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As the largest emitter of greenhouse gases in the world, the peak values of Chinese CO, emissions have attracted extensive
attention at home and abroad. The carbon dioxide emissions of the Chinese transportation industry, accounting for 9.5% of total
carbon dioxide emissions, is one of the high-emission industries, and its total carbon dioxide emissions continue to rise. Therefore,
the accurate prediction of the peak values of carbon dioxide emissions from the Chinese transportation industry is helpful for
China to formulate a reasonable policy of carbon dioxide emissions control. This paper, firstly, selects six major factors affecting
the carbon dioxide emissions of the Chinese transportation industry. They are the Gross Domestic Product (GDP), population,
urbanization rate, energy consumption structure, energy intensity, and industrial structure. Then, it builds a prediction model of
carbon dioxide emissions based on Support Vector Regression (SVR). Finally, it analyses the sensitivity of each factor. The
predicted results show that, under the baseline scenario, they will reach a peak of 1365.71 million tons in 2040; under the low-
carbon scenario, the carbon dioxide emissions of Chinese transportation will peak at 1115.43 million tons in 2036; and in the high-
carbon scenario, the peak value will occur in 2046 and the carbon dioxide emissions will be 1738.18 million tons. In order to
promote the early peak of carbon dioxide emissions from the transportation industry, it is, firstly, necessary to change the mode of
economic growth and appropriately reduce the speed of economic development. Secondly, the energy intensity of the trans-
portation industry is reduced and the utilization rate of clean energy is improved. Thirdly, the industrial structure is optimized.
Fourthly, the carbon dioxide emissions of the transportation industry caused by the increased urbanization rate are
reasonably controlled.

1. Introduction

With the development of the world economy, the situa-
tion of carbon dioxide emissions control is becoming
increasingly serious. In November 2019, the United Na-
tions Environment Programme (UNEP) released the
Emissions Gap Report, which pointed out that human
efforts to control carbon dioxide emissions have been too
weak in the recent ten years, and the global carbon dioxide
emissions have been always on the rise, leading to broader
and more destructive climate influences. In December
2019, the 25th conference of the parties to the United
Nations convention on climate change was held in Spain,

and the United Nations secretary-general Antonio
Guterres has called on all countries to adopt more effective
measures to control the growth of carbon dioxide emis-
sions. According to the report from the Netherlands
Environmental Assessment Agency, China surpassed the
United States as the world’s largest country of CO,
emissions in 2006. Also, according to the International
Energy Agency (IEA) data, Chinese CO, emissions
reached 9.30 billion tons in 2017, accounting for 28.33% of
the world’s total volumes. Among them, the CO, emis-
sions of transportation industry accounted for 9.5% of
Chinese total volumes, making it a major carbon emitter
in the national economy.
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However, compared with other industries, the Chinese
transportation industry is not ideal enough in carbon di-
oxide emissions control because of its multiple and com-
plicated emission sources. Therefore, the prediction of the
future peak values of carbon dioxide emissions in the
Chinese transportation industry is helpful for the govern-
ment administration departments to realize the grim situ-
ation of carbon dioxide emissions control in the
transportation sector, so as to speed up the formulation of
more stringent policies for carbon dioxide emissions
control.

At present, the relevant research studies of domestic
and foreign scholars mainly focus on the influencing
factors and prediction of carbon dioxide emissions in the
transportation industry. In terms of influencing factors,
the research results of most scholars show that the eco-
nomic level [1-5], population [2, 3, 5, 6], energy intensity
[2, 3, 7, 8], energy consumption structure [4-7], urban-
ization rate [5], and industrial structure [9-11] are the
main factors affecting the carbon dioxide emissions of the
transportation industry. There are also a few scholars who
believe that transportation demand [4], the level of
transportation development [6], the added value of the
transportation industry [7], transportation intensity [8],
the market concentration level [12], energy efficiency [13],
average driving distance, and the number of motor ve-
hicles [14] are also important factors affecting carbon
dioxide emissions.

As for the prediction of carbon dioxide emissions, the
most widely used prediction models include the IPAT
model [15], STIRPAT model [16], scenario analysis method
[17, 18], and regression analysis method [19]. In the early
1970s, Ehrlich et al. established the famous IPAT equation
[20] to study the impact of population on environmental
change. However, IPAT equation has a certain limitation,
which is to analyze the influence of a changed factor on
environmental change on the premise of keeping other
factors unchanged, so as to obtain the result of equal pro-
portional influence on dependent variables. In order to solve
this limitation, Dietz et al. proposed the random model of
environmental impact, namely, the STIRPAT model [21].
However, the STIRPAT model mostly specifies different
models by simply adding or deleting variables [22]. Even
with the improved STIRPAT model, most of the influencing
factors are randomly selected to conform to the multipli-
cation rules of the model. Without necessary theoretical
support, the credibility of the empirical results will decline
[23]. The scenario analysis method is often used in com-
bination with other methods in practical research centers
because it only establishes a set of framework and analysis of
environmental impact in each scenario must also rely on
other more specific methods. As for the regression analysis
method, due to the strict assumption of its equation, it is
necessary to know all explanatory variables that cause the
change of dependent variables; otherwise, it is easy to have
problems such as false regression, resulting in the failure of
the hypothesis test. But, there are many influencial factors of
carbon dioxide emissions, so it is relatively difficult in this
choice.
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In the recent years, machine learning methods have been
widely applied to the prediction of carbon dioxide emissions.
Chen et al. used the artificial neural network (ANN) to predict
CO, emissions and estimated CO, emissions from global
reservoirs [24]. However, due to the very slow convergence
speed of the neural network algorithm, it is easy to fall into the
local minimum [25]. Support vector machine (SVM) is a new
machine learning algorithm based on statistical learning the-
ory. Because of its good learning performance, it has been used
for classification and regression problems. This solves the
defects of the prior method and becomes an effective method of
carbon emission prediction [26]. Chen et al. established a
prediction model for regional carbon emissions based on
support vector regression machine to predict the carbon
emissions of Beijing’s transportation industry [27]. Song et al.
predicted Chinese carbon emissions from 2010 to 2015 based
on taking the data of Chinese carbon emissions and influencing
factors from 1980 to 2009 as samples and combining with the
12" Five-Year Plan [28]. Xue et al. analyzed the advantages of
support vector regression machine model in carbon emission
prediction and built a prediction model of carbon emissions
based on this. By using the data of carbon emissions in Hebei
Province from 1990 to 2015 and its influencing factors, we
predicted the carbon emissions of Hebei Province from 2016 to
2015 and provided suggestions for carbon emissions reduction
[29].

