven software development, it is
increasingly clear that indispensable design and analysis
processes should be integrated together. Design model using
design language should be converted into the analysis model
using analysis language in order to perform model verifi-
cation and analysis on the transformed analysis model for
safety. Model transformation technology is used to perform
this conversion, and transformation process should preserve
behavior semantics of the source design model. In this
section, we propose an approach to transform the design
model into the analysis model and then verify semantic
equivalence for this conversion through the model bisi-
mulation proof. First of all, SMD (state machine diagram)
for CADS is introduced in the following section.

4.1. Syntax and Semantics of SMD for CADS. In the previous
Section 3.4, we use the SysML BDD structure diagram to
obtain static specification for the CADS scenario. BDD
depicts classes of the major components, attributes, corre-
sponding operations, and relationship between them. In
order to ease comprehension of CADS behavior and analyze
simulation execution traces, we should construct SysML
dynamic diagrams to specify interactive behavior between
the system and the surrounding environment and then
perform model transformation for the formal model to
verify and validate safety properties. SMD is constructed

10 Journal of Advanced Transportation

from states and transitions and is very convenient for clearly
describing the dynamic behavior transition and state
changes in the system. A state is denoted as a rounded
rectangle, whereas transitions are arrows from one state to
another labelled with three optional parts: a trigger event,
a guard condition, and an effect (a sequence of actions) [27].
Now, we present the main features of the state machine for
CADS to show system reactive behaviors.

First of all, we can define SMD as this 6-
tupleSMD⩴(S, S0, E, G,Act,Tr).

4.1.1. Vertices and Transitions. A vertex is a node in SMD,
which may stand for a state, a final state, or a pseudo-state. A
transition refers to a directed labelled edge connecting
a source vertex and the corresponding target vertex. A
transition may be a compound transition which is composed
of multiple transitions connected via fork, junction, or join
pseudo-state. Let Tr be a set of transitions; we can use the
following notation for Tr: tr: sv⟶

e(g)/a
tv, and for a transition

tr and a set of vertices V, sv ∈ V and tv ∈ V are the source
and target vertex of the corresponding transition tr;

<<Enumeration>>
TrafficSnapshot

<<Stereotype>>
Perception

<<Stereotype>>
understanding

<<Stereotype>>
KnowledgeBase

<<Stereotype>>
User

<<Stereotype>>
Environment

<<Stereotype>>
Actuator

<<Stereotype>>
Planner

<<Enumeration>>
SensorTool

OccupyLane
ClaimLane
Position
Speed
Acceleration
Sa�eyDistance

Lidar
Radar
Cameras
VisualSensors

ID: Integer [1]
- Sex: String [1]
+ Age: Integer [1]

+ Initiate0
+ Input Terminal0
+ ManualOperation0

+ Weather: Stri g [1]
+ RoadType: String [1..∗]
+ SurroundingVehicle: String [1..∗]
+ RoadSegement: String [1]
+ Pedestrian: String [∗]

+ Trajectory: Real [1..∗]
+ Orientation: String [1..∗]
+ Streering: Real [1..∗]
+ EmergencyControl: Boolean [1..∗]

+ LaneChange: Boolean [∗]
+ WithdrawClaim: Boolean [∗]
+ WithdrawOcc: Boolean [∗]
+ Occupy: Integer [1]
+ Claim: Integer [1]
+ Acceleration: Real [1..∗]
+ Velocity: Real [1..∗]

+ Updating0
+ SendData0

+ SensorData: Real [1..∗]
+ CyberCommu: Real [1..∗]
+ TrafficSnapshot: ConncetorProperty : [1..∗]
+ SensorTool: String [1..∗]

+ Invariant: String [1..∗]
+ Precondition: String [1..∗]
+ Postcondition: String [1..∗]

+ TrafficRule: String [1..∗]
+ Priorilnformation: String [1..∗]

+ V2V0
+ V2I0
+ Perceive0

Monitor1 Monitor2
Response2

Response1

Trigger

Invoke1 + planner

+ Add0
+ Delete0
+ Update0

+ Observe0
+ DataProcess0
+ Conform0

+ BrakeControl0
+ StreeringControl0
+ �rottleControl0
+ Shi�Control0

+ LaneControl0
+ LongitudinalControl0
+ LateralControl0

Precedence

understanding 1

Stimulus

Figure 7: SysML profile for autonomous driving system architecture.

Table 3: Semantic interpretation of relationship in autonomous software.

Relation Semantics Interpretation of relation semantics
Monitor A⟶ MB Represents the relation of monitor; A will periodically monitor B’sB′s operation status and data
Trigger A⟶C B If the condition C in block A is satisfied, the operation in block B will be executed
Precedence A; B After the operations in block A are completed, operations in block B will be executed successively

Stimulus A; B[c1]
����C[c2]

As for block A and the relevant conditions c1 and c2, if c1(c2) is satisfied, the operations in block B(C) will be
executed

Response A⟶ RB
Block A will adjust the parameters, behaviors, and structures of block B according to the corresponding

policies
Invoke A⟶ IB Represents the relation of invoke; block B stores the model and data needed for implementation of A

Journal of Advanced Transportation 11

e ∈ E, g ∈ G, a ∈ Act are the trigger event, guard condition,
and effective behaviors associated with tr, respectively. -e
semantics of transition function tr is that if the trigger event
occurs and Boolean guard conditions are satisfied, then the
sequence actions would be executed, and the system
translates from the current state into the successive state.
Especially, trigger events can be classified into external
environmental events and internal state events due to au-
tonomous systems’ new features. -rough this distinction,
autonomous systems can percept the external trigger event,
such as weather condition, traffic sign, traffic code, road
conditions, and surrounding sensors’ input data.

4.1.2. Regions. A region is the container of vertices and
transitions and indicates orthogonal parts which may be
a composite state or a substate machine. Figure 8 contains an
orthogonal substate machine region (s5: ClaimLane).

4.1.3. States. -ere are three types of states:
type: S⟶ (simple, region, composite). Simple state, e.g.,
in Figure 8, (s1: TurnLeft) is not further refined; region state,
e.g., in Figure 8, (s5: ClaimLane) is composed of at least two
orthogonal states; composite state indicates that the state can
be further refined. Each state may have an optional action
associated with it: entry, exit, and activity. We can use the
type function to avoid unnecessary redundancy and invalid
attribute combinations. Let S be a given set of states; S0refers
to the initial state in SMD and for every state s ∈ S satisfying
the following relation.

type(s) �

simpleiff s.issimple∧s.isregion∧s.iscomposite,

regioniff s.issimple∧s.isregion∧s.iscomposite,

composite iff s.issimple∧s.isregion∧s.iscomposite.

⎧⎪⎪⎨

⎪⎪⎩

(3)

4.1.4. Pseudo-States. A pseudo-state is a vertex in the state
machine connecting multiple transitions into more complex
paths. Pseudo-states are extensions of state machine syntax
in order to express rich enough behaviors. We can define
a pseudo-state as a tuple: ps � 〈r, f〉; r ∈ region defines the
region to which the pseudo-state belongs; f ∈ S is an option
recording the last active state field and is only used in shallow
history or deep history pseudo-state conditions. -ere are
approximately ten kinds of pseudo-states defined in SysML
SMD:

ps �
initial,exitpoint,choice, join, fork, junction,

terminate,entrypoint,shallowhistory,deephistory.
􏼠 􏼡.

(4)

-en, we define SOS (structured operational semantics)
of SMD for CADS using LTS (labelled transition system).
-e definition of LTS is shown as follows.

Definition 7. A LTS is a 6-tuple LTS⩴(S,Act,⟶ ,

Init,AP, L) such that

S is a set of states (the state space).
Act is the set of actions.
⟶⊆S × Act × Sis a relation of the transition. We can
denote the transition (s, α, s′) ∈⟶ as a short nota-
tion s⟶α s′.
Init⊆S is a set of initial states.
AP is a set of atomic propositions.
L: S⟶ 2AP is a labeling function.

LTS is often drawn as a directed graph with vertices
representing the states and edges representing the transi-
tions. Now, we give an example combining CADS in
Figure 8.

4.1.5. LTS Example. Consider a part of the CADS model; at
the beginning of overtaking, we care about the transition
between s1: TurnLeft and s2: OvertakeReq.

LTSC � (SC,ActC,⟶ C, InitC,APC, LC), where

SC � s1, s2􏼈 􏼉;ActC � SendReq,waiting􏼈 􏼉;

⟶ C � s1, SendReq, s2)t)n, q s2,waiting, s1((􏼁􏼈 􏼉;

APC � Creq≤ 4s􏼈 􏼉; LC � s1⟶∅, s2⟶ Creq≤ 4s􏼈 􏼉􏼈 􏼉.

(5)

According to Definition 7, we give the formal and precise
SOS rules for SMD.

Definition 8. Operation semantics of sequence rule
Given source and target states, trigger event,

Boolean guard condition, and sequence effect action satisfy
that ss, st􏼈 􏼉⊆S, e ∈ E, g ∈ G, and a ∈ Act, if the trigger

event occurs and Boolean condition is true, then ss ⟶
e(g)/a

st.

