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Energy supply is an important system that affects the overall efficiency of urban transportation. To improve the system operational
efficiency and reduce costs, we formulate and solve a collaborative multidepot petrol station replenishment problem with
multicompartments and time window assignment by establishing a mixed-integer linear programming model. /e hybrid
heuristic algorithm composed of genetic algorithm and particle swarm optimization is used as a solution, and then the Shapley
value method is applied to analyze the profit allocation of each petrol depot under different coalitions. /e optimal membership
sequence of the cooperation is determined according to the strict monotone path. To analyze and verify the effectiveness of the
proposed method, a regional petrol supply network in Chongqing city in China is investigated. /rough cooperation between
petrol depots in the supply network, the utilization of customer clustering, time window coordination, and distribution truck
sharing can significantly reduce the total operation costs and improve the efficiency of urban transportation energy supply. /is
approach can provide theoretical support for relevant government departments and enterprises to make optimal decisions. /e
implementation of the joint distribution of energy can promote the sustainable development of urban transportation.

1. Introduction

/e collaborative multidepot petrol station (PS) replenish-
ment problem (PSRP) with multicompartments and time
window assignment (CMPSRPMT) is a variant of the
multidepot PSRP with time windows (MPSRPTW) [1],
combining the latter with cooperation among petrol depots
(PDs) and truck sharing (TS) of petrol distribution.
CMPSRPMT incorporates multicompartment truck appli-
cation and integrates a collaboration mechanism to design
increasingly efficient petrol distribution networks, minimize
aggregate operating cost, and reduce urban traffic burden.
As of 2019, China has 260 million cars and 106,556 petrol
stations (PSs). Responsible for the energy supply of an in-
creasing number of cars, PSs are mainly located in urban
areas and on main traffic routes. /ese stations make up a
huge distribution network that produces considerable op-
erating costs and negative effects on cities and the envi-
ronment each day. /erefore, analyzing this distribution

network and optimizing its operations are important.
CMPSRPMT is a distribution network design composed of
multiple petrol depots and stations. /e collaboration
among PDs in the distribution network and the time win-
dow assignments (TWAs) to PSs are designed to improve the
operational efficiency and ensure that products are delivered
to PSs on time.

Based on operational requirements, each petrol depot
(PD) in the current distribution network is only responsible
for specific PSs in a certain region. PDs are cut off from
others, and sharing of distribution resources in a network is
extremely difficult. /e result is a temporal and spatial
imbalance between the capacity of distribution trucks and
the demand for customer service delivery, such as the idling
and roundabout transport of distribution trucks. /e inef-
ficient distribution capacity and service quality of several
PDs limit the efficiency of the entire distribution network.
Moreover, customer demands for heterogeneous service
time windows (TWS) require depots to increase their
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number of delivery trucks, which exert pressure on trans-
portation facilities and depot budgets. /erefore, multidepot
cooperative distribution must be based on TWS and dis-
tribution TS to effectively assign customer service. /rough
comprehensive resource sharing, multidepot cooperative
distribution reduces costs and improves the service quality
of the entire distribution network. Indeed, in China, large oil
companies are already collaborating on the distribution of
refined products [2, 3]. In terms of academic research, some
scholars [4, 5] have also discussed the cooperation between
different gas stations in petrol distribution.

In this study, multicompartment truck sharing, TWS,
and a cooperation mechanism are integrated into the tra-
ditional MPSRPTW as CMPSRPMT. To optimize the
CMPSRPMT and improve calculation accuracy, an optimal
mathematical model is established to minimize the total
operating cost. A hybrid heuristic algorithm that combines
genetic algorithm (GA) with particle swarm optimization
(PSO) algorithm is designed to achieve near-optimal solu-
tion. /e Shapley value method is applied to allocate the
benefits from cooperation. /e membership sequence is
analyzed according to the strict monotone path (SMP)
principle. /erefore, it is conducive that the solution of the
CMPSRPMT can improve the efficiency and flexibility of
petrol distribution networks. For the CMPSRPMT, first of
all, refined products have special distribution nature, that is,
product diversification, and cannot be mixed; Secondly,
multidepot cooperation, multicompartment vehicle use, and
different time-window coordination mechanisms are com-
prehensively considered; it can propel the sustainable de-
velopment of distribution theory and the entire intelligent
urban transportation system.

/e remaining parts of this study are organized as fol-
lows. In Section 2, relevant studies on petrol distribution
optimization with the cooperation strategy and TWS are
reviewed. In Section 3, a practical example of the
CMPSRPMT is presented, and a mathematical model is
established using notations and definitions to minimize total
operating costs. InSection 4, a hybrid optimization meth-
odology is introduced to solve the CMPSRPMT. In Section
5, a small-scale example and a case study in Chongqing city
in China are conducted to verify the applicability of our
proposed methodology. InSection 6, the conclusions and
future directions are provided.

2. Literature Review

Past decades have scant academic research on the replen-
ishment of PSs. Previous studies focus on optimizing the
distribution of a single PD to multiple PSs and several
variations of PSRP. For example, the multiperiod, time
window, trip packing, and multidepots with TWS are sep-
arately considered for the PSRP [1, 6–8], which with its
related problems receives increasing research focus given its
practical importance. Popović et al. [9] developed a variable
neighborhood search heuristic for solving a multiproduct,
multiperiod inventory routing problem (IRP) in fuel de-
livery with multicompartment homogenous vehicles. /eir
method was proven superior to other optimization methods.

Vidović et al. [10] proposed a mixed-integer programming
model and a heuristic approach with and without fleet size
costs to observe their impact on the multiproduct, multi-
period IRP in fuel delivery. Huang [11] employed the tabu
search to solve an advanced capacitated location-routing
problem in a distribution network with multiple pickup and
delivery routes. Wang et al. [12] formulated an oil distri-
bution model intra-area with distribution quantity and
routing as decision variables to extend the multidepot half
open vehicle-routing problem with TWS./ey also used GA
to solve this model. Carotenuto et al. [13] provided a
mathematical formulation to the periodic PSRP and pro-
posed different heuristic solutions.Wang et al. [14] proposed
a mathematical model that considered petrol trucks
returning to a depot multiple times and developed a heu-
ristic algorithm according to a local branch-and-bound
search with a tabu list and the Metropolis acceptance cri-
terion to solve it.

/e aforementioned works are some of the few that are
directly related to PSRP modeling and research. However,
the present study is closely related to the multicompartment
truck transportation and TS to be considered in modeling.
Derigs et al. [15] introduced a formal model, an integer
program formulation, and a benchmark suit of 200 instances
of a general vehicle-routing problem with compartments
and presented a solver suite of heuristic components. He
et al. [16] likewise investigated an approach that can be used
in sharing internal trucks among multiple container ter-
minals (SIMT) and proposed a novel strategy to resolve the
SIMTproblem for a specific large port withmultiple adjacent
container terminals. Lahyani et al. [17] optimized a rich
multiproduct, multiperiod, and multicompartment vehicle
routing of the olive oil collection process in Tunisia using a
mathematical formulation, specifically an exact branch-and-
cut algorithm. Coelho and Laporte [18] defined and com-
pared four main categories of the multicompartment de-
livery problem (MCDP). /ey proposed formulations and
models for certain MCDP cases and versions and then
described a branch-and-cut algorithm that is applicable to all
variants. Ostermeier and Hübner [19] identified vehicle-
dependent costs within empirical data collection and used a
large neighborhood search to solve an extended multi-
compartment vehicle-routing problem (MCVRP) for gro-
cery distribution. Vahdani et al. [20] developed a biobjective
optimization model and used two metaheuristic multi-
objective algorithms to integrate the assignment of quay
cranes in container terminals and internal TS assignment.

One part of the CMPSRPMT literature focuses on the
problem of cooperation in the distribution networks. Co-
operation among PDs largely influences the efficiency of
their distribution networks. Qi et al. [21] proposed an al-
ternative approach based on spatiotemporal partitioning to
solve a large-scale VRP with time windows (VRPTW) using
a genetic algorithm developed for K-medoid clustering of
large-scale customers. Wang et al. [22] presented an im-
proved PSO algorithm to minimize the total cost of the
multiple centers’ joint distribution network when each
distribution center is assigned to serve a series of distribution
units. Wang et al. [23] used a mixed-integer linear
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programming model to minimize the total operating cost of
nonempty coalitions of two-echelon heterogeneous coop-
erative logistics networks and the GA-PSO algorithm to
solve customer clustering units’ reallocation problem. Wang
et al. [24] established a linear mathematical model to
minimize the total cost of the two-echelon logistics delivery
and pickup network (2E-LDPN) and solved it by combining
an improved PSO algorithm with the ant colony optimi-
zation algorithm to create hybrid metaheuristics. In the
above studies, different heuristics are used to solve the
problem in combination with various models.