This paper combines the Support Vector Regression
(SVR) machine model and the scenario analysis method,
uses their advantages to solve the problem of small sample
and nonlinearity to forecast the peak value of the Chinese
transportation industry in the three scenarios of high-carbon
scenario, benchmark scenario, and low-carbon scenario, and
provides references for the government making carbon
emission control policies.

2. Establishment of the Prediction Model and
Selection of Influencing Factors

2.1. Model Establishment

2.1.1. Selection of the Prediction Model. The carbon dioxide
emissions of transportation industry are often affected by
economic, social, and other factors. Through comparative
analyses, this paper selects the SVR model as the prediction
model for carbon dioxide emissions of transportation in-
dustry. Firstly, the main idea of SVR is to maximize clas-
sification boundaries and adapt to various nonlinear
situations by selecting a kernel function, which is more
suitable for nonlinear data regression prediction than the
traditional prediction model. Secondly, the SVR model can
realize efficient transformation from training the sample set
to the prediction sample set through the small sample
learning method, which can solve the problem of small
sample data. Finally, in the perspective of obtaining the
global optimal solution, the SVR model will be transformed
into a convex optimization problem in the final calculation
to ensure the global optimal result. Therefore, the SVR
model is selected for carbon dioxide emissions’ prediction in
this paper [30].
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2.1.2. Specific Steps of Predictions. SVR is a prediction
method based on structural risk minimization, which can
comprehensively consider the fitness and complexity of
training samples and achieve the optimal effect in function
approximation, regression prediction, and other aspects. In
this paper, the nonlinear SVR model is selected for
predictions.

The data of carbon dioxide emissions were obtained
from transportation industry and related influencing factors
for 45 years from 1973 to 2017, and the SVR model is built
for carbon dioxide emissions of transportation industry; the
specific steps are as follows:

Step 1. Independent variables and dependent variables
in the sample data are normalized, so that all data are
between [0, 1]. After normalization, all indexes are in
the same order of magnitude, which is convenient for
comprehensive comparisons and improves calculation
accuracy. The normalization method is shown as

follows:
xi* — Xi = Xmin )
Xmax ~ Xmin
(1)
y * Yi = Vmin
;=
Ymax = Ymin

In the formulas, x;, y; are elements of the data to be
normalized; X, Y.y are the largest elements in data
matrix; X, Ymin are the smallest elements in data
matrix; and x,;*, y;* are normalized data.

Step 2. Kernel function and parameter selection

Firstly, the selection of the SVM kernel function plays a
crucial role in the performance of SVM. By means of
the LIBSVM toolbox, this paper selects the radial basis
kernel function K (x;,x) = (®(x;)  P(x)) = exp(-y
lx; — x||*) as the kernel function of the e-SVR model
after systematic analysis of the selected data of each
year. Secondly, after LIBSVM adopts the kernel
function, the model parameters that are need to be
determined are only penalty factor ¢ and kernel
function parameter g The initial value ¢ is set, the
values of parameters ¢ and g are determined with the
grid algorithm, and finally, the optimal parameters are
obtained by comparisons.

Step 3. The prediction model is established, simulation
is carried out for sample set data by MATLAB, and the
deviation degree between the prediction data of the
training sample and the actual data is compared. The
learning and promotion ability of the SVR model are
judged by fitting the prediction index, namely, Mean
Squared Error (MSE). At the same time, the data of the
test set are substituted into, and their mean square error
(MSE) is verified. If it is in line with the expectation, the
following prediction analysis is carried out. Otherwise,
we go back for continuing learning.

Step 4. The predicted values of influencing factors of

transportation carbon dioxide emissions are normal-
ized, they are substituted into the established prediction

model, the results are output, and the inverse nor-
malization is carried out, so as to obtain the required
prediction data of carbon dioxide emissions under
different scenarios. Inverse normalization is an inverse
process of data normalization. The formula is

yi:yi(ymax_ymin)+ymin' (2)

2.2. Selection of Influencing Factors for Carbon Dioxide
Emissions. From the abovementioned literature studies, the
factors affecting carbon dioxide emissions of Chinese
transportation industry mainly include the GDP, pop-
ulation, urbanization rate, transportation development level,
transportation energy intensity, energy consumption
structure, and industrial structure. The level of traffic de-
velopment is a comprehensive indicator, and there exist
some differences in how to measure it quantitatively;
therefore, this paper excludes this indicator. In addition, the
classical regression analysis requires the independent vari-
ables to be linearly independent while the support vector
machine (SVM) model does not require the independent
variables to be linearly independent. Therefore, when using
the regression model of SVM to predict the peak of carbon
dioxide emissions, this paper selects six indicators of GDP,
population, urbanization rate, energy consumption struc-
ture, energy intensity, and industrial structure as the main
factors affecting the carbon dioxide emissions of the
transportation industry. Among them, the energy con-
sumption structure refers to the proportion of fossil energy
consumptions of the transportation industry in the total
energy consumptions, and the industrial scale refers to the
proportion of the secondary industry in GDP.