4.1.6. Sequence Example. At this point, we give the sequence
operation semantics shown in Figure 8. From source state
s7: OverTaking to s8: TurnRight, Boolean guard conditions
should be satisfied, and action Acceleration should be
performed.

PositionOvertaker − PositionOvertakee

≥ SafeDistance andCot > 10 s.
(6)

Definition 9. Operation semantics of choice rule
Choice operation semantics is defined as a function

choice⟶ ss × e × gi × a × st, ss, st ∈ S∧ei ∈E∧gi ∈G∧ai ∈
Act∧i ∈N, where guards G and actions Act are environment
signatures for choice rules, guards G are conditions of the
transition to happen and can be represented as formulas in
some logical language, and actions Act are operations of the
block diagram or assignments of attributes.

-e choice SOS is defined as follows:

12 Journal of Advanced Transportation

ss1 ⟶
e1(g1)/a1

st1, ss1 ⟶
e2(g2)/a2

st2, . . . , ss1 ⟶
ei(gi)/ai

sti, . . .

ss1 ⟶
􏽐i ∈ Nei(gi)/􏽐i ∈ Nai

sti

. (7)

4.1.7. Choice Example. According to Figure 8, there exist
four choice transitions, and we choose ss � s5, st � s5 or s6
to explain choice operation semantics. When event and
condition
e1 � WithdrawOvertaking∧g1 � [NoCollision �� No] are
satisfied, the transition s5⟶ s5 will occur. When another
event and guard condition e2 � Overtaking∧g2 �

[NoCollision �� Yes]∧a2 � Steering are satisfied, the tran-
sition s5⟶ s6 will occur.

Definition 10. Operation semantics of fork rule
A fork vertex splits the incoming transition into two or

more terminating transitions belonging to orthogonal target
vertices. We can define the fork operation semantics as
follows: fork⟶ ss × e × g × a × (r1.s1int|r2.s2int| . . . |rn

.snint); rn.snint, n ∈ N, indicates that target states in fork be-
havior belong to the orthogonal region. Every transition
behaves independently, currently, and synchronously. Now,
the definition of fork operation semantics is as follows:

ss ⟶
e(g)/a

r1.s1int, ss ⟶
e(g)/a

r2.s2int, . . . , ss ⟶
e(g)/a

rn.snint

ss ⟶
e(g)/a

r1.s1int r2.s2int
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 . . . |rn.snint

. (8)

4.1.8. Fork Example. Referring to Figure 8, after the ego
vehicle receives agreement information during the invariant
Creq≤ 4s, the state will translate into two orthogonal fork
states s5.s1int and s5.s2int belonging to the composite state
s5: ClaimLane.

Definition 11. Operation semantics of join rule

A join vertex merges more than one transition ema-
nating from source vertices belonging to different orthog-
onal regions and results in synchronous execution. We can
define join operation semantics as follows:

join⟶ r1.s1fin r2.s2fin
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 . . . |rn.snfin􏼐 􏼑 × e × g × a × st,

(9)

where rn.snfin, n ∈ N, indicates that source states in join
behavior belong to the orthogonal region. Source states are
from independent, current, and synchronously occurring
regions. Now, the definition of join operation semantics is as
follows:

r1.s1fin ⟶
e(g)/a

st, r2.s2fin ⟶
e(g)/a

st, . . . , rn.snfin ⟶
e(g)/a

st

r1.s1fin r2.s2fin
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 . . . |rn.snfin ⟶
e(g)/a

st

. (10)

4.1.9. Join Example. Referring to Figure 8, the first region r1
of s5: ClaimLaneis responsible for ego_front_vehicle’s col-
lision checking, while the second region r2 of
s5: ClaimLaneis responsible for ego_behind_vehicle’s col-
lision checking. -e join state in Figure 8 is a choice Pseudo-
state from two orthogonal regions r1 and r2.

According to natural language description for autono-
mous overtaking requirements, we can derive SMD in
a semiformal way to specify multiclock system constraints,
as shown in Figure 8.

4.2. Semantics of CCSL and Model Transformation.
However, due to the lack of precisely formal semantics, UML
SMD suffers from an incessant criticism and should manage
the gap between the system specification and the design
model validation and eliminate ambiguity. In this section,
we transform the design model into the analysis model for
further verification. In order to do correct model

s1: TurnLe�

SendReq/rest: Creq

waiting|Creq > 4s] s2: OvertakeReq

Invariant
Creq ≤ 4s

CooperativeAutonomousDrivingSystem

s5: ClaimLane

IsFrontcar CollisionCheck

NoFrontCar

CheckFront

CheckBehind

IsBehindCar

PotentialCollisionCheck

NoBehindCar

ReceiveAgree

ReceiveDecline
s4: NoOvertaking

s9: LaneChange2 s8: TurnRight

|PositionOvertaker-PositionOvertakee ≥ SafeDistance and [Cot > 10s]]/Acceleration

s7: OverTaking s6: LaneChange1

invariant:
Cot ≤ 10s and
FrontCar cannot accelerate

Overtaking[NoCollision==Yes]/do Steering

WithdrawOvertaking[NoCollision==No]

Figure 8: SMD for the autonomous overtaking system.

Journal of Advanced Transportation 13

transformation, first of all, we give the SOS for the formal
analysis model. Referring to Section 3, now we give simple
Backus–Naur form for CCSL syntax, which contains CC

(clock constraint), CR (clock relation), CE (clock expres-
sion), CS (clock specification), and Rop (relation operators).

<CC>⩴<CC> , <CR>|〈CR〉|<CR> if bool

<CR>⩴<CS> <Rop> <CS>

<Rop>⩴< subclock >|〈exclusion〉|< coincidence> |〈precedence〉

<CS>⩴< clock > |<CE>

<CE>⩴bool?<CE> : <CE>|< clock > |!1|!0

|<CE> < await>natural|〈CE> < sample> <CE〉|<CE> < s sample> <CE>

|〈CE> < upto> <CE〉|〈CE> < concat> <CE〉|〈CE> < union> <CE〉

|<CE> < inter> <CE> |〈CE> < defer> <CE〉|〈CE> < sup> <CE〉|〈CE> < inf > <CE〉.

(11)

According to the simple syntax, we give operation se-
mantics in terms of LTS for the formal modelling language
CCSL. Based on Definition 7 LTS, we focus on source and
target states of a transition; so, the corresponding transition
functions are added: α, β: Tr⟶ S; Tr denotes a set of
transitions, S denotes a set of states, and α, β denote the
source and target state of a transition, respectively. -e
function λ: Tr⟶ Act is added to denote the action which
is responsible for the corresponding transition. When clock
constraints are treated as transition systems and put in
parallel, their composition can be defined as a synchronized
product of labelled transition systems.

Definition 12. (synchronized product). Given n automata
Au and are based on LTSs in Definition 7,
Au � Au1,Au2,Au3, . . . ,Aun􏼈 􏼉; let a synchronization con-
straint SC be a subset of the product Au1 × Au2 × · · · ×

Aun, SC⊆Au1 × Au2 × · · · × Aun, and synchronization con-
straints are beneficial for capturing semantics of CCSL
multiclock operators. For the LTS Aui � (Si,Acti,
Tri, Initi,APi, Li) and αi(Tri)⊆Si, βi(Tri)⊆Si, synchronized
product Γi of Aui over the set SC is defined as follows:

S � S1 × S2 × · · · × Sn,

Init � Init1 × Init2 × · · · × Initn,

Tr � 〈tr1, tr2, . . . , trn〉 ∈ Tr1 × Tr2 × · · · × Trn|〈λ1 tr1(􏼁, λ2 tr2(􏼁, . . . , λn trn(􏼁〉 ∈ SC􏼈 􏼉,

λ 〈tr1, tr2, . . . , trn〉(􏼁 �〈λ1 tr1(􏼁, λ2 tr2(􏼁, . . . , λn trn(􏼁〉.

(12)

For the clock c(i) ∈ C involved in the automaton exe-
cution, function Tri⟶ tick, idle{ }

|C| defines each transition
to associate clock states with the corresponding CCSL op-
erators. Based on the actually ticked clocks, the states update
according to the function Si⟶ TrP

i , which will return
outgoing transitions for a state.

4.2.1. Example of SOS of Clock Relation. According to the
definition of synchronization constraint SC and synchro-
nized product Γi, operational semantics of multiclock re-
lations is as follows:

(1) Subclock relation c1⊆c2 is the synchronized
product clock c1, c2 and SCS � 〈c1, c2〉, 〈ϕ, c2〉,􏼈

〈ϕ,ϕ〉}.
(2) Coincidence relation c1 ≡ c2 is the synchronized

product clock c1, c2 and SCCO � 〈c1, c2〉, 〈ϕ, ϕ〉􏼈 􏼉.

(3) Exclusion relation c1#c2 is the synchronized product
clock c1, c2 and SCE � 〈c1, ϕ〉, 〈ϕ, c2〉, 〈ϕ, ϕ〉􏼈 􏼉.