Another part of the CMPSRPMT literature focuses on
the TWA in distribution. Neves-Moreira et al. [25] presented
a new formulation for the time window assignment vehicle-
routing problem (TWAVRP) where TWS are defined for
multiple product segments. /e means of a fix-and-opti-
mize-based math-heuristic method are used to solve this
two-stage stochastic optimization problem. Martins et al.
[26] extended research on MCVRPS by tackling a multi-
period setting with a product-oriented TWA and proposed
an adaptive large neighborhood search as the solution.Wang
et al. [27] established a biobjective programming model that
optimizes the total operating routing cost and the total
number of delivery vehicles for a collaborative multidepot
VRP with TWA (CMDVRPTWA). /ey solved the model
using a hybrid heuristic algorithm consisting of K-means
clustering, Clarke–Wright (CW) saving algorithm, and
extended nondominated sorting genetic algorithm-II (E-
NSGAII).

Generally speaking, the mathematical model of vehicle
assignment and routing problem is NP hard. In order to solve
this kind of problem, it is very important to select and apply
appropriate algorithms. Kuo et al. [28] proposed a hybrid
PSO with GA (HPSOGA) for solving the capacitated VRP
with fuzzy demand (CVRPFD). Azadeh et al. [29] presented a
PSO algorithm synchronized with a local search heuristic and
developed two other hybrid algorithms based on GA and ant
colony optimization (ACO) algorithms to solve the crew
scheduling problem. Zhou et al. [30] proposed two partheno-
genetic algorithms (PGA) and adapted PSO and one state-of-
the-art method to solve multiple traveling salesman problems
(MTSPs). Tohidifard et al. [31] used GA and PSO to solve a
newmathematical model for a multidepot VRP with TWS for
home health care firms. Zhang et al. [32] presented a two-
stage improved GA-PSO algorithm to solve the coal bed
methane gathering network optimizing problem.

/e aforementioned studies tackle numerous PSRP as-
pects but suffer from the following issues. (1) /e replen-
ishment network design procedure rarely considers the
cooperation among PDs by regional partitioning. (2)
Minimal attention is paid to distribution TS, multi-
compartment truck application, and transship trans-
portation among the participants of a collaborative
multidepot optimization network. (3) A single intelligent
algorithm and heuristic approach are difficult to apply di-
rectly to a specific scale of CMPSRPMTwith numerous PSs.

Combining observations in Table 1, the main contri-
butions of this study lie in the following aspects: (1) pro-
posing a cooperation mechanism based on the regional

partitioning method and constructing a collaborative mul-
tidepot PS replenishment network with multicompartments
and TWA; (2) establishing a mixed-integer linear pro-
gramming model based on the minimum total operating
cost and the number of multicompartment trucks for the
CMPSRPMT; (3) designing a hybrid heuristic algorithm that
combines GA and PSO algorithm to effectively address the
optimization model; and (4) executing a real-world case
study to assess the applicability of the proposed model and
approach and compare the costs and benefits before and
after the collaboration. In addition, this study lays a foun-
dation and strategy for optimizing the cooperative energy
supply network, which is conductive to improving the
construction of the sustainable energy supply chain.

3. Problem Statement and Model Formulation

3.1. Problem Statement. CMPSRPMT integrates the prob-
lems of cooperative distribution, TS, and TWAs. Figure 1
illustrates a noncooperative refined products’ distribution
network in which PDs operate independently and serve only
their own customers. As such, long-haul deliveries are in-
evitable. A single PD also needs a large number of delivery
petrol tankers to meet different demands and time window
requirements of its customers. /is case results in a sub-
stantial decrease in the distribution efficiency and an in-
crease in distribution costs. Given the numerous cross-
transportations, the distribution network becomes in-
creasingly complicated and thus vulnerable to disruptions.

Figure 2 displays an optimized refined products’ dis-
tribution network with cooperation, TS, and TWAs. In this
network, large tankers transfer refined products across
depots. /ese petrol distribution trucks are responsible for
refined products’ delivery from each depot to each PS. /is
cooperation leads to a more organized and ordered distri-
bution system than the noncooperative distribution net-
work. /e required number of petrol distribution trucks and
service scope of each PD are likewise reduced.

On the basis of the regional partitioning method, the
transport time between petrol depots and stations is used to
cluster corresponding PSs. Different customer groups are
assigned to different PD services, and the demand of an
individual PS is combined with the required time window.
Different types of petrol tankers are assigned to distribution
on the basis of the appropriate time window for each PD.

Five assumptions underline the corresponding mathe-
matical model. (1) In a relatively short time period, each PS
only generates one distribution order for refined products’
demand. /e demand for each kind of refined products does
not exceed the maximum loading capacity of a single
compartment of the distribution truck. (2) Each customer
(PS) can only be served once in a time period, but its demand
can be fulfilled by multiple distribution trucks. Specifically,
one PD can organize a distribution task, but multiple trucks
can complete the distribution task. (3) /e transportation
speed of petrol transfer trucks and petrol distribution trucks
is constant. (4) During a time period, distribution trucks
may be dispatched repeatedly if time permits, regardless of
the transfer time across PDs. (5) /e loading and unloading
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service times of PDs and stations are related not to the
refined products’ type but to the truck type and operational
quantity.

3.2. Model Formulation. /e proposed model is mathe-
matically formulated as an optimization problem to mini-
mize the total cost when each PD is assigned to serve a group
of PSs with different trucks and TWS [23, 27]. Table 2 lists
the related notations and definitions adopted in the
CMPSRPMT optimization.

CMPSRPMT is formulated as a mixed-integer linear
programming model to minimize the total cost. /e cost
function contains three components, namely,C1,C2, andC3,
which are described as follows.

Equation (1) shows the formulation for C1, which de-
notes the total transportation cost of transferring refined
products across PDs and the maintenance cost of trans-
ferring petrol trucks within a working period:

C1 � 􏽘
i,p∈I,p≠ i

􏽘
k∈K

Fipk

Lo

× fo × tip + tpi􏼐 􏼑 +
Fipk

Lo

×
Mo

T
􏼢 􏼣. (1)

Equation (2) shows the formulation for C2, which de-
notes the total transportation cost, maintenance cost of all
distribution trucks assigned to deliver different refined
products from a depot to a PS during a working period, and
the penalty cost for delivering trucks that arrive early or late:

C2 � 􏽘
i∈I

􏽘
j∈J

􏽘
a∈A

rija × fa × tij + tji􏼐 􏼑

+ϖ1 × rija × max ej − tija, 0􏼐 􏼑

+ϖ2 × rija × max tija − lj, 0􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 􏽘
a∈A

max
φ∈ϕ

|UTa,φ|􏼈 􏼉 ×
Ma

T
.

(2)

Equation (3) shows the formulation for C3, which de-
notes the fixed and variable costs of petrol depots that belong
to the collaborative petrol distribution network:

C3 � 􏽘
i,p∈I,i ≠p

􏽘
k∈K

1 − Wi( 􏼁 × Gi + Wi × Si + c × Fipk + Qi􏼐 􏼑􏽨 􏽩.

(3)

Table 1: Comparison between the existing literature and this study.

Study Number of depots Stations per trip Time windows Multicompartments Fleet sharing Regional partitioning
Cornillier et al. [6] One Several No Yes No No
Cornillier et al. [7] One Several Yes Yes No No
Boctor et al. [8] One Several No No No No
Cornillier et al. [1] Several Several Yes Yes No No
Popović et al. [9] One Several No Yes No No
Vidović et al. [10] One Several No Yes No No
Wang et al. [12] Several Several Yes No Yes No
Carotenuto et al. [13] One Several No Yes No No
Wang et al. [14] One Several Yes Yes No No
/is study Several One Yes Yes Yes Yes

PD1

PD2

PD3

Petrol depot
PD1 delivery assignment
PD1 delivery network

Petrol station
PD2 delivery assignment
PD2 delivery network

Delivery truck
PD3 delivery assignment
PD3 delivery network

Figure 1: Noncooperative petrol distribution network.
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/e optimization model of the CMPSRPMT is defined as
follows:

minTC � C1 + C2 + C3, (4)

subject to

max qjk􏼐 􏼑≤max Q
h
a􏼐 􏼑, ∀j ∈ J, k ∈ K, a ∈ A, h ∈ Ha,

(5)

􏽘
a∈A

􏽘
h∈Ha

y
ah
jk � 1, ∀j ∈ J, k ∈ K, (6)

tLSja
� rija LSa × qj􏼐 􏼑, ∀i ∈ I, j ∈ J, a ∈ A, (7)

tUSja
� rija USa × qj􏼐 􏼑, ∀i ∈ I, j ∈ J, a ∈ A, (8)

tija � rija t
s
ija + tij􏼐 􏼑, i ∈ I, j ∈ J, a ∈ A, (9)

t
r
jia � rija tija + tUSa

+ tij􏼐 􏼑, i ∈ I, j ∈ J, a ∈ A, (10)