2.3. Setting of the Predicted Scenario. 1f China wants to make
the policies of carbon dioxide emissions control suitable
for its national conditions, it is crucial to accurately
predict the peak values of carbon dioxide emissions. Since
the peak values of carbon dioxide emissions vary under
different scenarios, scenario analysis is needed to predict
the peak of carbon dioxide emissions in the Chinese
transportation industry. Different scenarios refer to the
different change rates of the six factors in the future. In
this paper, three scenarios are set up, namely, the
benchmark scenario, the high-carbon scenario, and the
low-carbon scenario. They are specified as follows: (1) the
baseline scenario: in this scenario, the future change rates
of the six influencing factors continue the previous change
trends, and the change range is moderate; (2) the high-
carbon scenario: in this scenario, the future changes of the
six influencing factors will lead to higher carbon dioxide
emissions than those under the benchmark scenario, such
as the faster growth of GDP and urbanization rate; (3) the
low-carbon scenario: in this scenario, the future changes
of the six influencing factors contribute to lower carbon
dioxide emissions than those under the baseline scenario.
The detailed parameter setting of each scenario is given in
the following.



3. Data Source and Preprocessing
3.1. Data Sources

3.1.1. Independent Variable. In this paper, the population
and urbanization rate come from World Development In-
dicators (WDI), and the energy consumption structure
comes from the International Energy Agency (IEA). Here is
the percentage of fossil energy consumption in trans-
portation industry accounting for the total energy con-
sumptions, and the rest of the data come from the
comprehensive and publicly published Chinese Statistical
Yearbook of past years. The sample interval is from 1973 to
2017.

The energy intensity of transportation industry is
expressed by the total energy consumption of the unit
conversion turnover, which can measure the comprehensive
energy utilization efficiency of the industry. Total energy
consumption in the Chinese transportation sector comes
from the website of IEA. When calculating conversion
turnover, passenger turnover is multiplied by the passenger-
cargo conversion coefficient and added to cargo turnover to
get the total conversion turnover. The turnover coeflicients
of passenger-cargo conversion for the four modes of
transportation are shown in Table 1. The data of turnover of
each transportation mode are derived from the statistical
yearbook of China over the years. The converted turnover of
the Chinese transportation industry is shown in Table 2.
Finally, the energy intensity of the Chinese transportation
industry over the years can be obtained by dividing the total
energy consumption by the conversion turnover.

The final analyses of the factors from 1973 to 2017 are
shown in Table 3.

3.1.2. Carbon Dioxide Emissions Calculation Method.
Carbon emissions refer to the general term of greenhouse
gas emissions, mainly including carbon dioxide, nitrous
oxide, and methane. Among them, CO, is the major
greenhouse gas that induces the global warming. Since there
are no comprehensive statistics for global carbon dioxide
emissions at present, most scholars adopt the method of
carbon dioxide emissions coefficient, proposed by the In-
tergovernmental Panel on Climate Change (IPCC) [31], to
calculate carbon dioxide emissions through the data of
energy consumptions. This method, proposed by the IPCC
in 1996, states that the total amount of carbon dioxide
emissions is equal to the product of the activity data affecting
carbon dioxide emissions and the carbon dioxide emissions
coeflicient per unit. Therefore, the specific expression for-
mula of carbon dioxide emissions adopted in this paper is as
follows:

44
C=ZEix8i=ZEi><Vi><RixFixE, (3)
1 1

where C represents CO, emissions from transportation
industry; i indicates categories of fossil fuels, that is, the IEA
database divides the fuels consumed by transportation into
five categories of coal, petroleum products, biomass energy,
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TaBLE 1: Conversion factor of traffic turnover in China.

Mode of transportation Road Railway Waterway Airport

Conversion factor
(tkm-(pkm) ")

Note: t-km = Tonne-kilometer; p-km = people-kilometer.

1/10 1 1 1/13

TaBLE 2: Converted turnover of the Chinese transportation in-
dustry from 1973 to 2017.

Year Conversion turnover (10° t-km)
1973 7314.38
1974 7362.46
1975 8378.88
1976 7996.79
1977 9136.04
1978 11077.59
1979 12778.34
1980 13614.13
1981 13840.80
1982 14869.30
1983 16099.98
1984 18033.79
1985 20882.01
1986 23085.12
1987 25449.03
1988 27490.33
1989 29016.77
1990 29264.84
1991 31302.15
1992 32918.72
1993 34733.32
1994 37719.44
1995 40139.12
1996 40646.43
1997 42738.74
1998 42638.28
1999 45496.81
2000 49693.86
2001 53371.48
2002 56615.42
2003 59577.33
2004 76235.64
2005 87474.71
2006 96730.72
2007 110078.42
2008 119607.96
2009 131692.00
2010 152484.47
2011 171035.03
2012 185927.63
2013 180238.12
2014 194570.60
2015 192023.74
2016 200948.59
2017 212615.34

natural gas, and electricity; E; represents the energy con-
sumption of fossil fuel i; J; is the CO, emissions coeflicient of
carbon energy i; V; is the average low calorific value of
energy i; F; is the carbon dioxide emissions coeflicient of
energy i; R; is the carbon oxidation factor, that is, the carbon
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TaBLE 3: Data of traffic carbon dioxide emissions and their influencing factors.