(4) Precedence relation c1≺c2 is the synchronized
product clock c1, c2 and SCP �

(〈c1,ϕ〉∧〈c1, c2〉∧〈ϕ, c2〉∧(|〈c1,ϕ〉|> |〈c1, c2〉|))

∨(〈c1,ϕ〉∨〈c1, c2〉∨〈ϕ,ϕ〉)
􏼨 􏼩.

(5) Causality relation c1≼c2 is the synchronized product
clock c1, c2 and SCCA � 〈c1, ϕ〉, 〈c1, c2〉, 〈ϕ, ϕ〉􏼈 􏼉.

(6) Union expression c0 ≜ c1 + c2 is represented by the
synchronized product clock c1, c2 and
SCU � 〈c1, c2, c0〉, 〈c1,ϕ, c0〉, 〈ϕ, c2, c0〉〈ϕ, ϕ,ϕ〉􏼈 􏼉.

(7) Intersection expression c0 ≜ c1 ∗ c2 is represented by
the synchronized product clock c1, c2 and

SCI � 〈c1, c2, c0〉, 〈c1,ϕ, ϕ〉, 〈ϕ, c2,ϕ〉〈ϕ,ϕ, ϕ〉􏼈 􏼉.

(13)

14 Journal of Advanced Transportation

With respect to other clock relations and clock ex-
pressions, we can give operation semantics based on state-
based LTS. -en, we introduce how to transform the for-
malized design SMD model into analysis and formal CCSL
models and prove that the bisimulation relation is preserved
and satisfied in the process of model transformation.

Rule 1:(∀ssmd ∈ Ssmd)⇒((ssmd⟶ sccsl)∧t (sccsl ∈ Sccsl):
for every state ssmd belonging to the SMD, it will be
mapped to a state sccsl belonging to the state-based CCSL
model.

Rule 2: (∀e ∈ Esmd)⇒((e⟶ c)∧ (c ∈ λ(tr), tr ∈
Trccsl)): for every trigger event e in the state machine, it
will bemapped to a clock in the target state-based CCSL
model.
Rule 3: (∀g ∈Gsmd)⟹((g⟶Trchoice.Bool)∧t
(Trchoice.BOOL ∈ Trccsl): for every guard condition be-
longing to the state machine, it will be mapped to the
Boolean condition in the choice expression in the state-
based CCSL transition system.
Rule 4: operation semantics of sequence rule
transformation:

∀s1, s2 ∈ Ssmd,

e ∈ Esmd,

g ∈ Gsmd,

s1, e, g, s2(􏼁 ∈ Trsmd⇒

s1⟶ s1′, s2⟶ s2′, s1′, s2′ ∈ Sccsl, e⟶ c, c ∈ λ(tr), tr ∈ Trccsl(􏼁,

g⟶ Trchoice.Bool(􏼁∧ Trchoice.BOOL ∈ Trccsl(􏼁
⎛⎝ ⎞⎠.

(14)

As for the sequence operation, state, event, and guard of
the state machine can be transformed into state, clock,
and choice Boolean condition in the state-based CCSL
model, respectively.

Rule 5: operation semantics of choice rule
transformation:

∀Ss,Tri, ei, gi, S1,Tri ∈ Ssmd∧i ∈ N∧ei ∈ E∧gi ∈ G∧ Ss, ei, gi,Tri(􏼁 ∈ Trsmd(􏼁⇒

Ss⟶ S∧Tri⟶ CR.choice∧S,CR.choice ∈ Sccsl∧i ∈ N∧ei⟶ ci, ci ∈ λ(tr), tr ∈ Trccsl(􏼁

∧ gi⟶ Trchoice.Bool(􏼁∧ Trchoice.BOOL ∈ Trccsl(􏼁∧ S,CR.choice, ci,Trchoice.Bool(􏼁 ∈ Trccsl
􏼠 􏼡.

(15)

As for one source state in the state machine, there are
two or more uncertain target states, which can be
transformed into the CCSL model using the clock
structure choice operator.

Rule 6: operation semantics of fork rule transformation:

ss ⟶
e(g)/a

r1.s1int r2.s2int
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · · · |rn.snint, n ∈ N, ss, r1,2,...,n, s1int,2int,...,nint ∈ Ssmd,

e ∈ E, g ∈ G, a ∈ Act⇒

ss
′ ⟶c

tr1′|tr2′|· · · |trn
′, n ∈ N, ss

′, tr1,2,...,n
′ ∈ Sccsl, c ∈ λ(tr), tr ∈ Trccsl.

(16)

-e operation semantics of fork behavior is from
one state to more than one state. -is is concurrent
and independent relation. In the process of fork
transformation, concurrent behaviors in state

machine orthogonal regions can be mapped to the
clock coincidence relation in the CCSL time
structure.
Rule 7; operation semantics of join rule transformation:

Journal of Advanced Transportation 15

r1.s1fin, r2.s2fin, . . . , rn.snfin ⟶
e(g)/a

st, n ∈ N, r1,2,...,n, s1fin,2fin,...,nfin, st ∈ Ssmd,

e ∈ E, g ∈ G, a ∈ Act⇒

s1′ s2′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 . . . |sn
′ ⟶c

st, n ∈ N, s1,2,...,n
′, st ∈ Sccsl, c ∈ λ(tr), tr ∈ Trccsl.

(17)

-e operation semantics of join behavior is from more
than one transition emanating from source vertices be-
longing to different orthogonal regions to one synchronous
target state. In the process of join transformation, the
number of more than one concurrent source state can be
mapped to the DelayFor c0 ≜ c1 clock expression behaviors.

4.3. Proof of Bisimulation Equivalence. After introducing the
syntax and semantics of modelling language and performing
model transformation, behavioral preservation or trace
execution equivalence should be proved. If two transition
systems perform the same sequences of actions from initial
states, respectively, we treat them as equivalent execution
models. -ere are two necessary and important reasons to
compare semantics of two systems through bisimulation:
one reason is that if two systems satisfy bisimulation
equivalence, we could not distinguish them by behavioral
observation. Another reason is that if two systems or pro-
cesses are bisimulation equivalent, then transitions in the
first system can be done and finished in the second system.
We note that two systems can simulate each other. We give
the definition of bisimulation and proof in Definition 13.

Definition 13. (bisimulation). Let two labelled transition
systems LTS1 � (Q1,Act,⟶ , Init1,AP1, L1), LTS2 � (Q2,

Act,⟶ , Init2,AP2, L2) and a relation R⊆Q1 × Q2 between
the two labelled transition systems be a bisimulation re-
lation, iff for all q1 ∈ Q1, q2 ∈ Q2 such that q1Rq2 holds; it
also holds for all actions α ∈ Act that

(1) Whenever q1⟶
α

q1′, then for some
q2′, q2⟶

α
q2′ and q1′Rq2′

(2) Whenever q2⟶
α

q2′, then for some
q1′, q1⟶

α
q1′ and q1′Rq2′

If two transition systems satisfy the bisimulation defi-
nition, we say LTS1 and LTS2are bisimular
LTS1 ≈ RbsimLTS2, and there exists a bisimulation relation
Rbsim (denoted as ≈) between them. When the relation
LTS1 ≈ LTS2 holds, we can draw the following conclusion
that all traces of LTS1 can also be preserved in another
transition system LTS2 and vice versa. Accordingly, the
relation LTS1 ≈ LTS2 indicates that LTS1 preserves all
possible behaviors of another transition system LTS2.

Theorem 1. LTS1 of SMD (SSMD) and LTS2 of CCSL SCCSL
satisfy bisimulation relation, SSMD ≈ SCCSL.

Proof. Let SSMD � (Q1,Act,TrS, Init1,AP1, L1) be the LTS of
SMD and SCCSL � (Q2,Act,TrC, Init2,AP2, L2) be the LTS of
CCSL. Let R be a binary relation on Q1 × Q2, R⊆Q1 × Q2. As

for q1, q1′ ∈ Q1, α ∈ Act,TrS(q1, α) � q1′ (q1⟶
α

q1′); q2,

q2′ ∈ Q2, α ∈ Act,TrC(q2, α) � q2′(q2⟶
α

q2′), whenever
q1Rq2 for (q1,q2) ∈ R, next we should check the following
assertions:

(1) ∀αAct, q1′ ∈ Q1. If q1⟶
α

q1′, then there is q2′ ∈ Q2

such that q2⟶
α

q2′ with q1′Rq2′.
(2) ∀α ∈ Act, q2′ ∈ Q2. If q2⟶

α
q2′, then there is q1′ ∈ Q1

such that q1⟶
α

q1′ with q1′Rq2′.