Wi ≤ 1, Wi � 0, 1{ }, ∀i ∈ I, (11)

Qi � 􏽘
k∈K

Qik, ∀i ∈ I, (12)

qk � 􏽘
j∈J

qjk, ∀k ∈ K, (13)

Q � 􏽘
k∈K

qk � 􏽘
j∈J

􏽘
k∈K

qjk, ∀j ∈ J, k ∈ K,
(14)

rija � rjia � 0, 1{ }, i ∈ I, j ∈ J, a ∈ A, (15)

rija 1 − rija􏼐 􏼑 � 0, i ∈ I, j ∈ J, a ∈ A, (16)

y
ah
jk 1 − y

ah
jk􏼐 􏼑 � 0, j ∈ J, k ∈ K, a ∈ A, h ∈ Ha, (17)

Si � λQi, ∀i ∈ I. (18)

Equation (4) shows the objective function, which min-
imizes the total cost of the regional petrol distribution
network. Constraint (5) ensures that the demand for one
kind of refined products at any PS is less than or equal to the
maximum capacity of a single compartment of the distri-
bution truck. Constraint (6) guarantees that the demand for
certain products in a PS can only be distributed by a certain
compartment of a certain truck. Constraint (7) defines the
loading service time of a certain delivery truck that dis-
tributes refined products to a certain PS. Constraint (8)
defines the unloading service time of a distribution truck
distributing refined products at a PS. Constraint (9) specifies

Petrol depot
PD1 delivery assignment
PD1 delivery network
Petrol transferred between depots

Petrol station
PD2 delivery assignment
PD2 delivery network

Delivery sharing truck
PD3 delivery assignment
PD3 delivery network

PD1

PD2

PD3

Figure 2: Cooperative petrol distribution network.
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Table 2: Notations and definitions in the CMPSRPMT.

Symbol Description
I: i � 1, 2, 3, . . . , m{ } Set of PDs
J: j � 1, 2, 3, . . . , n􏼈 􏼉 Set of PSs
O Set of petrol transfer trucks

V: (A|αt � n1, 2q, h . . ., xe􏽮 􏼑∪O}

Set of petrol trucks,O represents the petrol trucks which transfer different kinds of petrol between different
PDs, and the petrol transfer truck can only be responsible for the transfer of one kind of petrol at a time; in
addition, a represents different types of petrol distribution trucks, and each distribution truck has a different

subdivision and different capacity
Ha Set of subdivisions of a-type petrol distribution truck
Qh

a Represents the maximum capacity of the hth subdivision of a-type petrol distribution truck,h ∈ Ha

K: k � 1, 2, . . . , b{ } Set of petrol varieties
ϕ Represents a working period
φ Represents one time period of a working period, φ ∈ ϕ
ϖ2 /e cost of time delay as the penalty coefficient when tiaj≻lj
MO /e average annual maintenance cost of the petrol transfer truck (dollar/Y)
Ma /e average annual maintenance cost of different kinds of petrol distribution truck (dollar/Y), a ∈ A

qk /e total demand of k petrol for all the PSs in a time period (gallon), k ∈ K

Qik /e distribution operating quantity of k petrol for PD i in a time period (gallon), i ∈ I, k ∈ K

Qi /e total distribution operating quantity of all kinds of petrol for PD i in a time period (gallon), i ∈ I

Q /e demand quantity of all kinds of petrol for all the PSs in a time period (gallon)
|UTa,φ| /e demand quantity of a-type petrol distribution truck in time period φ, a ∈ A andφ ∈ ϕ

W Wi|tin � q1, 2h,... x, 7m􏼈 􏼉

Decision matrix, Wi � 1 represents that the PD is willing to cooperate with other PDs in the region and joins
the joint distribution network of petrol; Wi � 0 represents that the PD refuses to join the regional distribution

network, i ∈ I

Gi /e fixed cost of PD i in a time period, i ∈ I

c /e variable cost factor of the PD; it is related to the operating quantity of the PD
T /e working periodicity

rija

/e relationship among PD i, PS j, and petrol distribution truck a in a time period; rija � 1 represents that the
petrol distribution truck a is determined to be responsible for the petrol distribution from PD i to PS j, and

rija � 0 represents that the petrol distribution truck a is not selected to be responsible for the petrol
distribution from PD i to PS j; similarly, rjia � 1 represents that the petrol distribution truck a returns back to
PD i from PS j, ripa � 1 represents that the petrol distribution truck a is deployed to PD p from PD i, versa,

i, p ∈ I, i≠p, j ∈ J, and a ∈ A

yah
jk

If the petrol k demand of PS j is completed by the kth compartment of the petrol distribution truck a, the value
is 1; otherwise, it is 0, j ∈ J, k ∈ K, a ∈ A, and h ∈ Ha

Si

/e service cost (including labor cost and operation cost) allocated on behalf of the PD participating in the
petrol regional joint distribution network, and it is related to the distribution operating volume, i ∈ I

λ /e operating volume coefficient of service cost
ϖ2 /e cost of time delay as the penalty coefficient when tiaj≻lj
MO /e average annual maintenance cost of the petrol transfer truck (dollar/Y)
Ma /e average annual maintenance cost of different kinds of petrol distribution truck (dollar/Y), a ∈ A

qk /e total demand of k petrol for all the PSs in a time period (gallon), k ∈ K

Qik /e distribution operating quantity of k petrol for PD i in a time period (gallon), i ∈ I and k ∈ K

Qi /e total distribution operating quantity of all kinds of petrol for PD i in a time period (gallon), i ∈ I

Q /e demand quantity of all kinds of petrol for all the PSs in a time period (gallon)
|UTa,φ| /e demand quantity of type a petrol distribution truck in time period φ, a ∈ A andφ ∈ ϕ

W Wi|tin � q1, 2h,... x, 7m􏼈 􏼉

Decision matrix, Wi � 1 represents that the PD is willing to cooperate with other PDs in the region and joins
the joint distribution network of petrol; Wi � 0 represents that the PD refuses to join the regional distribution

network, i ∈ I

Gi /e fixed cost of PD i in a time period, i ∈ I

c /e variable cost factor of PD; it is related to the operating quantity of the PD
T /e working periodicity

rija

/e relationship among PD i, PS j, and petrol distribution truck a in a time period; rija � 1 represents that the
petrol distribution truck a is determined to be responsible for the petrol distribution from PD i to PS j, and

rija � 0 represents that the petrol distribution truck a is not selected to be responsible for the petrol
distribution from PD i to PS j; similarly, rjia � 1 represents that the petrol distribution truck a returns back to
PD i from PS j, and ripa � 1 represents that the petrol distribution truck a is deployed to PD p from PD i,

versa, i, p ∈ I, i≠p, j ∈ J, and a ∈ A

yah
jk

If the petrol k demand of PS j is completed by the kth compartment of the petrol distribution truck a, the value
is 1; otherwise, it is 0, j ∈ J, k ∈ K, a ∈ A, and h ∈ Ha

Si

/e service cost (including labor cost and operation cost) allocated on behalf of the PD participating in the
petrol regional joint distribution network, and it is related to the distribution operating volume, i ∈ I

λ /e operating volume coefficient of service cost
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the arrival time of a distribution truck to the PS to be served.
Constraint (10) represents the time when a distribution
truck returns to the departure depot after serving a PS.
Constraint (11) indicates that a PD in the regional distri-
bution network can either choose to join or not join the
regional petrol distribution. Constraint (12) defines the total
distribution capacity of different refined products of a PD in
a time period. Constraint (13) represents the total demand
quantity of refined product k from all the PSs in a time
period. Constraint (14) indicates the demand quantity of all
kinds of refined products from all the PSs in a time period.
Constraint (15) ensures that a distribution truck serves only
one PS at a time. Constraints (16) and (17) represent the
value range of variables. Constraint (18) defines the service
cost allocated by a PD over a time period.

4. Solution Methodology

4.1. Hybrid Algorithm Solving Procedure. A GA-PSO hybrid
algorithm is designed to address the petroleum distribution
of the multidepot PS optimization model. GA is an evolu-
tionary computing approach used to mimic the natural
selection procedure and study combinatorial optimization
problems [33]. PSO was proposed by Kennedy and Eberhart
as one of the swarm intelligence stochastic evolutionary
metaheuristic approaches [34]. Based on swarm theory, PSO
is inspired by observations of the social behavior of bird
flocking and fish schooling. /is algorithm can be used to
optimize local and global locations according to the particle
position and velocity. Traditionally, GA and PSO have the
merits of being population-based heuristics with the ability
to evaluate the fitness of each possible solution. /rough
local and global search capabilities, GA and PSO are suc-
cessfully applied to solve problems in engineering, man-
agement, and pure science domains. Given their individual
abilities, GA and PSO are combined as a hybrid algorithm in
this study to inherit the merits of both approaches and
increase the probability of obtaining optimal solutions.