9 Population L. Energy consumption Energy intensit The proportion of the
Year  GDP (10" yuan) (milliEn people) Urbanization rate (%) stgryucture (%p) (t/z(ﬁ,)6 t-km) ! secon%arl; industry (%)
1973 2756.20 881.94 17.18 100 3.12 42.80
1974 2764.13 900.35 17.29 100 3.49 42.40
1975 2733.36 916.40 17.40 100 3.24 45.40
1976 2731.29 930.69 17.46 100 3.57 45.00
1977 2760.39 943.46 17.52 100 3.44 46.70
1978 2797.23 956.17 17.90 100 2.84 47.70
1979 2897.74 969.01 18.62 100 2.57 47.00
1980 3007.38 981.24 19.36 100 2.20 48.10
1981 3078.63 993.89 20.12 100 2.17 46.00
1982 3145.57 1008.63 20.90 100 2.11 44.60
1983 3109.54 1023.31 21.55 100 2.13 44.20
1984 3263.05 1036.83 22.20 100 1.98 42.90
1985 3597.14 1051.04 22.87 100 1.78 42.70
1986 3766.86 1066.79 23.56 100 1.79 43.50
1987 3956.78 1084.04 24.26 100 1.74 43.30
1988 4436.76 1101.63 24.97 100 1.66 43.50
1989 4818.71 1118.65 25.70 100 1.67 42.50
1990 5094.93 1135.19 26.44 96.77 1.51 41.00
1991 5435.16 1150.78 27.31 97.06 1.55 41.50
1992 5881.59 1164.97 28.20 97.30 1.61 43.10
1993 6773.79 1178.44 29.10 97.62 1.73 46.20
1994 8173.02 1191.84 30.02 97.50 1.52 46.20
1995 9286.06 1204.86 30.96 97.67 1.53 46.80
1996 9892.30 1217.55 31.92 98.25 2.00 47.10
1997 10055.60 1230.08 32.88 98.00 1.67 47.10
1998 9969.33 1241.94 33.87 97.92 1.61 45.80
1999 9839.91 1252.74 34.87 98.15 1.69 45.40
2000 10041.96 1262.65 35.88 98.81 2.41 45.50
2001 10250.91 1271.85 37.09 98.82 2.27 44.80
2002 10315.81 1280.40 38.43 98.91 2.32 44.50
2003 10588.00 1288.40 39.78 97.17 2.54 45.60
2004 11325.49 1296.08 41.14 97.60 2.34 45.90
2005 11767.03 1303.72 42.52 97.01 2.19 47.00
2006 12231.34 1311.02 43.87 95.95 2.18 47.60
2007 13182.79 1317.89 45.20 96.23 2.06 46.90
2008 14204.05 1324.66 46.54 94.25 2.08 47.00
2009 14174.12 1331.26 47.88 92.74 1.94 46.00
2010 15154.41 1337.71 49.23 92.89 1.84 46.50
2011 16370.89 1344.13 50.51 92.13 1.80 46.50
2012 16746.90 1350.70 51.77 92.02 1.83 45.40
2013 17103.82 1357.38 53.01 91.83 2.04 44.20
2014 17239.07 1364.27 54.26 90.71 1.97 43.30
2015 17250.74 1371.22 55.50 90.66 2.15 41.10
2016 17441.79 1378.67 56.74 90.51 2.10 40.10
2017 18111.96 1386.40 57.96 89.68 2.08 40.50

oxidation rate of energy combustion; and 44 and 12 are the
molecular weights of CO, and carbon, respectively.

According to IPCC guidelines for national greenhouse
gas inventory [31], carbon dioxide emissions coefficients of
various energies are shown in Table 4. Since electric power is
a secondary energy and 70% of China’s electric power is coal
power, this paper converts energy consumption volumes of
electric power into equivalent standard coal and, then,
converts the carbon dioxide emissions of standard coal into
those of electric power.

According to statistics data for energy consumptions of
the Chinese transportation industry from the International

Energy Agency, as well as the carbon dioxide emissions
coefficients of various energies described in Table 4, cal-
culated by means of formula (3), the carbon dioxide
emissions volumes of Chinese transportation industry from
1973 to 2017 are, finally, obtained, as shown in Figure 1.

3.2. Prediction and Analysis of Influencing Factors. When
using the SVR model to predict carbon dioxide emissions of
the Chinese transportation industry, it is generally required
to set the future value of the influencing factors reasonably to
ensure the accuracy of prediction. However, the error of
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TABLE 4: Carbon dioxide emissions coefficients of transportation and energy.

Types of energy  Average low calorific value (V;) (kJ/toe)

Carbon oxidation rate (R;) (%)

CO, emission factor (F;) (kgCO,/GJ)

Coal 20908
Oil products 43070
Biomass energy 42338
Natural gas 38931

Electric power

1 94.6
72.35
75.18

56.1

1
1
1

Note: data source: the Intergovernmental Panel on Climate Change (IPCC) 2006 edition.
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setting the future value of each influencing factor has a little
influence on the prediction of the final dependent variable.