Given two behavior preservation transformation tran-
sition systems SSMD and SCCSL,

(1.1) If ∃e ∈ Act, q1′ ∈ Q1, trS � q1 × e × q1′ ∈ TrS,
according to Definition 12 and transformation rules,
λ(q1′) � e′|e′ ∈ e∘􏼈 􏼉 (∘ i and i ∘ stand for the predecessor
and successor of the ith occurrence in clock C). So, in
the model SSMD, events e, e′ satisfy e≺e′, and so, in the
SCCSL model, there exists a transition trC � q2×

e × q2′ ∈ TrC, and q2′ � e′|e≺e′􏼈 􏼉; so, we can come to the
following conclusion: λ1(q1′) � λ2(q2′), (q1′, q2′) ∈ R.
(1.2) If ∃e ∈ Act, q2′ ∈ Q2, trC � q2 × e × q2′ ∈ TrC,
according to Definition 12 and transformation rules,
λ(q2′) � e′|e′ ∈ e∘􏼈 􏼉. So, in the model SCCSL, events
e, e′ satisfy e≺e′, and so, in the SSMD model, there exists
a transition tS � q1 × e × q1′ ∈ TS, and q1′ � e′|e≺e′􏼈 􏼉; so,
we can come to the following conclusion:
λ2(q2′) � λ1(q1′), (q1′, q2′) ∈ R.
(1.3) If there exists a sequence of events, such
as〈e, e′〉 ∈ Eseq, ∃e ∈ Act, q1′ ∈ Q1, trS � q1 × e, e′×
q1′ ∈ TrS, according to Definition 12 and trans-
formation rules, λ(q1′) � e″|e″ ∈ e∘ ∪ e′ ∘􏼈 􏼉. So, in the
model SSMD, events satisfy the relation e″≺e or e″≺e′,
and so, in the SCCSL model, there exists a transition
trC � q2 × e, e′ × q2′ ∈ TrC, and q2′ � e″|e″≺e∨e″≺e′􏼈 􏼉;
so, we can come to the following conclusion:
λ1(q1′) � λ2(q2′), (q1′, q2′) ∈ R.
(1.4) If there exists a sequence of events, such
as〈e, e′〉 ∈ Eseq, ∃e ∈ Act, q2′ ∈ Q2, trC � q2 × e, e′×
q2′ ∈ TrC, according to Definition 12 and trans-
formation rules, λ(q2′) � e″|e″ ∈ e∘ ∪ e′ ∘􏼈 􏼉. So, in the
model SCCSL, events satisfy the relation e″≺e or e″≺e′,
and so, in the SSMD model, there exists a transition
trS � q1 × e, e′ × q1′ ∈ TrS, and q1′ � e″|e″≺e∨e″≺e′􏼈 􏼉;
so, we can come to the following conclusion:
λ2(q2′) � λ1(q1′), (q1′, q2′) ∈ R.

In conclusion, according to Definition 13 (bisimulation)
and the previous proof process, for ∀q1 ∈ Q1,

16 Journal of Advanced Transportation

α ∈ Act, if q1⟶
α

q1′, then∃q2′ ∈ Q2 q2⟶
α

q2′ and q1′Rq2′

and ∀q2 ∈ Q2, α ∈ Act, if q2⟶
α

q2′, then ∃q1′ ∈ Q1 q1⟶
α

q1′ and q1′Rq2′. So, the relation R satisfies the relation bisi-
mulation definition, and the two models satisfy bisimulation
through defining formal syntax and semantics for source
and termination models and model semantic mapping
rules. □

5. Case Study

5.1. Autonomous Overtaking Requirement Description for
CADS. Although fully autonomous road vehicles (highway,
urban traffic, and country roads) without human help/in-
terruption remain futuristic, the automobile industries have
been striving to meet these expectations. Academia and
industry are committed to improve safety, reliability, and
traffic efficiency and ease increasingly congested traffic sit-
uations. It is especially imperative for cooperative vehicles’
lane-changing and overtaking autonomously in the multi-
lane highway. In this paper, we focus on autonomous driving
behavior due to independent and self-sufficient decision-
making function. -ese vehicles can communicate with
surrounding relevant vehicles and the infrastructure to
perceive traffic information. After understanding these
environment perceptions, CADS generate negotiation ma-
neuvers for autonomous lane-changing and overtaking
behaviors. Each vehicle involving coordination observes its
surrounding traffic and conforms to the generating decision-
making to realize overtaking autonomously. In the fol-
lowing, requirements about lane-changing judgement,
overtaking procedures, and message exchanging for au-
tonomous overtaking are explained.

We assume that there are three one-way lanes in this
paper considering the situation shown in Figure 9; the first
lane is reserved_lane (lane 2 in Figure 9) occupied by
ego_vehicle, the second lane is applying_lane (lane 3 in
Figure 9) claimed to overtake by ego_vehicle, and the third
lane is the right side of adjacent_lanes (lane 1 in Figure 9).
According to the traffic code, we assume that ego_vehicle
must claim the left-side adjacent_lane to complete the
overtaking action driving on the right-hand side of the road.
In the view of the ego_vehicle overtaking scenario, the
following vehicles may be involved, and there may be exist
three vehicles (ego_vehicle A, ego_front_vehicle B, and
ego_behind_vehicle C) in the currently reserved_lane, two
vehicles (applying_lane_behind_vehicle D and applyin-
g_lane_front_vehicle E) in the applying_lane, and one ve-
hicle (adjacent_lane_vehicle F) in the adjacent_lane. When
ego_vehicle on the currently occupied road has intention to
overtake, the first is to turn on the left-turn signal to remind
surrounding view vehicles of the lane-change intention. At
this moment, there are three safety-critical matters to
confirm; firstly, CADS should confirm whether vehicles in
the applying_lane are within a safe distance; secondly, after
the lane-change signal is observed by them, ego_be-
hind_vehicle within the view cannot accelerate; and the third
thing is to send an overtaking message to ego_front_vehicle
in the same reserved_lane. After confirmation of overtaking

in the first step, overtaking negotiation stage is followed.
Ego_front_vehicle needs to reply agree or disagree within
a certain time (response time, we assume 4 seconds) after
receiving the overtaking message. If ego_vehicle cannot
receive the reply message from ego_front_vehicle exceeding
response time or receives the disagree message, it should not
implement lane-changing overtaking behavior and need to
keep the previous driving state. If safety distance constraints
are not satisfied, overtaking cannot be implemented too.
Only when two constraints (receiving agree message and
safety distance) are satisfied at the same time, ego_vehicle
can start to perform the first lane-changing action. Over-
taking behavior can be decomposed into two-times lane-
change actions. After the first lane-change mentioned above,
ego_vehicle should speed up, and ego_front_vehicle replying
agree message just now cannot accelerate. When ego_ve-
hicle’s spatial position is greater than ego_front_vehicle and,
meanwhile, they meet safety distance for the second lane-
change action, ego_vehicle can implement the second lane-
change. Time interval between two-times lane-changing must
not exceed stipulated overtaking_time, such as 10 seconds.
After ego_vehicle completes lane-change twice and overtakes
ego_front_vehicle, CADS will automatically adjust speed and
maintain a safety distance between them.

5.2. CCSL for Autonomous Overtaking System (AOS)
Specification. In order to present the multiclock autono-
mous overtaking system specification, we should show in-
volved clocks during the overtaking process. For specifying
convenience, each clock’s abbreviation is given. Next, we
need to list various clocks: ego_turn_signal: ets, applyin-
g_lane_safedistance: asd, ego_behind_no_acceleration:
ebna, ego_send_lanechange: esl, ego_front_agree: efa,
ego_front_disagree: efd, ego_no_overtaking: eno, ego_-
front_no_acceleration: efna, and ego_send_overtaken: eso.
-e functional and timing properties of the AOS are
specified as follows:

AOS1: ego_turn_signal is always followed by
applying_lane_safedistance and ego_be-
hind_no_acceleration, so the corresponding CCSL
constraint is that ets ∼ (asd∗ ebna).
AOS2: applying_lane_safedistance and ego_be-
hind_no_acceleration trigger (cause) event ego_-
send_lanechange. In other words, the slowest clock
asd∨ebna is faster than both clocks asd and ebna, and
the tick of clock asd∨ebna can trigger the occurrence of
clock esl. -e corresponding CCSL constraint is that
(asd∨ebna)≼esl.
AOS3: ego_front_agree or ego_front_disagree will
occur after ego_send_lanechange within a response
time of 4 s. -e corresponding CCSL constraint is that
esl≺(efa + efd) delayedFor 1 on c1
where clock c1 � IdealClk discretized By 4 s .

AOS4: when ego_vehicle receives the reply ego_-
front_disagree, it must trigger the event ego_no_o-
vertaking simultaneously, and the CCSL constraint is
that efd ≡ eno.

Journal of Advanced Transportation 17

AOS5: clocks efa, asd, and efna satisfy the constraints
(efa∨asd) ≡ efna, which indicates that the slowest event
between receiving ego_front_agree message and sat-
isfying applying_lane_safedistance is faster than both
of mentioned events, and ego_front_vehicle should
trigger the event ego_front_no_acceleration
simultaneously.
AOS6: the event ego_send_overtaken will occur with
10 s after the event ego_front_agree.-e corresponding
CCSL constraint is that

efa≺eso delayed For 1 on c2

where clock c2 � IdealClk discretized By 10 s.
(18)

5.3.Model Validation throughModel Simulation andAnalysis
for the AOS. After the multiclock AOS specification, we
can perform model validation through clock constraint
simulation intuitively. In the previous part, we present
multiclock constraint AOS formal specifications by CCSL,
and in this section, clock constraint checking results of
model simulation are analyzed using the special tool
TimeSquare, which yields a satisfying partial-order exe-
cution trace for multiclock constraints. -e yielding traces
are indicated as VCD format waveforms. When multiclock
constraints are correct, TimeSquare will generate a valid
simulation trace, but if CCSL specifications do not satisfy
all clock constraints or have conflicts, the tool cannot
execute and will result in a deadlock shown as the end of
VCD waveform. One of the simulation traces is partially
shown in Figure 10. -e blue and dashed arrows stand for
the precedence clock relation, whereas red and vertical
solid lines stand for the coincidence relation between two
synchronous instants.