As a hybrid algorithm, GA-PSO is applied to meet the
requirements of the multidepot PSRP optimization for more
complex algorithms. Existing traditional heuristics are al-
ready proven efficient. However, the complexity of petrol
distribution networks limits their capacity in finding near-
optimal solutions. As such, properly integrating different
methods into a hybrid solution approach such as GA-PSO
can effectively improve the optimization results. Other
hybrid heuristics exist but may display weaknesses com-
pared with GA-PSO in terms of performance. For example,
Chen et al. [35] addressed a task assignment problem by
embedding a local search heuristic into the ACO algorithm
to improve the solution search ability. /eir proposed
methodology had a satisfying global search capability but
insufficient local search. In addition, some studies [36–38]
discussed the related variants of GA-PSO and its application
in the centralized charging strategy of electric vehicles,
multiqueue scheduling, and spatiotemporal task scheduling.

And some research studies [39, 40] also applied more ad-
vanced particle swarm optimization variants in the neural
network, burden distribution matrix, and other aspects.
/us, combining GA and PSO ensures good performances at
local and optimum search levels, improves the optimization
procedure, and reduces the number of necessary iterations.
/e relevant operations and processes of the proposed
hybrid algorithm are illustrated in the subsequent sections.

Similar to existing research [41, 42], Figure 3 describes
the procedure of the hybrid algorithm. /e details of the
main steps are as follows:

Step 1: algorithm initialization: in the hybrid algorithm,
the PD performs the refined products’ delivery service.
An integer within [0, To

′] is randomly selected and
assigned to the gene location of each chromosome to
check whether it meets the requirements. To

′ represents
the number of PDs set for refined products’ distribution
service. New chromosomes are generated until re-
quirements are fulfilled. Formula (19) shows the cal-
culation for the fitness function value Fk. TCk indicates
the objective function of the kth chromosome, δk

represents the unqualified chromosome number, and
M denotes the penalty weight for each unqualified
chromosome (particle).

Fk �
1

TCk + δk × M
. (19)

Step 2: given the improved chromosome fitness
function value, roulette wheel selection is then carried
out. Crossover and mutation operations are executed
based on the crossover probability pc and the mutation
probability pm, respectively. /e optimal solutions and
new chromosomes are updated.
Step 3: E chromosomes are selected as the initial
particles in the population to handle the PSO opera-
tions as part of the hybrid algorithm. In addition, the
individual optimal solution pbesttk and the global op-
timal solution gbesttk are calculated according to for-
mulas (20)–(22).Vg represents the allowable maximum
velocity for the PS replenishment service. vt

k denotes the
corresponding particle velocity. c1 and c2 are the ac-
celeration coefficients used in PSO. rand(·) represents a
random fraction between 0 and 1. xt

k indicates the
position of each particle (chromosome). pbesttk and
gbesttk denote the individual best position of particle k
at the tth iteration and global best position of particle k
at the tth iteration, respectively. fix(·) assures that each
particle is an integer. wint denotes the initial inertia
weight. wend denotes the inertia weight for Smax, which
indicates the maximum number of iterations. t rep-
resents the iteration number. Formulas (20) and (21)
are used to update the velocity and position for refined
products’ replenishment services. Formula (22) is used
to obtain the inertia weight w.
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v
t+1
k �

w × v
t
k + c1 × rand(t) × pbesttk − x

t
k􏼐 􏼑

+c2 × rand(t) × gbesttk − x
t
k􏼐 􏼑,

− Vg ≤ v
t+1
k ≤Vg,

− Vg + 2 × Vg × rand(t), others,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

x
t+1
k �

fix x
t
k + v

t+1
k􏼐 􏼑, − Vg ≤x

t+1
k ≤Vg,

rand int 0, To
′􏼂 􏼃, others,

⎧⎨

⎩ (21)

w �
wint − wend( 􏼁 × Smax − t( 􏼁

Smax
+ wend. (22)

Generate the initial population based on the
two-dimensional chromosomes

encoding, and suppose the number of iteration
N (I) = 1, N (II) = 1

Calculate the fitness function value of
each chromosome according to the

roulette wheel selection

Implement the crossover and
mutation operations

N (I) ≤ max
Re-implement the selection, crossover,
and mutation operations from GA, and

regenerate optimal solutions

N (II) ≤ acc

EE worst-fit chromosomes in
GA replace for the best-fit

particle in PSO, and suppose
N (II) = 0

Implement the PSO algorithm
for E particles and update the
individual and global optimal

solutions

N (I) = N (I) + 1, N (II) = N (II) + 1
Log the best known
chromosome and

fitness function value

Output the optimal results for
the CMPSRPMT

Choose E chromosomes as the
initial particles for hybrid

algorithm

No Yes

Yes

No

Start

End

PSO GA

Figure 3: /e flowchart of the hybrid algorithm.
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Step 4: repeat the loop steps indicated in Figure 3 until
the maximum number of iterations is reached or the
termination cases are satisfied.
Step 5: if the number of iterations reaches its maximum,
the loop process ends. /e existing best known particle
(chromosome) and fitness function value are selected as
the optimal solution; otherwise, the above steps are
repeated, starting from Step 2.
Step 6: the optimal solution is calculated and selected
from all available chromosomes and serves as the final
result for the CMPSRPMT.

4.2. Shapley Value Model and MPS. In the optimized
CMPSRPMT, each PS arranges for delivery of refined oil
from the nearest PD. Refined products’ dispatching and
distribution TS are implemented among PDs to reduce costs
and increase profits. Alliance members agree to join the
cooperation depending on the fairness of profit allocation.
Participants are encouraged to join a coalition where the
benefits are proportional to their contributions./erefore, the
leader or coordinator needs to implement an effective revenue
delivery mechanism to ensure the group stability./e Shapley
value model provides an efficient cost and profit allocation
according to the participants’ marginal contributions in co-
operative game theory [43]. /is theory is widely used in the
study of cooperative behavior of participants, including their
profit and cost savings allocation [44].

4.2.1. Shapley Value Model. /e Shapley value is a solution
concept that provides a unique solution to the cost allocation
problem. /e computation formula in the following ex-
presses the cost to be allocated to participant i based on the
assumption that the grand coalition is formed by accepting
new members one at a time./e Shapley value is the average
marginal cost of participants that entered in a completely
random order. /e cost allocated to participant i is equal to

ψi � 􏽘
S⊂N;i⊂s

(|S| − 1)!(|N| − |S|)!

|N|!
[c(S) − c(S − i{ })]. (23)

| · | represents the number of participants in the con-
sidered coalition. /e summation is that of overall coalitions
S that contain participant i. /e quantity, c(S) − c(S − i{ }), is
the amount by which the cost of coalition S − i{ } increases
when participant i decides to join. Such quantity is denoted
by the marginal cost of participant i with respect to that of
coalition S − i{ }.

/e Shapley value model is based on four fairness prop-
erties, namely, efficiency, symmetry, dummy property, and
additivity [22, 44]. /e calculated cost and profit allocation
strategy satisfies these four properties which show several
expected features from a practical perspective. /e reason-
ability and stability of allocation can be insured on this basis.

4.2.2. MPS Strategy. /e strictly monotonic path (MPS)
strategy [44] is mainly applied to estimate the group stability
according to the cost and profit allocation. Large numbers of

cooperation possibilities generally provide a wide range of
cost and profit allocation manners. A sequence can be
adopted only if the cost reduction percentage of each par-
ticipant increases whenever a newcomer joins. If π is a
sequence of the coalition, π(i) can denote the location of PD
i in sequence π. η(i, π, u) indicates the cost reduction rate
when PD i joins the coalition as the μth member and can be
computed as follows:

η(i, π, u) �
ψi Uπ(u)≤u,u∈Sμ, v􏼐 􏼑

C0(i)
, S≥ π(i). (24)

In formula (24), C0(i) indicates that the participant i

decides not to join the cooperation. In the next section, the cost
reduction percentages η(i, π, u) are used to explain the SMP, a
sequence wherein the cost reduction percentages for all
committed participants monotonically increase with each new
member. /e above procedure is applied in the case study.

5. Case Study

5.1. Data Source. A practical study in Chongqing city in
China is considered to evaluate the effectiveness of the
proposed CMPSRPMT optimization. As the central city of
China, Chongqing is an ideal research subject for this study.
Figure 4 shows the locations of five PDs (denoted as PD1,
PD2, . . ., PD5) and 65 PSs (denoted as PS1, PS2, . . ., PS65).
/e PSs are marked as follows: circles for those served by
PD1; rectangles for those served by PD2; triangles for those
served by PD3; cruciform for those served by PD4; and
hexagons for those served by PD5. PDs are marked with
solid five-pointed stars. Table 3 shows the initial service
assignment in the petrol distribution network. Given the
assumed constant transportation speed, the transportation
time across facilities in the petrol replenishment network can
be used to represent the transportation distance between
them for the convenience of calculation. Table 4 shows the
transportation time across facilities.