3.2.1. Prediction of GDP. In 2015, the research group of the
Economic Research Institute of the National Development
and Reform Commission released the interim results of the
Research on Chinese Development Environment, Develop-
ment Trend, and Strategic Thinking during the 13th Five-year
Plan Period, which concluded that the average growth rate of
the Chinese economy was around 6.5% during the 13th five-
year plan period. According to the Economic Blue Book
released by the Chinese Academy of Social Sciences in 2018,
the Chinese economy was expected to grow by about 6.6% in
the year, continuing an overall stable and healthy devel-
opment trend, and the Chinese GDP growth rate was
forecast to be around 6.4% in 2019, 0.2 percentage points
lower than that of the previous year. According to the
Chinese Economic Report in 2018, the annual average growth
rates of the Chinese economy were predicted to be 6.5% in
2016-2020 and drop to 5.0% in 2021-2035. In February
2019, the China Development Research Foundation pre-
dicted that the Chinese economic growth rate would be
more than 6.0 percent by 2021 and would drop to around 5.0
percent after 2022. Based on the abovementioned predicted
results, this paper sets the growth rates of Chinese eco-
nomical development in 2018-2025, 2026-2030, 2031-2035,
2036-2040, 2041-2045, and 2046-2050 as 6.0%, 5.5%, 5.0%,
4.5%, 4.0%, and 3.5%, respectively. The setting value of the
growth rate of Chinese GDP in each period of the high-

1993 ===

1997 [

1999 [r—
2001

N
G\
v—4

2003
2005
2007
2009
2011
2013
2015
2017

Year

1: Carbon dioxide emissions from the Chinese transportation industry from 1973 to 2017.

carbon scenario is 0.3% higher than those of the baseline
scenario, while the setting value of the growth rate of
Chinese GDP in each period of the low-carbon scenario is
0.3% lower than those of the baseline scenario.

3.2.2. Population Prediction. According to the report on
national population development strategy research released
by the Chinese group of national population development
strategy research, the total population of China will reach
1.45 billion by 2020, and it is predicted that the total
population of China will reach a peak of about 1.5 billion
around 2033 [32]. According to the national population
development plan (2016-2030) issued by the state council in
2016, the annual natural growth rate during the 12th five-
year plan period remained at about 5%o, and the total
population growth in the following 15 years presented an
inertia reduce, reaching a peak around 2030. The world
population outlook 2019: development summary released by
the United Nations in 2019 predicts the population trend of
China. The population of China in 2018 was 1.395 billion
people. The UN’s medium fertility model predicts that China
will reduce by about 30 million people by 2050, and the UN’s
low fertility model predicts that China will reduce by 136
million people by 2050. The Institute of Population and
Labor Economics of the Chinese Academy of Social Sciences
and the Social Sciences Academic Press jointly published the
green book on population and labor: Chinese population and
labor issues No. 19, which predicted that the Chinese pop-
ulation would reach a peak of 1.442 billion in 2029, enter a
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continuous negative growth from 2030, and reduce to 1.364
billion in 2050 [33].

Based on the results predicted above, this paper sets up the
change rates of the Chinese population in 2018-2025,
2026-2030, 2031-2035, 2036-2040, 2041-2045, and
2046-2050 as 0.4%, 0.2%, —0.2%, —0.3%, —0.4%, and —0.5%,
respectively, under the set baseline scenarios. The setting value
of the change rate of population in each period of the high-
carbon scenario increases by 0.1% compared with those in the
baseline scenario, while the setting value of the change rate of
population in each period of the low-carbon scenario de-
creases by 0.1% compared with those in the baseline scenario.

3.2.3. Prediction of the Urbanization Rate. Changes of the
Chinese urbanization rate over the years are shown in
Figure 2. According to the 2013 China Human Develop-
ment Report released by the United Nations Development
Program (UNDP), the urbanization rate in China will
reach 70% by 2030 [34]. According to the National New
Urbanization Plan (2014-2020) issued by the Chinese
State Council in 2014 and the I13th Five-year Plan for
National Economic and Social Development in 2016, the
Chinese urbanization rate will reach 60% by 2020. In 2019,
the Chinese Academy of Social Sciences Institute of Urban
Development and Environment Research and the Social
Sciences Academic Press jointly released the Urban Blue
Book: China City Development Report No. 12, which points
out that the Chinese urbanization rate reached 59.58% in
2018. It is about to enter in the late stage of urbanization.
By 2050, the Chinese urbanization rate will reach 80% and
the urbanization still has a relatively large development
space and potential.

Based on the results predicted above, this paper sets the
annual average growth rate of the urbanization rate from
2018 to 2025 as 1.5%, and the urbanization rate will reach
60.61% by 2020. The annual average growth rate from 2026
to 2030 will be 1.3%, and the urbanization rate will be 69.65%
by 2030. The annual growth rates of 2031-2035, 2036-2040,
2041-2045, and 2046-2050 are 1.1%, 0.9%, 0.8%, and 0.7%,
respectively. In the high-carbon scenario, the setting value of
the annual average growth rate of urbanization in each
period increases by 0.1% compared with those of the baseline
scenario, while in the low-carbon scenario, the setting value
of the annual average growth rate of urbanization in each
period decreases by 0.1% compared with those of the
baseline scenario.

3.2.4. Prediction of Energy Consumptions Structure. The
proportion of fossil energy consumption in the Chinese
transportation industry was 100% in 1973 and 89.68% in
2017, showing an overall downward trend. The energy
strategic action plan (2014-2020), released by the state
council in 2014, aims to increase the proportion of
nonfossil energy in primary energy consumptions to 15%
and that of natural gas to more than 10% by 2020.
Similarly, the 13th five-year energy development plan,
released by the national development and reform com-
mission in 2016, pointed out that efforts should be made to

promote the transformation of energy production and
utilization, build a clean, low-carbon, safe, and efficient
modern energy supply and demand system, and increase
the proportion of nonfossil energy consumption to 15%
by 2020. In 2015, the Chinese government issued the
Strengthening Action on Climate Change- Chinese Inde-
pendent Contribution Rate, which proposed that the
proportion of nonfossil energy in primary energy con-
sumption should reach about 20% by 2030. In 2018, the
China Petroleum Institute of Economics and Technology
released the World and Chinese Energy Outlook 2050,
which indicated that the proportion of Chinese nonfossil
energy will reach about 23% in 2030, and coal, oil, and
nonfossil energy will account for one-third, respectively,
by 2050.