Corresponding to safety-critical system properties, clock
ego_turn_signal ets must happen alternatively with the in-
tersection clock c30 of two clocks asd and ebna. -e clock
constraint simulation execution results are shown in Figure 10,
and CCSL specification and corresponding expressions in
simulation tool TimeSquare are shown in Table 4. Clock
constraint ets ∼ (asd∗ ebna)is satisfied, and this safety-critical
property is valid. We define the slowest clock c3 which is faster
than clocks asd and ebna, and the tick of supremum clock c3
will cause the tick of clock esl; the result of this clock constraint
is satisfied and shown as the clock waveform. Other functional
properties are also satisfied and shown in the TimeSquare
yielding trace; firstly, the clock efna will only tick if the slowest
definition clock csup which is faster than clocks asd and efa is
ticking synchronously. Secondly, another strictly synchronous
clock constraint efd ≡ eno describes two events occurring in
coincidence; event ego_front_disagree corresponding to clock
efd means another event ego_vehicle cannot change the lane
and implements overtaking behavior corresponding to clock
eno; similarly, if ego_front_vehicle replies agreement, then it
should not accelerate at the same time. As for timing non-
functional properties, we combine coincidence and precedence
mixed constraints. -e clock specification

cupp1 �
efa≺eso delayed For 1 on c2

where clock c2 � IdealClk discretized By d3􏼠 􏼡 con-

straints cupp1 to tick synchronously with d3th tick of clock
eso, which follows a tick of clock efa, and cupp1 is a mixed
constraint since eso and efa are asynchronous prece-
dence clock relation in Table 1. It is similar to
another DelayFor constraint cupp �

esl≺(efa + efd) delayedFor 1 on c1
where clock c1 � IdealClk discretized By d2􏼠 􏼡, so the first

time interval between sending and replying communi-
cating message and the second time interval consumed

Applying_lane:
lane1

Reserved_lane:
lane2

Adjacent_lane:
lane3

D:
applying_lane_behind_vehicle

E:
applying_lane_front_vehicle

C:
ego_behind_vehicle

A: ego_vehicle B: ego_front_vehicle

F:
adjacent_lane_vehicle

Figure 9: View of the ego-vehicle overtaking.

18 Journal of Advanced Transportation

during the process of overtaking are satisfied in the
simulation diagram, as shown in Table 4 and in Figure 10.

6. Conclusion and Future Work

In recent years, the emergent multiclock constraint systems,
e.g., autonomous driving systems, provide a great promise to
our daily life. We are increasingly entrusting our lives to
these software-dependent and safety-critical systems. Au-
tonomous systems might seem fraught with danger on ac-
count of making individual or collaborative decisions by

themselves. Developing multiclock autonomous systems
becomes a challenging task because it is urgent and crucial
that systems should anticipate the potential collisions,
identify aberrant behaviors, and give early warning at the
design time before systems’ deployment. In this paper, we
propose a methodology to bridge the gap between design
and analysis for cooperative and highly automated driving
systems according to model-driven software development.

Firstly, we have explored the modelling method in
multiclock constraint context and presented relevant state-
of-the-art specification and verification technologies in the

Final::main::asd

Final::main::c3

Final::main::c30

Final::main::c4

Final::main::csup

Final::main::cupp

Final::main::cupp1

Final::main::ebna

Final::main::eFa

Final::main::eFd

Final::main::eFna

Final::main::eno

Final::main::esl

Final::main::eso

Final::main::ets

0 10 20 30 40

Figure 10: One partial simulation trace for the autonomous overtaking system.

Table 4: CCSL specification and expression in TimeSquare.

CCSL specification Expression in TimeSquare

ets ∼ (asd∗ ebna)
Expression c30� Intersection(Clock1->asd, Clock2->ebna) and Relation r1[Alternates](AlternatesLeftClock

-> ets, AlternatesRightClock -> c30)
(asd∨ebna) ≼ esl Expression c3� Sup(Clock1->asd, Clock2->ebna) and Relation r2[Causes](LeftClock->c3, RightClock->esl)

esl≺(efa + efd)delayedFor
1 on c1
where clock c1 � IdealClk
discretizedBy 4 s

Expression c4�Union(Clock1->efa,Clock2->efd) and cupp�DelayFor(DelayForClockToDelay->esl,
DelayForClockForCounting->c4, DelayForDelay->d2)

efd ≡ eno Relation r4[Coincides](Clock1->efd, Clock2->eno)
(efa∨asd) ≡ efna Expression csup� Sup(Clock1->efa, Clock2->asd) and Relation r5[Coincides](Clock1->csup, Clock2->efna)

efa≺eso delayedFor
1 on c2
where clock c2 � IdealClk
discretizedBy 10 s

Expression cupp1�DelayFor (DelayForClockToDelay->efa, DelayForClockForCounting->eso,
DelayForDelay->d3)

Journal of Advanced Transportation 19

cooperative autonomous driving domain. We firstly propose
autonomous driving domain profile and CADS architecture
for a motivation scenario and present the model-based
simulation method, domain-specific modelling languages,
and dedicated simulator TimeSquare. In order to perform
model transformation, we give the syntax and state-based
semantics of target multiclock constraint language. Sec-
ondly, in the model-driven safety-critical software design,
model transformation is a frequently used technique. -e
operational semantics of both source and terminate lan-
guages, i.e., SysML state machine diagram and CCSL, has
been formally specified in the form of labelled transition
systems. We define strong bisimularity between SMD and
CCSL. Behavioral equivalence and semantic preservation
have been proven based on semantic mapping rules. -irdly,
through a cooperative autonomous overtaking case study,
we use the proposed method to verify safety and reliability at
the design phase, and simulation results indicate that the
designed system can ensure safe autonomous overtaking
driving behavior.

Although this work adopts model-based development
and model simulation helping to provide safety evidence,
there also exist following limitations. -e result of simula-
tion is only one execution trace in terms of presumptions
and is strongly dependent on the experience of system safety
analysts. Model transformation is executed with a lot of
human interactions. Furthermore, we plan to combine
formal model checking, which can traverse all software
execution traces, or theorem proving techniques to provide
rigorous safeguard evidence. At the same time, we aim at
developing an automatic transformation tool to realize
automatic model transformation under semantic preserva-
tion mapping rules. In addition, we are considering to
combine artificial intelligence technologies and model-
driven software development together to design safe mul-
ticlock constraint autonomous systems.

Data Availability

ClockConstraintSystem newfile { imports { //import state-
ments import “platform:/plugin/fr.inria.aoste.timesquar-
e.ccslkernel.model/ccsllibrary/kernel.ccslLib” as lib0; import
“platform:/plugin/fr.inria.aoste.timesquare.ccslkernel.model/
ccsllibrary/CCSL.ccslLib” as lib1; } entryBlock main Block
main { Relation r1[Alternates](AlternatesLeftClock -∼∼∼∼∼∼
∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt; c1, AlternatesRightClock -∼∼∼∼
∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt; c2) Clock c1 //-∼∼∼∼∼∼∼
∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt; evt1(“-eModel:-eClass:p1”):
start Clock c2 //-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;
evt2(“-eModel:-eClass:p1”): finish } } ClockConstraint
System newfile { imports { //import statements import
“platform:/plugin/fr.inria.aoste.timesquare.ccslkernel.model/
ccsllibrary/kernel.ccslLib” as lib0; import “platform:/plugin/
fr.inria.aoste.timesquare.ccslkernel.model/ccsllibrary/CCSL.
ccslLib” as lib1; } entryBlock main Block main { Clock c3
Clock c4 Relation r1[Causes](LeftClock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼
∼∼∼∼∼∼∼∼∼∼gt;c3, RightClock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼
∼∼∼∼∼∼gt;c4) } } ClockConstraintSystem newfile { imports {
//import statements import “platform:/plugin/fr.inria.