In this study, three kinds of refined products are con-
sidered, namely, nos. 92, 95, and 98. Table 5 shows the
related data based on the demand for different kinds of
refined products and the corresponding service time window
of each PS.

5.2. Parameter Setting and Optimization Results. To ensure
normal operations, PDs need to bear the fixed and variable
costs related to their distribution tasks. Several parameter
settings in the hybrid algorithm and model are determined
according to the associated previous studies [1, 24, 41, 42]
and real conditions as follows:

(1) Objective function parameters: three kinds of petrol
distribution trucks are available. /e set of petrol
distribution trucks and their compartments are
a|a1,a2,a3􏼈 􏼉 and Ha|Ha1

� 1;Ha2
� Ha3

� 1,2􏽮 􏽯, re-
spectively. /us, Qh

a|Q1
a1

� 2000;Q1
a2

�􏽮 2000,Q2
a2

�

4000;Q1
a3

� 3000,Q2
a3

� 4000}, Lo � 10000, fo � 20,
fa|fa1

� 10;fa2
� 15;fa3

� 16􏽮 􏽯, Mo � 2500,
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Ma|Ma1
� 1000;Ma2

� 2000;Ma3
� 2200􏽮 􏽯, ϖ1 � 3,

ϖ2 � 5, c � 0.002,λ� 0.0045, G1 � 438, G2 � 375, G3 �

512, G4 � 386, andG5 � 504.
(2) Algorithm parameters: according to Gao et al. [45],

both PSO and GA are trained to get the best pa-
rameters in solving practical problems. Particles in
PSO and the chromosomes in GA are trained by the
dendritic neuron model (DNM), so as to get optimal
parameter settings. N � 100 is the popular size used
to increase the diversity of initial chromosomes.
Vg � 2 expresses the maximum velocity for the re-
fined products’ distribution service. pc � 0.8 and
pm � 0.02 indicate the crossover and mutation
probabilities, respectively. G � 60 indicates chro-
mosomes as the initial particles in the population.
GG � 30 expresses the number of chromosomes for
exchanges between GA and PSO. acc � 50 denotes
the number of iterations used for replacement

between GA and PSO. To
′ � 5 represents the numbers

of PDs for the refined products’ distribution service.
M � 100000 is the penalty weight for each unqualified
chromosome or particle. Smax � 1000 is the maximum
number of iterations. ωint � 0.8 is the initial inertia
weight, and ωend � 0.3 is the inertia weight of the
maximum evolution generation. Moreover, c1 � c2 �

2 is the coefficient used for PSO speed calculation.

In this study, a working period can be divided into
several time periods. GA-PSO algorithm is used to assign
PSs to corresponding PDs and compute the total cost in one
time period. In particular, relevant government departments
or core enterprises in the industry are encouraged to offer an
initial subsidy, set at 7% of the cost, to those who wish to join
the cooperation. Table 6 shows the optimization results,
where v(S) represents the cost difference before and after
optimization. Table 6 shows the summary of the best PS
allocation in the entire cooperation.
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Figure 4: Petrol depots’ and petrol stations’ distribution diagram.

Table 3: Initial petrol stations’ assignment.

Petrol depot Petrol station
PD1 PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS19 PS20 PS29 PS30 PS57 PS58 PS59
PD2 PS8 PS9 PS14 PS15 PS16 PS17 PS18 PS31 PS32 PS33
PD3 PS10 PS11 PS21 PS22 PS23 PS24 PS25 PS26 PS27 PS28 PS45 PS46 PS60 PS61 PS62
PD4 PS34 PS35 PS36 PS39 PS40 PS41 PS42 PS43 PS44 PS63 PS64 PS65
PD5 PS12 PS13 PS37 PS38 PS47 PS48 PS49 PS50 PS51 PS52 PS53 PS54 PS55 PS56
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Table 3 shows the initial PS allocation, while Table 7
shows the cooperative network. Clearly, the number of
assigned PSs varies from a PD to another. Although several
depots observe an increase, others are allocated fewer sta-
tions. For example, PD4’s PSs decreased from 12 to 8,
whereas PD5’s PSs increased from 14 to 19. As a conse-
quence, the total time travelled by each PD’s trucks de-
creases, and savings increase. /e sharing of distribution
capacities and trucks allows PDs to reduce their number of
distribution trucks.

For comparison purposes, we implement and test the
proposed GA-PSO hybrid algorithm, PSO, HGA (hybrid
genetic algorithm), and TS-ACO (tabu search and ant
colony optimization hybrid algorithm) with same data. PSO
simulates the social behavior of bird flocking and fish
schooling [34]. HGA incorporates the elitism genetic op-
erator and some improvement heuristic methods [46]. TS-
ACO merges the ideas of ACO into a TS algorithm to
achieve a balance between the diversification and the in-
tensification [47]. Each algorithm is executed 20 times, and
the best solution is selected as the optimal cost for con-
vergence. /e optimal total cost and the computational
times can be used to measure the effectiveness of four al-
gorithms shown in Table 8.

Compared with other three algorithms, the average
optimization cost from our proposed algorithm is of better
quality. In terms of computing time, in addition to PSO, the
average computational time of our proposed algorithm also
has significant advantages. /us, we can conclude that GA-
PSO has the following merits: (1) exchanging best-fit
chromosomes and worst-fit particles between the GA and
the PSO algorithm enhances the GA-PSO’s capability to
obtain better solutions. For example, the GA-PSO algorithm
has a higher probability to obtain the best solution. (2) /e
proposed algorithm combines GA and PSO algorithm’s local
and global search capabilities. As illustrated, the average cost
from the proposed hybrid algorithm is lower than that of
PSO, HGA, and TS-ACO algorithms by 4.8%, 3.4%, and
2.4%, respectively. (3) In the 20 runs, PSO is computed faster
than the other three algorithms. Although GA-PSO requires
slightly more computation time, the low average cost still
makes this algorithm desirable in a practical setting where a
slightly longer computation time can be tolerated (e.g., in

Table 4: Transportation times between facilities in the petrol re-
plenishment network (hour).

PD1 PD2 PD3 PD4 PD5
PD1 — 2.5 1.8 2.3 1.6
PD2 2.5 — 2.1 2.7 2.8
PD3 1.8 2.1 — 1.7 2.0
PD4 2.3 2.7 1.7 — 2.2
PD5 1.6 2.8 2.0 2.2 —
PS1 0.7 1.8 1.2 1.8 1.3
PS2 0.8 1.7 1.3 1.9 1.4
PS3 0.8 1.9 1.2 1.8 1.2
PS4 0.4 1.6 1.0 1.6 1.2
PS5 0.9 2.0 1.1 1.7 1.0
PS6 1.2 1.6 1.3 1.9 1.5
PS7 1.0 1.7 1.1 1.7 1.4
PS8 1.3 1.6 1.5 1.8 1.7
PS9 1.4 1.6 1.7 2.0 1.8
PS10 0.6 1.8 0.8 1.5 1.2
PS11 0.6 1.8 0.9 1.3 1.0
PS12 0.3 1.7 1.1 1.5 1.2
PS13 0.4 2.1 1.2 1.8 1.0
PS14 2.2 0.7 1.6 1.8 2.4
PS15 2.3 0.8 1.6 1.7 2.5
PS16 2.2 0.9 1.5 1.6 2.3
PS17 2.0 0.8 1.8 2.0 2.6
PS18 1.7 0.5 1.5 1.6 2.4
PS19 1.8 0.8 1.5 1.5 2.0
PS20 2.0 0.6 1.2 1.3 2.2
PS21 1.2 1.1 0.3 0.6 1.3
PS22 1.5 1.2 0.6 0.8 1.6
PS23 1.1 0.8 0.6 0.9 1.3
PS24 1.0 1.1 0.3 0.7 1.1
PS25 0.8 1.3 0.2 1.0 1.2
PS26 1.1 1.6 0.4 0.6 1.2
PS27 0.9 1.5 0.4 0.7 1.1
PS28 1.8 1.1 0.7 0.8 1.7
PS29 1.2 1.1 0.6 0.9 1.0
PS30 1.3 1.5 0.5 1.2 1.6
PS31 2.2 1.6 0.7 1.5 2.3
PS32 1.6 1.3 0.6 1.6 2.0
PS33 1.5 1.4 0.6 1.8 1.9
PS34 1.3 1.3 0.4 0.7 1.1
PS35 1.4 1.2 0.5 0.8 1.2
PS36 1.5 1.2 0.6 0.8 1.3
PS37 0.6 1.4 0.5 1.2 1.3
PS38 0.7 1.4 0.4 1.0 1.2
PS39 1.5 1.6 0.7 0.5 1.3
PS40 1.4 1.6 0.6 0.2 1.2
PS41 1.5 1.7 0.9 0.5 1.1
PS42 1.4 1.6 0.8 0.1 1.0
PS43 1.4 1.7 0.9 0.6 1.0
PS44 1.2 1.6 0.7 0.4 0.7
PS45 1.4 1.5 0.6 0.5 1.1
PS46 1.3 1.6 0.6 0.3 1.0
PS47 1.0 1.8 1.0 1.1 0.5
PS48 0.9 1.7 1.1 1.2 0.4
PS49 0.9 1.8 1.2 1.3 0.3
PS50 1.0 1.9 1.3 1.4 0.4
PS51 0.9 1.8 1.4 1.5 0.5
PS52 1.0 2.0 1.3 1.3 0.2
PS53 1.1 2.1 1.1 1.1 0.3
PS54 1.1 1.9 1.0 1.0 0.4

Table 4: Continued.