Therefore, according to the abovementioned policy
planning and the prediction of relevant institutions, this
paper sets, under the baseline scenario, the change rates
of energy consumptions structure in 2018-2025,
2026-2030, 2031-2035, 2036-2040, 2041-2045, and
2046-2050 are, respectively, -2.0%, -1.6%, —-1.3%,
—-1.0%, —0.8%, and —0.6%. In the high-carbon scenario,
the setting value of the change rate of energy con-
sumption structure in each period increases by 0.5%
compared with those of the baseline scenario, while the
setting value of the change rate of energy consumption
structure in each period of the low-carbon scenario
decreases by 0.5% compared with those of the baseline
scenario.

3.2.5. Prediction of Energy Intensity. The change trend and
annual change rate of energy intensity for the Chinese trans-
portation industry in each year within the research range are
shown in Figure 3. From 1973 to 2017, the energy intensity of
the Chinese transportation industry witnessed a fluctuant
change, and the annual growth rate also fluctuated relatively
large. From 1976 to 1990, it showed a relatively large decline;
from 1991 to 2003, it changed with fluctuation; in 2003, the
energy intensity reached the peak, and since then, the energy
intensity fluctuated slowly and had a downward trend.

The Chinese 13th Five-year Plan for National Economic
and Social Development in 2016 called for a 15% reduction in
energy intensity during the 13th five-year plan period.
According to the existing policies and energy intensity
trends, this paper sets that, under the baseline scenario, the
change rates of energy intensity in 2018-2025, 2026-2030,
2031-2035, 2036-2040, 2041-2045, and 2046-2050 are
-2.0%, —1.8%, —1.6%, —1.4%, —1.2%, and —1.0%, respec-
tively. The setting value of the change rate of energy intensity
in each period of the high-carbon scenario increases by 0.2%
compared with those in the baseline scenario, while the
setting value of the change rate of energy intensity in each
period in the low-carbon scenario decreases by 0.2%
compared with those in the baseline scenario.

3.2.6. Prediction of the Industrial Structure. The industrial
structure in this paper refers to the proportion of the sec-
ondary industry in GDP. Figure 4 shows the trend of the
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FIGUre 2: Chinese urbanization rates over the years.
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FIGURE 4: The proportion of secondary industry in Chinese GDP from 1973 to 2017.
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proportion of the secondary industry in GDP in China from
1973 to 2017.

On the whole, the proportion of secondary industry
changes relatively gradually, basically maintaining in the
range of 40-50%, and the annual average rate of change from
1973 to 2017 is only —0.13%. After 2011, the decline trend
was obvious, and the annual average rate of change from
2011 to 2017 was —2.28%. In 2017, the proportion of sec-
ondary industry was 40.5%. With the development of
Chinese economy and the upgrading and transformation of
the industrial structure, the proportion of the secondary
industry in China will continue to decline in the future. In
2013, the China 2030 was released by the joint research
group of the World Bank and the Development Research
Center of the state council. It predicted that, in the absence
of major changes in the international situation and no major
impact of reform, the proportion of secondary industry in
China will decline and reach 34.6% of GDP in 2030.

At present, the Chinese economy is in a new normal
period of “speed change, structure optimization, and mo-
tivation transformation,” and the trend of accelerating the
transformation of the economy from industry domination to
service industry domination is more obvious. Taking into
account the historical change trend of the proportion of
secondary industry in China and the prediction results of
relevant institutions, the change rates of the industrial
structure in 2018-2025, 2026-2030, 2031-2035, 2036-2040,
2041-2045, and 2046-2050 under the baseline scenario set in
this paper are —1.5%, —1.4%, —1.3%, —1.2%, —1.1%, and
—1.0%, respectively. In the high-carbon scenario, the setting
value of the change rate of the industrial structure in each
period increases by 0.2% compared with those of the baseline
scenario, while in the low-carbon scenario, the setting value
of the change rate of the industrial structure in each period
decreases by 0.2% compared with those of the baseline
scenario.

3.2.7. Summary of Growth Rates Setting of the Influencing
Factors. The growth rate setting of each influencing factor
under the three scenarios is shown in Table 5.

4. Discussion

4.1. Operation Results of the SVR Model. Firstly, the in-
fluence factors of GDP, population, and urbanization rate of
carbon dioxide emissions in transportation industry are
taken as the input data of the model and the volumes of
carbon dioxide emissions as the output data, and then, the
data of 37 years from 1973 to 2009 are used as the sample set
for simulation and emulation.

Secondly, according to the steps of the nonlinear e-SVR
prediction model, the sample data of the 37 years are nor-
malized and the prediction model is established. When con-
ducting sample training and prediction, the penalty factor ¢ and
parameter g of kernel function need to be determined.
MATLAB software is used to process relevant data. The initial
value of ¢ is set at 0.01, and the value of ¢ and g both range in
[27% 28]. After repeated tests, when c is set at 0.5743 and g at

1.0353, the predicted data of sample set are fitted and regressed
with the actual data, and the mean square error (MSE) is only
0.000454, indicating that the predicted results are relatively
satisfactory. Figure 5 is the effect diagram for parameter se-
lection of grid algorithm, and Figure 6 shows the comparison
between the training sample and the actual value.