aoste.timesquare.ccslkernel.model/ccsllibrary/kernel.ccslLib”
as lib0; import “platform:/plugin/fr.inria.aoste.timesquar-
e.ccslkernel.model/ccsllibrary/CCSL.ccslLib” as lib1; } entry-
Block main Block main { Clock c1 Clock c2 Relation r1
[Coincides](Clock1-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c1,
Clock2-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c2) } } Clock-
ConstraintSystem newfile { imports { //import statements
import “platform:/plugin/fr.inria.aoste.timesquare.ccslkernel.
model/ccsllibrary/kernel.ccslLib” as lib0; import “platform:/
plugin/fr.inria.aoste.timesquare.ccslkernel.model/ccsllibrary/
CCSL.ccslLib” as lib1; } entryBlock main Block main { Clock
c1 Clock c2 Integer i� 5 Integer j� 6 Expression
c1wait5�Wait(WaitingClock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼
∼∼gt;c1, WaitingValue-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;
i) Expression c2wait6�Wait(WaitingClock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂
∼∼∼∼∼∼∼∼∼∼∼gt;c2, WaitingValue-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼
∼∼∼∼∼∼∼gt;j) Expression myConcat�Concatenation(Left-
Clock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c1wait5, Right-
Clock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c2wait6) } } Clock
ConstraintSystem newfile { imports { //import statements
import “platform:/plugin/fr.inria.aoste.timesquare.ccslkernel.
model/ccsllibrary/kernel.ccslLib” as lib0; import “platform:/
plugin/fr.inria.aoste.timesquare.ccslkernel.model/ccsllibrary/
CCSL.ccslLib” as lib1; import “platform:/plugin/fr.inria.aos-
te.timesquare.ccslkernel.model/ccsllibrary/kernel.ccslLib” as
lib0; import “CopyCCSL.ccslLib” as lib1; } entryBlock main
Blockmain { Clock a Clock b Integer p� 5 Relation relation_0
[testConditional](testConditionalLeftClock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼
∼∼∼∼∼∼∼∼∼∼gt; a, testConditionalRightClock-∼∼∼∼∼∼∼
∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt; b, testConditionalParam-∼∼∼∼∼∼∼
∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt; p) } } ClockConstraintSystem
newfile { imports { //import statements import “platform:/
plugin/fr.inria.aoste.timesquare.ccslkernel.model/ccsllibrary/
kernel.ccslLib” as lib0; import “platform:/plugin/fr.inria.
aoste.timesquare.ccslkernel.model/ccsllibrary/CCSL.ccslLib”
as lib1; } entryBlock main Block main { //Clock c1 //Clock c2
//Clock c0 //Sequence s1:IntegerSequence� //un�1; //six�6
//(trois�3) //Expression myDefer�Defer(BaseClock-∼∼∼∼
∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c1, DelayClock-∼∼∼∼∼∼∼
∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c2, DelayPatternExpression-∼∼∼∼
∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;s1) //Relation r1[Coinci-
des](Clock1-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c0, Clock2-
∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;myDefer) Clock a Clock
b Clock res23 Sequence s1: IntegerSequence� 1; 3 //(trois�3)
Expression myDefer�Defer(BaseClock -∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼
∼∼∼∼∼∼∼∼∼gt; a, DelayClock -∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼
∼∼∼∼∼∼gt; b, DelayPatternExpression -∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼
∼∼∼∼∼∼∼∼gt; s1) Relation r1[Coincides](Clock1 -∼∼∼∼
∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt; res23, Clock2 -∼∼∼∼∼∼∼
∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt; myDefer) } } ClockConstraint
System newfile { imports { //import statements import
“platform:/plugin/fr.inria.aoste.timesquare.ccslkernel.model/
ccsllibrary/kernel.ccslLib” as lib0; import “platform:/plugin/
fr.inria.aoste.timesquare.ccslkernel.model/ccsllibrary/CCSL.
ccslLib” as lib1; } entryBlock main Block main { Clock c1
Clock c2 Relation r2[Exclusion](Clock1 -∼∼∼∼∼∼∼
∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt; c1, Clock2 -∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼
∼∼∼∼∼∼∼∼∼∼gt; c2) } } ClockConstraintSystem newfile {
imports { //import statements import “platform:/plugin/

20 Journal of Advanced Transportation

fr.inria.aoste.timesquare.ccslkernel.model/ccsllibrary/kernel.
ccslLib” as lib0; import “platform:/plugin/fr.inria.aoste.ti-
mesquare.ccslkernel.model/ccsllibrary/CCSL.ccslLib” as lib1;
} entryBlock main Block main { Clock c1 Clock c2 //Clock c3
Expression c0�Inf(Clock1-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼
∼∼∼∼gt;c1, Clock2-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c2)
//Relation r1[Coincides](Clock1-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼
∼∼∼∼∼∼∼gt;c3, Clock2-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;
c1Infc2) } } ClockConstraintSystem newfile { imports {
//import statements import “platform:/plugin/fr.inria.aos-
te.timesquare.ccslkernel.model/ccsllibrary/kernel.ccslLib” as
lib0; import “platform:/plugin/fr.inria.aoste.timesquar-
e.ccslkernel.model/ccsllibrary/CCSL.ccslLib” as lib1; }
entryBlock main Block main { Clock c1 Clock c2 //Clock c3
Expression c0�Intersection(Clock1-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼
∼∼∼∼∼∼∼gt;c1, Clock2-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;
c2) //Relation r1[Coincides](Clock1-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼
∼∼∼∼∼∼∼∼∼∼gt;c3, Clock2-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼
∼∼∼gt;c1Ic2) } } ClockConstraintSystem periodicitynewfile {
imports { //import statements import “platform:/plugin/
fr.inria.aoste.timesquare.ccslkernel.model/ccsllibrary/kernel.
ccslLib” as lib0; import “platform:/plugin/fr.inria.aoste.
timesquare.ccslkernel.model/ccsllibrary/CCSL.ccslLib” as
lib1; } entryBlock main Block main { //Clock c1 //Clock res
//Integer period�5 //Integer offset�7 //Expression c1Perio-
d5offset7�Periodic(PeriodicBaseClock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼
∼∼∼∼∼∼∼∼∼gt;c1,PeriodicOffset-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼
∼∼∼∼∼gt;offset, PeriodicPeriod -∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼
∼∼∼∼∼∼gt; period) //Relation r1[Coincides](Clock1
-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt; res, Clock2 -∼∼∼∼∼
∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt; c1Period5offset7) Clock c1
Integer period�3 Integer offset�0 Expression c0�

Periodic(PeriodicBaseClock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼
∼∼gt;c1,PeriodicOffset-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;
offset, PeriodicPeriod -∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;
period) } } ClockConstraintSystem newfile { imports {
//import statements import “platform:/plugin/fr.inria.aos-
te.timesquare.ccslkernel.model/ccsllibrary/kernel.ccslLib” as
lib0; import “platform:/plugin/fr.inria.aoste.timesquar-
e.ccslkernel.model/ccsllibrary/CCSL.ccslLib” as lib1; }
entryBlock main Block main { Clock c1 Clock c2 Relation rp
[Precedes](LeftClock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;
c1, RightClock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c2) } }
ClockConstraintSystem newfile { imports { //import state-
ments import “platform:/plugin/fr.inria.aoste.timesquar-
e.ccslkernel.model/ccsllibrary/kernel.ccslLib” as lib0; import
“platform:/plugin/fr.inria.aoste.timesquare.ccslkernel.model/
ccsllibrary/CCSL.ccslLib” as lib1; } entryBlock main Block
main { Clock c1 Clock c2 Relation r1[SubClock](LeftClock
-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt; c1, RightClock -∼∼∼
∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt; c2) } } ClockConstraint
System newfile { imports { //import statements import
“platform:/plugin/fr.inria.aoste.timesquare.ccslkernel.model/
ccsllibrary/kernel.ccslLib” as lib0; import “platform:/plugin/
fr.inria.aoste.timesquare.ccslkernel.model/ccsllibrary/CCSL.
ccslLib” as lib1; } entryBlock main Block main { Clock c1
Clock c2 //Clock c3 Expression c0�Sup(Clock1-∼∼∼∼∼∼
∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c1, Clock2-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼
∼∼∼∼∼∼∼∼∼gt;c2) //Relation r1[Coincides](Clock1-∼∼∼∼

∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c3, Clock2-∼∼∼∼∼∼∼∼
∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c1Supc2) } } ClockConstraintSystem
newfile { imports { //import statements import “platform:/
plugin/fr.inria.aoste.timesquare.ccslkernel.model/ccslli-
brary/kernel.ccslLib” as lib0; import “platform:/plugin/
fr.inria.aoste.timesquare.ccslkernel.model/ccsllibrary/CCSL.
ccslLib” as lib1; } entryBlock main Block main { Clock c1
Clock c2 //Clock c3 Expression c0�Union(Clock1-
∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c1, Clock2-∼∼∼∼∼∼∼
∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c2) //Relation r1[Coincides](-
Clock1-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c3, Clock2-
∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c1Uc2) } } Clock-
ConstraintSystem newfile { imports { //import statements
import “platform:/plugin/fr.inria.aoste.timesquare.ccslkernel.
model/ccsllibrary/kernel.ccslLib” as lib0; import “platform:/
plugin/fr.inria.aoste.timesquare.ccslkernel.model/ccsllibrary/
CCSL.ccslLib” as lib1; } entryBlock main Block main { Clock
c1 //Clock c2 Integer delay�6 Expression c0�

Wait(WaitingClock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c1,
WaitingValue-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;delay)//
Relation r1[Coincides](Clock1-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼
∼∼∼∼∼∼gt;c2, Clock2-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;
c1wait2) } } ClockConstraintSystem 002newfile { imports {
//import statements import “platform:/plugin/fr.inria.aoste.
timesquare.ccslkernel.model/ccsllibrary/kernel.ccslLib” as
lib0; import “platform:/plugin/fr.inria.aoste.timesquare.
ccslkernel.model/ccsllibrary/CCSL.ccslLib” as lib1; } entry-
Block main Block main { Clock asd Clock ebna Clock ets
Clock esl Clock efa Clock efd Clock eno Clock efna Ex-
pression c3�Intersection(Clock1-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼
∼∼∼∼∼∼gt;asd, Clock2-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;
ebna) Relation r1[Alternates](AlternatesLeftClock -∼∼∼∼
∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt; ets, AlternatesRightClock
-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt; c3) Relation r2[Cau-
ses](LeftClock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c3, Right
Clock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;esl) Expression
c4�Union(Clock1-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;efa,
Clock2-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;efd) Integer
d1�1 Integer d2�4 Expression clow�DelayFor(Delay
ForClockToDelay-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;esl,
DelayForClockForCounting-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼
∼∼∼gt;c4,DelayForDelay-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼
gt;d1) Expression cupp�DelayFor(DelayForClockToDelay-
∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;esl,DelayForClockFor
Counting-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c4,DelayFor
Delay-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;d2) //Relation r3
[Precedes](LeftClock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;
c4, RightClock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;c01)
Relation r4[Coincides](Clock1-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼
∼∼∼∼gt;efd, Clock2-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;
eno) Relation r5[Coincides](Clock1-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼
∼∼∼∼∼∼∼∼∼gt;efa, Clock2-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼
∼gt;efna) Clock eso Integer d3�10 Expression clow1�

DelayFor(DelayForClockToDelay-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼
∼∼∼∼∼gt;eso,DelayForClockForCounting-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼
∼̂∼∼∼∼∼∼∼∼∼∼gt;efa,DelayForDelay-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼
∼∼∼∼∼∼∼∼gt;d1) Expression cupp1�DelayFor(Delay
ForClockToDelay-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼∼gt;eso,
DelayForClockForCounting-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼

Journal of Advanced Transportation 21

∼∼∼gt;efa,DelayForDelay-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼∼∼∼∼∼
∼gt;d3) //Relation r6[Precedes](LeftClock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼
∼∼∼∼∼∼∼∼∼gt;eso, RightClock-∼∼∼∼∼∼∼∼∼̂∼̂∼̂∼̂∼∼∼∼∼
∼∼∼∼∼∼gt;c02) } dataTypes{ DenseClockType myPhysical-
Clock{ baseUnit s physicalMagnitude time }, Dense-
ClockType angle{ baseUnit degree } } }

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

Acknowledgments

-is work was partially supported by the National Natural
Science Foundation of China (Grant no. 61772270 and
62077029), by the National Key Research and Development
Program (Grant no. 2018YFB1003900), and by the Safety
Design and Analysis for Autonomous System Project (Grant
no. 9210819807).

References

[1] M. Fisher, L. Dennis, and M. Webster, “Verifying autono-
mous systems,” Communications of the ACM, vol. 56, no. 9,
pp. 84–93, 2013.

[2] E. Huang, L. F. McGinnis, and S. W. Mitchell, “Verifying
SysML activity diagrams using formal transformation to Petri
nets,” Systems Engineering, vol. 23, no. 1, pp. 118–135, 2020.

[3] A. Ferrari, P. Spoletini, and S. Gnesi, “Ambiguity and tacit
knowledge in requirements elicitation interviews,” Re-
quirements Engineering, vol. 21, no. 3, pp. 333–355, 2016.

[4] V. Gervasi, A. Ferrari, D. Zowghi et al., “Ambiguity in re-
quirements engineering: towards a unifying framework,”
From Software Engineering to Formal Methods and Tools, and
Back, pp. 191–210, Springer, Cham, Switzerland, 2019.

[5] N. Daclin, S. M. Daclin, V. Chapurlat, and B. Vallespir,
“Writing and verifying interoperability requirements: appli-
cation to collaborative processes,” Computers in Industry,
vol. 82, pp. 1–18, 2016.

[6] M. Ouimet and K. Lundqvist, “Formal software verification:
model checking and theorem proving,” Technical Report ESL-
TIK-00214, Embedded Systems Laboratory, Faridabad, India,
2007.

[7] U. S. Shah and D. C. Jinwala, “Resolving ambiguities in
natural language software requirements,” ACM SIGSOFT
Software Engineering Notes, vol. 40, no. 5, pp. 1–7, 2015.

[8] D. Harel and B. Rumpe, “Meaningful modeling: what’s the
semantics of “semantics”?” Computer, vol. 37, no. 10,
pp. 64–72, 2004.

[9] M. Mori, A. Ceccarelli, P. Lollini et al., “Systems-of-systems
modeling using a comprehensive viewpoint-based SysML
profile,” Journal of Software: Evolution and Process, vol. 30,
no. 3, p. e1878, 2018.

[10] J. M. Favre, “Towards a basic theory to model model driven
engineering,” in Proceedings of the 3rd Workshop in Software
Model Engineering, WiSME, pp. 262–271, Lisbon, Portugal,
October 2004.

[11] J. Dyck, H. Giese, and L. Lambers, “Automatic verification of
behavior preservation at the transformation level for re-
lational model transformation,” Software & SystemsModeling,
vol. 18, no. 5, pp. 2937–2972, 2019.

[12] N. Gribovskaya and I. Virbitskaite, “Preserving behavior in
transition systems from event structure models,” in

Proceedings of the CEUR Workshop Proceedings, p. 2240, Cali,
CO, USA, May 2018.

[13] G. J. Uriagereka, E. Amparan, C. M. Martinez et al., “Design-
time safety assessment of robotic systems using fault injection
simulation in a model-driven approach,” in Proceedings of the
2019 ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems Companion
(MODELS-C), pp. 577–586, Munich, Germany, September
2019.

[14] S. Kabir, M. Walker, and Y. Papadopoulos, “Dynamic system
safety analysis in HiP-HOPS with Petri nets and bayesian
networks,” Safety Science, vol. 105, pp. 55–70, 2018.

[15] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and
M. Fisher, “Formal specification and verification of autono-
mous robotic systems,” ACM Computing Surveys, vol. 52,
no. 5, pp. 1–41, 2019.

[16] G. V. Bochmann, M. Hilscher, S. Linker, and E.-R. Olderog,
“Synthesizing and verifying controllers for multi-lane traffic
maneuvers,” Formal Aspects of Computing, vol. 29, no. 4,
pp. 583–600, 2017.

[17] J. Arcile, R. Devillers, and H. Klaudel, “VerifCar: a framework
for modeling and model checking communicating autono-
mous vehicles,”Autonomous Agents andMulti-Agent Systems,
vol. 33, no. 3, pp. 353–381, 2019.

[18] M. Kamali, S. Linker, and M. Fisher, “Modular verification of
vehicle platooning with respect to decisions, space and time,”
in Proceedings of the International Workshop on Formal
Techniques for Safety-Critical Systems, pp. 18–36, Springer,
Gold Coast, Australia, November 2018.

[19] M. Webster, N. Cameron, M. Fisher, and M. Jump, “Gen-
erating certification evidence for autonomous unmanned
aircraft using model checking and simulation,” Journal of
Aerospace Information Systems, vol. 11, no. 5, pp. 258–279,
2014.

[20] N. Akhtar and M. M. S. Missen, “Contribution to the formal
specification and verification of a multi-agent robotic system,”
European Journal of Scientific Research, vol. 117, no. 1,
pp. 35–55, 2014.

[21] M. Hilscher and M. Schwammberger, “An abstract model for
proving safety of autonomous urban traffic,” in Proceedings of
the International Colloquium on ;eoretical Aspects of
Computing, pp. 274–292, Springer, Taipei, Taiwan, October
2016.

[22] S. Bernardi, F. Flammini, S. Marrone et al., “Enabling the
usage of UML in the verification of railway systems: the DAM-
rail approach,” Reliability Engineering & System Safety,
vol. 120, pp. 112–126, 2013.

[23] G.-D. Kapos, A. Tsadimas, C. Kotronis, V. Dalakas,
M. Nikolaidou, and D. Anagnostopoulos, “A declarative
approach for transforming SysML models to executable
simulation models,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, pp. 1–16, 2019.

[24] G. Caltais, S. Leue, and H. Singh, “Correctness of an ATL
model transformation from SysML state machine diagrams to
promela,” in Proceedings of the 8th International Conference
on Model-Driven Engineering and Software Development,
pp. 360–372, Valletta, Malta, February 2020.

[25] C. E. Dickerson, R. Roslan, and S. Ji, “A formal transformation
method for automated fault tree generation from a UML
activity model,” IEEE Transactions on Reliability, vol. 67,
no. 3, pp. 1219–1236, 2018.

[26] B. Alshboul and D. C. Petriu, “Automatic derivation of fault
tree models from SysMLmodels for safety analysis,” Journal of

22 Journal of Advanced Transportation

Software Engineering and Applications, vol. 11, no. 5,
pp. 204–222, 2018.

[27] F. Dias, M. Oliveira, T. Batista et al., “Empowering SysML-
based software architecture description with formal verifi-
cation: from SysADL to CSP,” in Proceedings of the European
Conference on Software Architecture, pp. 101–117, Springer,
L’Aquila, Italy, September 2020.