PD1 PD2 PD3 PD4 PD5
PS55 1.0 1.8 0.9 1.0 0.4
PS56 0.9 1.6 0.8 0.8 0.6
PS57 0.7 1.5 0.8 0.9 0.6
PS58 0.7 1.5 0.9 1.1 0.6
PS59 0.7 1.6 1.1 1.3 0.4
PS60 1.1 1.9 1.2 0.8 0.6
PS61 0.9 1.7 1.0 1.1 0.7
PS62 0.7 1.5 1.2 1.5 0.5
PS63 1.1 2.0 1.3 1.2 0.6
PS64 0.9 1.8 1.2 1.0 0.5
PS65 0.9 1.7 1.1 1.0 0.6
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Table 5: /e demand quantity and service time window of each petrol station in a time period (gallon).

Petrol station
Demand

Time window
No. 92 No. 95 No. 98

PS1 3536 2929 1401 (600, 800)
PS2 2027 2877 56 (800, 1000)
PS3 2264 1191 1217 (800, 1000)
PS4 2097 1412 1284 (1000, 1200)
PS5 2514 1304 2000 (1000, 1200)
PS6 3288 1415 939 (1200, 1400)
PS7 3928 2856 972 (1400, 1600)
PS8 2617 1625 969 (1400, 1600)
PS9 2476 2612 1596 (1600, 1800)
PS10 2042 1570 1010 (1600, 1800)
PS11 2418 1641 699 (1800, 2000)
PS12 3593 2532 1045 (2000, 2200)
PS13 2174 1115 155 (2200, 2400)
PS14 3098 2484 1491 (1400, 1600)
PS15 3946 1430 260 (1000, 1200)
PS16 3047 1084 362 (1200, 1400)
PS17 2594 1453 1010 (800, 1000)
PS18 3177 2199 112 (1400, 1600)
PS19 3334 2740 471 (1000, 1200)
PS20 3013 1642 60 (2000, 2200)
PS21 2575 2634 956 (1000, 1200)
PS22 3075 2975 1237 (1200, 1400)
PS23 3976 1745 152 (800, 1000)
PS24 2737 2027 570 (1400, 1600)
PS25 2118 2043 704 (1200, 1400)
PS26 2052 1911 604 (1800, 2000)
PS27 3591 2252 1430 (1000, 1200)
PS28 2738 2312 308 (2000, 2200)
PS29 2132 2125 1437 (1400,1600)
PS30 3556 1463 376 (800, 1000)
PS31 2691 1957 247 (600, 800)
PS32 2389 1552 1612 (1600, 1800)
PS33 3417 2172 215 (1000, 1200)
PS34 3558 1077 1718 (1200, 1400)
PS35 3177 1122 1845 (2200, 2400)
PS36 2783 1349 1325 (800, 1000)
PS37 3361 1676 1455 (2000, 2200)
PS38 3703 1757 1925 (1600, 1800)
PS39 2010 2857 409 (1000, 1200)
PS40 3869 1448 625 (2000, 2200)
PS41 3296 1147 1516 (1400, 1600)
PS42 2921 1954 659 (1800, 2000)
PS43 3392 2825 223 (1000, 1200)
PS44 3032 1318 1807 (1400, 1600)
PS45 2912 2733 192 (800, 1000)
PS46 3480 1299 455 (2000, 2200)
PS47 2545 1499 158 (1000, 1200)
PS48 3265 1655 540 (1400, 1600)
PS49 3285 1553 1954 (800, 1000)
PS50 3064 2706 1589 (2000, 2200)
PS51 3744 2850 87 (2200, 2400)
PS52 3237 2556 157 (1200, 1400)
PS53 2367 2895 60 (1600, 1800)
PS54 3547 2843 263 (1400, 1600)
PS55 3851 1504 772 (1000, 1200)
PS56 3164 1089 593 (1800, 2000)
PS57 2770 2146 1751 (2000, 2200)
PS58 3495 2652 271 (1600, 1800)
PS59 3916 1207 116 (1400, 1600)
PS60 3496 1489 138 (1800, 2000)
PS61 3984 1329 204 (2000, 2200)
PS62 2815 2650 292 (1200, 1400)
PS63 3032 1798 717 (1000, 1200)
PS64 2994 1017 1565 (600, 800)
PS65 2811 2148 885 (800, 1000)
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operation management). /erefore, we conclude that the
proposed GA-PSO hybrid algorithm is superior to the three
existing algorithms when optimizing multidepot refined
products’ distribution networks.

Comparison between the cost changes and the use of
distribution trucks before and after the cooperation enables
the intuitive analysis of the benefits of the collaborative PS
replenishment network. Figures 5 and 6 show the cost
reduction and the variations before and after the formation
of the cooperation. Compared with the previous numbers,
operating costs significantly decreased after the formation
of cooperation among PDs. Cost savings also increased
with the high number of PDs joining the collaborative

petrol distribution network. Whether for a single or
multiple PDs, the number of required petrol distribution
trucks decreased due to the cooperation and resource
sharing among PDs. Table 9 illustrates the optimization of
distribution trucks.

In the CMPSRPMT, TS is an important mechanism. A
PD joining the cooperation can coordinate the sharing of
petrol distribution trucks. Before cooperation, the PSs’ de-
mands and the required service TWS for each PD must be
considered. /en, the largest numbers of delivery trucks are
needed to certify customer satisfaction. After cooperation, a
chronological and overall time window plan can be made for
all PDs. Trucks can be shared and reasonably arranged,

Table 6: Comparison between the initial and optimized network over one time period (unit: USD).

S Initial cost Optimized cost v(S)

{PD1} 1382.87 1086.07 96.80
{PD2} 1086.90 1010.82 76.08
{PD3} 1231.99 1145.75 86.24
{PD4} 970.79 902.83 67.96
{PD5} 1157.70 1076.66 81.04
{PD1 PD2} 2469.77 2074.34 395.43
{PD1 PD3} 2614.86 2143.21 471.65
{PD1 PD4} 2353.66 2053.49 300.17
{PD1 PD5} 2540.57 2102.84 437.73
{PD2 PD3} 2318.89 1875.41 433.48
{PD2 PD4} 2057.69 1808.63 249.06
{PD2 PD5} 2244.60 1949.18 295.42
{PD3 PD4} 2202.78 1843.52 359.26
{PD3 PD5} 2389.69 1892.67 497.02
{PD4 PD5} 2128.49 1780.36 348.13
{PD1 PD2 PD3} 3701.76 2807.26 894.50
{PD1 PD2 PD4} 3440.56 2886.14 554.42
{PD1 PD2 PD5} 3627.47 2895.92 731.55
{PD1 PD3 PD4} 3585.65 2909.23 676.42
{PD1 PD3 PD5} 3772.56 2904.58 867.98
{PD1 PD4 PD5} 3511.36 2804.67 706.69
{PD2 PD3 PD4} 3289.68 2651.37 638.31
{PD2 PD3 PD5} 3476.59 2697.79 778.80
{PD2 PD4 PD5} 3215.39 2700.79 514.60
{PD3 PD4 PD5} 3360.48 2607.36 753.12
{PD1 PD2 PD3 PD4} 4672.55 3665.71 1006.84
{PD1 PD2 PD3 PD5} 4859.46 3651.67 1207.79
{PD1 PD2 PD4 PD5} 4598.26 3657.80 940.46
{PD1 PD3 PD4 PD5} 4743.35 3600.45 1142.90
{PD2 PD3 PD4 PD5} 4447.38 3408.81 1038.57
{PD1 PD2 PD3 PD4 PD5} 5830.25 4354.57 1475.68

Table 7: Petrol stations’ assignment in the grand coalition.