Finally, in order to verify the validity of the established
model, the data from 2010 to 2017 are taken as test samples
for prediction, the predicted data and actual data are fitted
for regression, and the mean square error is 0.088836. All
these indicate that the predicted results are close to the true
value of carbon dioxide emissions, that is, the SVR model has
an excellent prediction effect on carbon dioxide emissions,
and therefore, it can be used as an effective method to predict
the carbon dioxide emissions of the Chinese future trans-
portation industry.

4.2. Predicted Results on the Peak Values of Carbon Dioxide
Emissions. Three scenarios were predicted by using the
established SVR model, and the obtained results are shown
in Figure 7 and Table 6. It can be found from the predicted
results that, in the baseline scenario, the carbon dioxide
emissions of the Chinese transportation industry are still in a
growing trend from 2018 to 2040, with a peak of 1365.71
million tons in 2040. The peak value corresponding to the
low-carbon scenario is 1115.43 million tons, appearing in
2035. In the high-carbon scenario, the total carbon dioxide
emissions are on the rise and peak in 2048, but the carbon
dioxide emissions are larger than those of other scenarios, at
1738.18 million tons.

Currently, a few scholars have predicted the peak values of
carbon dioxide emissions in the Chinese transportation in-
dustry. Chen et al. used the Carbon Kuznets Curve (CKC) as
the theoretical model to predict the peak values, and the
results showed that Chinese carbon dioxide emissions will
reach the peak in 2036. Among them, the peak time of the
industrial sector is 2031, that of the construction sector is
2035, that of the transportation sector is 2043, and that of
agriculture sector is 2026 [35]. Thus, the peak time of the
baseline scenario predicted in this paper is close to the
prediction result of Chen et al. In addition, Chinese officials at
the world climate conference in Copenhagen predicted that
Chinese greenhouse gas emissions will peak between 2030
and 2040. Yuan et al, taking into account the changing trends
of Chinese future population, GDP, industrial structure,
urbanization, energy intensity and energy consumption,
predicted that Chinese carbon dioxide emissions will reach a
peak of 9.2 to 9.4 billion t from 2030 to 2035 [36]. Generally
speaking, the arrival time of the peak of carbon dioxide
emissions in the Chinese transportation industry lags behind
the national total peak time, as well as those of the agricultural
and industrial sectors. By analyzing the predicted results of
the abovementioned literatures, it can be inferred that the
predicted results of this paper are reasonable to some extent.

4.3. Sensitivity Analysis. To analyze the effect of individual
factor influencing on the carbon dioxide emissions of the
Chinese transportation industry, this thesis, based on the
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TaBLE 5: Growth rates setting of carbon dioxide emissions’ influencing factors in the Chinese transportation industry.

Growth rate setting (%)

Scenario Year . - . _Industrial
GDP Population Urbanization rate Energy consumptions structure Energy intensity structure
2018-2025 6.3 0.5 1.4 -15 -1.8 -13
2025-2030 5.8 0.3 1.2 -1.1 -1.6 -1.2
Hioh-carbon scenario 2031-2035 5.3 -0.1 1.0 -0.8 -14 -1.1
& 2036-2040 4.8 -0.2 0.8 -0.5 -1.2 -1.0
2041-2045 4.3 -0.3 0.7 -0.3 -1.0 -0.9
2046-2050 3.8 -0.4 0.6 -0.1 -0.8 -0.8
2018-2025 6.0 0.4 1.5 -2.0 -2.0 -15
2025-2030 5.5 0.2 1.3 -1.6 -1.8 -14
Baseline scenario 2031-2035 5.0 -0.2 1.1 -13 -1.6 -13
2036-2040 4.5 -0.3 0.9 -1.0 -14 -12
2041-2045 4.0 -0.4 0.8 -0.8 -1.2 -11
2046-2050 3.5 -0.5 0.7 -0.6 -1.0 -1.0
2018-2025 5.7 0.3 1.6 -2.5 =22 -1.7
2025-2030 5.2 0.1 1.4 =21 -2.0 -1.6
Low-carbon scenario 2031-2035 4.7 -0.3 1.2 -1.8 -1.8 -15
2036-2040 4.2 -0.4 1.0 -1.5 -1.6 -14
2041-2045 3.7 -0.5 0.9 -13 -14 -13
2046-2050 3.2 -0.6 0.8 -1.1 -1.2 -1.2
1
0.8
. 0.6
w
=
0.4 |
0.2
0

FIGURE 5: The effect diagram for parameter selection of grid algorithm (3D).

baseline scenario, changes a kind of factors affecting the
change rate in sequence, namely, on the basis of the baseline
rate changes —10% and 10%, respectively. When the change
rates of other factors are the values of rate settings of the
baseline scenario, it quantitatively analyzes of the factors that
affect the carbon dioxide emissions of the Chinese trans-
portation industry. The results are shown in Table 7.
Overall, GDP, population, and other factors have a
certain influence on carbon dioxide emissions. Among all
the influencing factors, the change of energy consumption
structure has the greatest influence on carbon dioxide
emissions. With the rate of energy consumption structure

decreasing by 10%, the peak value of carbon dioxide
emissions decreases by 4.13% compared with that of the
baseline scenario, and the total carbon dioxide emissions
will decrease by 3.39% from 2018 to 2050. Population is
next. With the change rates of population falling by 10%,
the peak value of carbon dioxide emissions falls by 4.07%,
and the total carbon dioxide emissions will fall by 3.32%
between 2018 and 2050. Among them, GDP and the ur-
banization rate have less influence on carbon dioxide
emissions. The change rate of GDP reduces by 10%, and the
total carbon dioxide emissions will reduce by 2.37% from
2018 to 2050. The change rate of urbanization rate reduces
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TaBLE 6: Prediction on peak values of different scenarios.