[28] A. Goknil, J. Suryadevara, M. A. Peraldi-Frati et al., “Analysis
support for TADL2 timing constraints on EAST-ADL
models,” in Proceedings of the European Conference on
Software Architecture, pp. 89–105, Springer, Montpellier,
France, July 2013.

[29] B. Chen, X. Li, and X. Zhou, “Model checking of MARTE/
CCSL time behaviors using timed I/O automata,” Journal of
Systems Architecture, vol. 88, pp. 120–125, 2018.

[30] J. Suryadevara, C. Seceleanu, F. Mallet et al., “Verifying
MARTE/CCSL mode behaviors using UPPAAL,” in Pro-
ceedings of the International Conference on Software Engi-
neering and Formal Methods, pp. 1–15, Springer, Madrid,
Spain, September 2013.

[31] C. André and F. Mallet, “Specification and verification of time
requirements with CCSL and esterel,” in Proceedings of the
ACM SIGPLAN/SIGBED conference on Languages, Compilers,
and Tools for Embedded Systems, pp. 167–176, Dublin, Ireland,
June 2009.

[32] L. Huang and E. Y. Kang, “Formal verification of safety &
security related timing constraints for a cooperative auto-
motive system,” in Proceedings of the International Conference
on Fundamental Approaches to Software Engineering,
pp. 210–227, Springer, Prague, Czech Republic, April 2019.

[33] L. Huang, T. Liang, and E. Y. Kang, “Tool-supported analysis
of dynamic and stochastic behaviors in cyber-physical sys-
tems,” in Proceedings of the IEEE 19th International Con-
ference on Software Quality, Reliability and Security (QRS),
pp. 228–239, IEEE, Sofia, Bulgaria, July 2019.

[34] D. Du, P. Huang, K. Jiang, and F. Mallet, “pCSSL: a stochastic
extension toMARTE/CCSL for modeling uncertainty in cyber
physical systems,” Science of Computer Programming, vol. 166,
pp. 71–88, 2018.

[35] E. Y. Kang and L. Huang, “Probabilistic analysis of timing
constraints in autonomous automotive systems using simu-
link design verifier,” in Proceedings of the International
Symposium on Dependable Software Engineering: ;eories,
Tools, and Applications, pp. 170–186, Springer, Beijing, China,
September 2018.

[36] X. Chen, L. Yin, Y. Yu et al., “Transforming timing re-
quirements into CCSL constraints to verify cyber-physical
systems,” in Proceedings of the International Conference on
Formal Engineering Methods, pp. 54–70, Springer, Xi’an,
China, November 2017.

[37] V. S. W. Lam and J. Padget, “Analyzing equivalences of UML
Statechart diagrams by structural congruence and open
bisimulations,” in Proceedings of the IEEE Symposium on
Human Centric Computing Languages and Environments,
pp. 137–144, Auckland, New Zealand, October 2003.

[38] B. Tolbi, H. Tebbikh, and H. Alla, “Fault-tolerant continuous
flow systems modelling,” International Journal of Systems
Science, vol. 48, no. 1, pp. 107–117, 2017.

[39] J.-P. Bodeveix, M. Filali, M. Garnacho, R. Spadotti, and
Z. Yang, “Towards a verified transformation from AADL to
the formal component-based language FIACRE,” Science of
Computer Programming, vol. 106, pp. 30–53, 2015.

[40] A. Baouya, D. Bennouar, O. A. Mohamed, and S. Ouchani, “A
quantitative verification framework of SysML activity

diagrams under time constraints,” Expert Systems with Ap-
plications, vol. 42, no. 21, pp. 7493–7510, 2015.

[41] G. Bacci and M. Miculan, “Structural operational semantics
for continuous state stochastic transition systems,” Journal of
Computer and System Sciences, vol. 81, no. 5, pp. 834–858,
2015.

[42] F. Bonchi, T. van Bussel, M. D. Lee, and J. Rot, “Bisimilarity of
open terms in stream GSOS,” Science of Computer Pro-
gramming, vol. 172, pp. 1–26, 2019.

[43] M. Hülsbusch, B. König, A. Rensink et al., “Showing full
semantics preservation in model transformation-a compari-
son of techniques,” in Proceedings of the International Con-
ference on Integrated Formal Methods, pp. 183–198, Springer,
Nancy, France, October 2010.

[44] A. Narayanan and G. Karsai, “Towards verifying model
transformations,” Electronic Notes in ;eoretical Computer
Science, vol. 211, pp. 191–200, 2008.

[45] R. Cuer, L. Piétrac, E. Niel, S. Diallo, N. Minoiu-Enache, and
C. Dang-Van-Nhan, “A formal framework for the safe design
of the autonomous driving supervision,” Reliability Engi-
neering & System Safety, vol. 174, pp. 29–40, 2018.

[46] W. Do, O. M. Rouhani, and L. Miranda-Moreno, “Simula-
tion-based connected and automated vehicle models on
highway sections: a literature review,” Journal of Advanced
Transportation, 2019.

[47] J. DeAntoni and F. Mallet, “Timesquare: treat your models
with logical time,” in Proceedings of the International Con-
ference on Modelling Techniques and Tools for Computer
Performance Evaluation, pp. 34–41, Springer, Vienna, Austria,
May 2012.

[48] A. Goknil, J. DeAntoni, M. A. Peraldi-Frati et al., “Tool
support for the analysis of TADL2 timing constraints using
timesquare,” in Proceedings of the 18th International Con-
ference on Engineering of Complex Computer Systems,
pp. 145–154, IEEE, Singapore, July 2013.

[49] F. Mallet and R. De Simone, “Correctness issues on MARTE/
CCSL constraints,” Science of Computer Programming,
vol. 106, pp. 78–92, 2015.

[50] M. M. Morando, Q. Tian, L. T. Truong et al., “Studying the
safety impact of autonomous vehicles using simulation-based
surrogate safety measures,” Journal of Advanced Trans-
portation, vol. 2018, Article ID 6135183, 11 pages, 2018.

[51] B. Shen, Z. Zhang, H. Liu et al., “Research on a conflict early
warning system based on the active safety concept,” Journal of
Advanced Transportation, vol. 2018, Article ID 8372108,
11 pages, 2018.

[52] Q. Luo, X. Zang, J. Yuan et al., “Research of vehicle rear-end
collision model considering multiple factors,” Mathematical
Problems in Engineering, vol. 2020, Article ID 6725408,
11 pages, 2020.

[53] J. Ni, J. Han, and F. Dong, “Multivehicle cooperative lane
change control strategy for intelligent connected vehicle,”
Journal of Advanced Transportation, vol. 2020, Article ID
8672928, 10 pages, 2020.

[54] F. Santos, I. Nunes, and A. L. C. Bazzan, “Model-driven agent-
based simulation development: a modeling language and
empirical evaluation in the adaptive traffic signal control
domain,” Simulation Modelling Practice and ;eory, vol. 83,
pp. 162–187, 2018.

[55] D. Ameller, X. Burgués, D. Costal, C. Farré, and X. Franch,
“Non-functional requirements in model-driven development
of service-oriented architectures,” Science of Computer Pro-
gramming, vol. 168, pp. 18–37, 2018.

Journal of Advanced Transportation 23

[56] A. P. F. Magalhaes, A. M. S. Andrade, and R. S. P. Maciel,
“Model driven transformation development (MDTD): an
approach for developing model to model transformation,”
Information and Software Technology, vol. 114, pp. 55–76,
2019.

[57] M. Steurer, A. Morozov, K. Janschek, and K.-P. Neitzke,
“SysML-based profile for dependable UAV design,” IFAC-
PapersOnLine, vol. 51, no. 24, pp. 1067–1074, 2018.

[58] N. Kahani, M. Bagherzadeh, J. R. Cordy, J. Dingel, and
D. Varró, “Survey and classification of model transformation
tools,” Software & Systems Modeling, vol. 18, no. 4,
pp. 2361–2397, 2019.

[59] Z. Wang, G. H. Shen, Z. Q. Huang et al., “A simulation
approach for signal time model concern on multi-clock
system,” in Proceedings of the National Software Application
Conference, pp. 35–51, Springer, Kunming, China, 2016.

[60] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, “Polychrony for
system design,” Journal of Circuits, Systems and Computers,
vol. 12, no. 3, pp. 261–303, 2003.

[61] L. Besnard, A. Bouakaz, T. Gautier et al., “Timed behavioural
modelling and affine scheduling of embedded software ar-
chitectures in the AADL using polychrony,” Science of
Computer Programming, vol. 106, pp. 54–77, 2015.

[62] Y. Romenska and F. Mallet, “Improving the efficiency of
synchronized product with infinite transition systems,” in
Proceedings of the International Conference on Information
and Communication Technologies in Education, Research, and
Industrial Applications, pp. 285–307, Springer, Kherson,
Ukraine, June 2013.

[63] R. Hussain and S. Zeadally, “Autonomous cars: research
results, issues, and future challenges,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 2, pp. 1275–1313, 2018.

24 Journal of Advanced Transportation