Petrol depot Petrol station
PD1 PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10 PS11 PS12 PS13
PD2 PS14 PS15 PS16 PS17 PS18 PS19 PS20

PD3 PS21 PS22 PS23 PS24 PS25 PS26 PS27 PS28 PS29 PS30 PS31 PS32
PS33 PS34 PS35 PS36 PS37 PS38

PD4 PS39 PS40 PS41 PS42 PS43 PS44 PS45 PS46

PD5 PS47 PS48 PS49 PS50 PS51 PS52 PS53 PS54 PS55 PS56 PS57 PS58 PS59 PS60
PS61 PS62 PS63 PS64 PS65
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which greatly decreases the required number of total petrol
distribution trucks in the network. For example, Table 8
shows that truck usage decreases from (15a1, 9a2, 103) to
(4a1, 2a2, 2a3) for {PD1 PD3 PD5}, which significantly re-
duced 11a1, 7a2, and 8a3.

5.3. Model Comparison. Based on the above parameter
settings, the cost and the number of distribution trucks of
integrated MILP are calculated. /en, we compared them
with the model calculation results adopted in this study. /e
comparison is shown in Table 10. According to the table,
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Figure 5: Comparison between initial and optimized networks’ cost solutions.

Table 8: Comparison of algorithms’ performance.

Sequence
Total cost(USD) Time∗ (s)

GA-PSO PSO HGA TS-ACO GA-PSO PSO HGA TS-ACO
1 4355 4604 4463 4444 184 100 269 186
2 4338 4523 4544 4452 167 122 219 216
3 4344 4562 4462 4486 214 103 212 194
4 4310 4562 4540 4463 177 92 269 180
5 4388 4546 4541 4419 218 91 275 314
6 4307 4550 4510 4493 163 114 253 214
7 4359 4595 4502 4467 243 105 197 258
8 4374 4608 4491 4436 162 125 172 216
9 4395 4565 4556 4449 167 95 250 199
10 4313 4598 4552 4422 215 102 183 253
11 4389 4601 4488 4484 155 154 249 308
12 4316 4540 4478 4478 230 107 228 253
13 4380 4524 4484 4417 181 148 240 279
14 4311 4530 4469 4465 198 131 225 238
15 4354 4597 4483 4494 238 123 259 281
16 4347 4549 4515 4501 163 105 197 189
17 4374 4552 4495 4437 237 144 255 311
18 4389 4563 4474 4452 197 103 242 198
19 4309 4549 4491 4433 151 128 179 261
20 4377 4518 4485 4453 167 108 230 184
Average 4351.45 4561.80 4501.15 4457.25 191.35 115.00 230.15 236.60
∗Time refers to the average computational time (seconds) for one run.
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Table 9: Comparison of the truck usage between initial and optimized networks.

S Initial truck usage Truck usage after optimization /e saving of truck usage
{PD1} 4a1, 3a2, 4a3 – –
{PD2} 3a1, 3a2, 2a3 – –
{PD3} 5a1, 3a2, 4a3 – –
{PD4} 4a1, 4a2, 2a3 – –
{PD5} 6a1, 3a2, 2a3 – –
{PD1 PD2} 7a1, 6a2, 6a3 3a1, 2a2, 3a3 4a1, 4a2, 3a3
{PD1 PD3} 9a1, 6a2, 8a3 3a1, 2a2, 2a3 6a1, 4a2, 6a3
{PD1 PD4} 8a1, 7a2, 6a3 3a1, 2a2, 2a3 5a1, 5a2, 4a3
{PD1 PD5} 10a1, 6a2, 6a3 3a1, 2a2, 2a3 7a1, 4a2, 4a3
{PD2 PD3} 8a1, 6a2, 6a3 2a1, 2a2, 2a3 6a1, 4a2, 4a3
{PD2 PD4} 7a1, 7a2, 4a3 3a1, 2a2, 2a3 4a1, 5a2, 2a3
{PD2 PD5} 9a1, 6a2, 4a3 3a1, 2a2, 2a3 6a1, 4a2, 2a3
{PD3 PD4} 9a1, 7a2, 6a3 3a1, 2a2, 2a3 6a1, 5a2, 4a3
{PD3 PD5} 11a1, 6a2, 6a3 3a1, 2a2, 2a3 8a1, 4a2, 4a3
{PD4 PD5} 10a1, 7a2, 4a3 3a1, 2a2, 2a3 7a1, 5a2, 2a3
{PD1 PD2 PD3} 12a1, 9a2, 10a3 4a1, 2a2, 2a3 8a1, 7a2, 8a1
{PD1 PD2 PD4} 11a1, 10a2, 8a3 4a1, 2a2, 2a3 7a1, 8a2, 6a3
{PD1 PD2 PD5} 13a1, 9a2, 8a3 4a1, 2a2, 3a3 9a1, 7a2, 5a3
{PD1 PD3 PD4} 13a1, 10a2, 10a3 4a1, 2a2, 2a3 9a1, 8a2, 8a3
{PD1 PD3 PD5} 15a1, 9a2, 10a3 4a1, 2a2, 2a3 11a1, 7a2, 8a3
{PD1 PD4 PD5} 14a1, 10a2, 8a3 4a1, 2a2, 2a3 10a1, 8a2, 6a3
{PD2 PD3 PD4} 12a1, 10a2, 8a3 4a1, 2a2, 2a3 8a1, 8a2, 6a3
{PD2 PD3 PD5} 14a1, 9a2, 8a3 3a1, 2a2, 2a3 11a1, 7a2, 6a3
{PD2 PD4 PD5} 13a1, 10a2, 6a3 4a1, 2a2, 1a3 9a1, 8a2, 5a3
{PD3 PD4 PD5} 15a1, 10a2, 8a3 3a1, 2a2, 2a3 12a1, 8a2, 6a3
{PD1 PD2 PD3 PD4} 16a1, 13a2, 12a3 5a1, 3a2, 2a3 11a1, 10a2, 10a3
{PD1 PD2 PD3 PD5} 18a1, 12a2, 12a3 5a1, 2a2, 3a3 13a1, 10a2, 9a3
{PD1 PD2 PD4 PD5} 17a1, 13a2, 10a3 5a1, 3a2, 2a3 12a1, 10a2, 8a3
{PD1 PD3 PD4 PD5} 19a1, 13a2, 12a3 5a1, 3a2, 3a3 14a1, 10a2, 9a3
{PD2 PD3 PD4 PD5} 18a1, 13a2, 10a3 4a1, 2a2, 2a3 14a1, 11a2, 8a3
{PD1 PD2 PD3 PD4 PD5} 22a1, 16a2, 14a3 6a1, 3a2, 3a3 16a1, 13a2, 11a3
Note. a1, a2, and a3 represent three kinds of petrol distribution trucks with different loads and different compartments.
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Figure 6: Cost reduction variations of different coalitions.
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significant decline in the total cost and the number of
distribution trucks can be observed by the model of this
study. Because the model adopted in this study not only
includes the MDVRP but also readjusts the customer groups
served by each PD through the cooperation among PDs with
the feedback mechanism, better results are obtained.

5.4. Stability of the Coalition. Many game theory-based
approaches to allocating profits are available. In this study,
minimum cost-remaining savings (MCRS), GQP, the im-
proved Shapley value model, and the equal profit method
(EPM) are adopted to conduct a comparative analysis that
tests the stability of alliance [44]. We explore the grand
coalition scenario where five PDs form a single coalition and
evaluate the profit allocated to each of the five PDs (called
“profit allocation scheme” throughout the paper) under the
four game theory models. /e core of the most stable profit
allocation scheme can be calculated using formula 25. Based
on our network where five petrol depots constitute an al-
liance, the core area forms a closed polygon. Each surface of
the core area is compressed and narrowed into a single point,
which is the core center. κ represents a member, and ε is a
variable for controlling its range. /e center can be
expressed as follows:

v(N) − v(N − κ{ })

v(N)
× ε + 􏽘

c≠κ

c∈N
yc � v(N − κ{ }). (25)

According to the snowball theory, the proximity of a
profit distribution scheme to the core center reflects the
stability of the alliance with the given profit distribution
scheme [48]. In particular, a profit allocation scheme that is
near the core center indicates a robust coalition strategy.
Following formula (25), the core center is calculated as (333,
281, 368, 206, 298). /e profit allocation schemes under the
four game theory models and their distances to the core
center are summarized in Table 11.

Table 11 shows the distance between profit allocation
schemes and the core center, with the most stable scheme
at the center and the other schemes at the periphery. /e
profit allocation scheme calculated by the Shapley model
is nearest to the core center and thus is superior to the
other three models. /e comparison result confirms that
the Shapley model outperforms the other methods in
terms of stability. /e profit allocation schemes under the
MCRS and the EPM are unstable given their long distance

from the core center. /erefore, among the four profit
allocation schemes, the profit allocation scheme obtained
from the Shapley model will result in the highest prob-
ability of participants agreeing to cooperate.

5.5. Shapley ValueModel Application and Coalition Sequence
Selection. Upon the CMPSRPMToptimization, the benefits
and cost savings should be reasonably allocated among each
depot to ensure the long-term group stability. /en, the
Shapley value model and the SMP method introduced above
are applied to determine the benefit allocation and order
analysis of membership.