2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 2048 2050

Scenario

Peaking time (year)

Peak value (10°t)

High-carbon scenario
Baseline scenario
Low-carbon scenario

2046
2040
2036

1738.18
1365.71
1115.43
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TaBLE 7: Carbon dioxide emissions of each factor at different change rates.

Factor Change rate  Peak galue Change of the peak  Total carbon dioxide emiisions from Ch?:tgaT of

(%) (10°t) value (%) 2018 to 2050 (10°t) volume (%)
GDP -10 1358.13 -0.55 40610.82 -2.37

10 1420.17 3.99 42988.74 3.34
Population -10 1310.10 -4.07 40216.32 -332

10 1424.80 4.33 43066.51 3.53
Urbanization rate -10 1311.01 -4.00 40240.50 —-3.26

10 1423.63 4.24 43034.93 3.45
Energy consumptions -10 1309.34 -4.13 40189.08 -3.39
structure 10 1425.78 4.40 43096.09 3.60
Energy intensity -10 1310.57 —4.04 40226.69 -3.30

10 1424.21 4.28 43052.69 3.50
Industrial structure -10 1310.88 -4.01 40228.06 -3.31

10 1423.81 4.25 43051.13 3.49

by 10%, and the total carbon dioxide emissions from 2018
to 2050 will reduce by 3.26%.

From Table 7 and the abovementioned analysis, it can
be seen that, in order to reduce the carbon dioxide
emissions of the transportation industry, it is necessary to
reasonably control all of the influencing factors. First, we
reduce the energy consumption structure and energy in-
tensity of the transportation industry, improve the effi-
ciency of clean energy, and actively promote the use of new
energy and clean energy vehicles and ships. Second, we
change the pattern of economic growth, appropriately
reduce the speed of economic development, and strive to
achieve coordinated development between economic
growth and environmental protection. At the same time,
we need to optimize the industrial structure, move the
industry toward the middle and high end, achieve high-
quality development, and reduce the demand for trans-
portation, thereby reducing the carbon dioxide emissions.
Although the change of urbanization rate has a relatively
small influence on the carbon dioxide emissions of the
transportation industry, urbanization has changed people’s
lifestyle and their demands for energy are increasing. China
is in the stage of urbanization, with the population moving
from rural areas to cities and towns, and the change of
people’s production and lifestyle affects the change of
carbon dioxide emissions. Therefore, the rational devel-
opment of urbanization also has an important influence on
the reduction of carbon dioxide emissions.

5. Conclusions and Suggestions

5.1. Conclusions. Taking the Chinese transportation industry
as the research object, this paper selects six major factors that
affect the carbon dioxide emissions of the Chinese trans-
portation industry, GDP, population, urbanization rate, energy
consumption structure, energy intensity, and industrial
structure, and establishes the prediction model for the peak of
carbon dioxide emissions based on SVR. The mean square
error of the prediction model is 0.000454, indicating a relatively
high degree of coincidence of the model. The predicted results
show that, under the low-carbon scenario, the carbon dioxide

emissions of the Chinese transportation industry will peak at
1115.43 million tons in 2036. Under the baseline scenario, it
will reach a peak of 1365.71 million tons in 2040. In the high-
carbon scenario, the peak will occur in 2046 and the carbon
dioxide emissions will be 1738.18 million tons. Finally, the
influence of a single factor on the carbon dioxide emissions of
the Chinese transportation industry is analyzed, which indi-
cates that the change of each factor will have a certain influence
on the peak of carbon dioxide emissions and the total carbon
dioxide emissions from 2018 to 2050.

5.2. Suggestions. Since the peak time and total carbon dioxide
emissions of the Chinese transportation industry vary greatly
under different scenarios, major factors affecting the growth of
carbon dioxide emissions must be controlled in order to
promote the early peak time of the Chinese transportation
industry. First, the pattern of economic growth is changed and
the speed of economic development is appropriately reduced.
The results of this paper show that the slowdown of economic
growth is one of the main factors contributing to reducing the
peak and total carbon dioxide emissions of the Chinese
transportation industry. Therefore, China should gradually
change the mode of economic growth, appropriately reduce the
speed of economic development, and strive to achieve the
coordinated developments of economic growth and environ-
mental protection. Second, the energy intensity of the trans-
portation industry is reduced and the utilization rate of clean
energy is improved. We speed up the optimization of the
structure of the transportation industry, reduce the volumes of
bulk goods transported by road, increase the volumes of bulk
goods transported by rail and waterways, substantially increase
the volumes of multiple modes of combined transportation by
port, railway, and container transportation, and reduce energy
intensity. We actively promote the use of new and clean energy
vehicles and ships and control CO, emissions from the
transportation industry. Third, we improve the industrial
structure, actively promote the optimization and upgrading of
the industrial structure, develop strategic emerging industries
and modern service industries, and move the industry to the
medium-high end and achieve high-quality development, so as
to reduce the demand for transportation and reduce carbon
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dioxide emissions. Fourth, we reasonably control the traffic
carbon dioxide emissions caused by the increase of the ur-
banization rate. We encourage residents to travel in a green
way, gradually build a green travel structure with public
transportation as the main part and walking and cycling as the
auxiliary part, and reduce the frequency of car use.

Data Availability

In this paper, population and urbanization rate come from
World Development Indicators (WDI), and the energy
consumption structure comes from the International Energy
Agency (IEA). Here is the percentage of fossil energy
consumption in transportation industry accounting for the
total energy consumptions. Total energy consumption in the
Chinese transportation sector comes from the website of
IEA. The rest of the data come from the comprehensive and
publicly published Chinese Statistical Yearbook of past
years. The sample interval is from 1973 to 2017.
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