5.5.1. Shapley Value Model Application. According to for-
mula (23), Table 12 shows the cost saving allocation of each
PD analyzed under different collaborations.

Table 12 shows the cost savings of each alliance and the
profit allocation of each PD as computed using the Shapley
value model. In the final grand alliance, PD1, PD2, PD3,
PD4, and PD5 gain cost savings amounting to $327.10,
$270.79, $376.82, $199.55, and $301.42, respectively.
However, forming a grand alliance is difficult, requiring the
communication and coordination of each participant and
the fair and reasonable allocation of cost savings and
benefits.

5.5.2. Sequential Alliance Selection. /e analysis of coop-
eration sequences is extremely important for the benefit
allocation strategy and the participants’ willingness to join.
In other words, the order in which the participants join the
cooperation affects the allocation of benefits and the satis-
faction of SMP principles. Figure 7 shows the proportions of
cost reduction during the formation of the CMPSRPMT
computed according to formula (24).

Formula (23) is used to calculate the cost saving per-
centages and changes of different membership orders. /e
optimal sequence with PD1, PD2, PD3, PD4, and PD5 is
determined. Table 13 shows the first member.

In the five sequences, the cost reduction percentage for
each PD reflects the results of taking different PDs as first
participants. /e optimal cooperation sequence of coalition
is π3 � PD3,PD5,PD4,PD1,PD2{ }, determined from the
five sequences using the method analyzed in Section 4.2.2.
Table 14 shows the specific cost reduction percentages, and
Figure 8 shows their changes.

Table 10: Model comparison.

Transportation cost ($) Penalty cost ($) Cooperation cost ($) Total cost ($) /e number of distribution trucks
Integrated MILP 4560.62 315.62 – 4876.24 18a1, 16a2, 10a3
/is study 3900.19 204.38 250 4354.57 16a1, 13a2, 11a3
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5.6. Implication. /e design of collaborative PS replenish-
ment networks on the basis of regional partitioning and ra-
tional resource sharing propels the sustainable development of
refined products’ distribution and of the entire energy supply
system. /e CMPSRPMT optimization presents a reasonable
division of refined products’ distribution service zones and
reduces long-distance and cross-transportation phenomena.
/us, costs are minimized, and additional benefits are offered
to each PD. Effective TWA coordination and shared strategies
among trucks and PSs are important characteristics of the
proposed network. /ese improvements significantly con-
tribute to energy and social resources and cost savings for PD
operators and transportation administrations.

Cooperation among logistics facilities recently plays an
important role in the optimization of distribution pro-
cesses. Incorporating further transportation resource
sharing can allow for more cost savings. In addition, traffic
administration policies that encourage joint distribution
are also a sign of political will to achieve the sustainable
development of administrated areas. As one of the main
development factors, refined products’ distribution activ-
ities can be further organized with the coordination of
TWAs and reduce the number of petrol distribution trucks.
/erefore, encouraging the formation of a grand coalition
is a relevant approach that can benefit not only PDs but the
entire society.

Table 12: Cost allocation in the CMPSRPMT optimization with one alliance (unit: USD).

S v(S) ψ(i, v)

{PD1} 96.80 (96.80, 0, 0, 0, 0)
{PD2} 76.08 (0, 76.08, 0, 0, 0)
{PD3} 86.24 (0, 0, 86.24, 0, 0)
{PD4} 67.96 (0, 0, 0, 67.96, 0)
{PD5} 81.04 (0, 0, 0, 0, 81.04)
{PD1 PD2} 395.43 (208.08, 187.35, 0, 0, 0)
{PD1 PD3} 471.65 (241.11, 0, 230.54, 0, 0)
{PD1 PD4} 300.17 (164.51, 0, 0, 135.66, 0)
{PD1 PD5} 437.73 (226.75, 0, 0, 0, 210.98)
{PD2 PD3} 433.48 (0, 211.66, 221.82, 0, 0)
{PD2 PD4} 249.06 (0, 128.59, 0, 120.50, 0)
{PD2 PD5} 295.42 (0, 145.23, 0, 0, 150.19)
{PD3 PD4} 359.26 (0, 0, 188.77, 170.49, 0)
{PD3 PD5} 497.02 (0, 0, 251.11, 0, 245.91)
{PD4 PD5} 348.13 (0, 0, 0, 167.53, 180.60)
{PD1 PD2 PD3} 894.50 (303.40, 273.96, 317.14, 0, 0)
{PD1 PD2 PD4} 554.42 (225.98, 190.07, 0, 138.37, 0)
{PD1 PD2 PD5} 731.55 (290.32, 208.80, 0, 0, 232.43)
{PD1 PD3 PD4} 676.42 (240.92, 0, 265.19, 170.31, 0)
{PD1 PD3 PD5} 867.98 (279.60, 0, 303.97, 0, 284.41)
{PD1 PD4 PD5} 706.69 (249.94, 0, 0, 190.72, 266.03)
{PD2 PD3 PD4} 638.31 (0, 206.43, 266.61, 165.27, 0)
{PD2 PD3 PD5} 778.80 (0, 212.89, 318.77, 0, 247.14)
{PD2 PD4 PD5} 514.60 (0, 146.76, 0, 169.06, 198.78)
{PD3 PD4 PD5} 753.12 (0, 0, 281.62, 198.04, 273.46)
{PD1 PD2 PD3 PD4} 1006.84 (284.71, 250.22, 325.34, 146.57, 0)
{PD1 PD2 PD3 PD5} 1207.79 (325.58, 258.86, 354.03, 0, 269.32)
{PD1 PD2 PD4 PD5} 940.46 (298.02, 194.85, 0, 176.77, 270.82)
{PD1 PD3 PD4 PD5} 1142.90 (290.06, 0, 321.75, 208.50, 322.59)
{PD2 PD3 PD4 PD5} 1038.57 (0, 212.88, 347.74, 198.03, 279.92)
{PD1 PD2 PD3 PD4 PD5} 1475.68 (327.10, 270.79, 376.82, 199.55, 301.42)

Table 11: Distance between schemes and the core center location.

Profit allocation model Profit allocation schemes Core center Distance
MCRS (338, 297, 348, 226, 289) (333, 281, 368, 206, 298) 70
GQP (336, 290, 351, 214, 273) – 62
Shapley (327, 271, 377, 200, 301) – 34
EPM (347, 301, 382, 233, 285) – 88
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Figure 7: Cost reduction percentages and grand alliance formation process.
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6. Conclusions

/is study presents an effective method to solve the opti-
mization of the CMPSRPMT, which improves the cooper-
ation level of PDs and the operational optimization of
refined products’ distribution./e distribution and resource
sharing are optimized through the regional petrol joint
distribution formed by the cooperation among PDs. In the
optimization process, we consider the mechanisms of PS
clustering, time window coordination, and truck coutiliza-
tion. /e comparison of data before and after the cooper-
ation shows that the total number of distribution trucks and
the total operating costs are significantly reduced.

/e optimization model considers customer clustering,
TWA, and multicompartment distribution TS. As a result,
the overall transportation distance and the number of trucks
used are reduced. A regional petrol distribution network in
Chongqing city in China is taken as an example to evaluate
the effect of the proposed model and method in practice. We
propose a hybrid heuristic approach based on GA and PSO
and use the Shapley value method to allocate the benefits of
PD in the cooperation. /e optimal sequence of the PD
joining the cooperation is found according to the SMP
principle.

In summary, the study of petrol cooperative optimiza-
tion is consistent with the reality./e proposed optimization
method is better than that of existing research in this field.
Based on the analysis, a summary of the conclusions is
provided as follows. (1) Regional petrol distribution network
through customer clustering, coordination of TWA, and
sharing of distribution trucks can considerably shorten the
distribution distance, reduce the required number of dis-
tribution trucks, and reduce the total operational costs of the
network petrol distribution. (2) Optimizing the PSs served
by each depot and using each other’s delivery trucks when
the time window allows can highly relieve the traffic stress of
refined products’ supply in urban areas, reduce the negative
effect of the transport energy supply system, and contribute
to the sustainable development of urban transportation. (3)
/e benefit allocation of each PD and the determination of
the optimal entry sequence ensure the formation of a more
cooperative distribution network and strengthen the group
stability.

/e results of this study point toward interesting re-
search directions in the future. /e following points can be
considered. (1) /is study only considers the cooperation
between the PD and the PS in the process of distribution
operation. /us, the cooperation can be extended to a wider
range of the transport energy supply chain. (2) /is study
assumes that the transport speed of petrol distribution trucks
is constant, which is consistent with most of the existing
joint distribution literature. Future research can consider
real-time urban traffic speed analysis to achieve more re-
alistic results. (3) In the future, the dynamic CMPSRPMT
can be built by considering the product inventory of PDs and
PSs.
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neighborhood search heuristic for the inventory routing
problem in fuel delivery,” Expert Systems with Applications,
vol. 39, no. 18, pp. 13390–13398, 2012.
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