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+is paper essays a new solution to the landmark navigation problem of planar robots in the presence of randomly fixed obstacles
through a new dynamic updating rule involving the orientation and steering angle parameters of a robot. +e dynamic updating
rule utilizes a first-order nonlinear ordinary differential equation for the changing of landmarks so that whenever a landmark is
updated, the path followed by the robot remains continuous and smooth. +is waypoints guidance is via specific landmarks
selected from a new set of rules governing the robot’s field of view.+e governing control laws guarantee asymptotic stability of the
2D point robot system. As an application, the landmark motion planning and control of a car-like mobile robot navigating in the
presence of fixed elliptic-shaped obstacles are considered.+e proposed control laws take into account the geometrical constraints
imposed on steering angle and guarantee eventual uniform stability of the car-like system. Computer simulations, using Matlab
software, are presented to illustrate the effectiveness of the proposed technique and its stabilizing algorithm.

1. Introduction

Robots have a vast impact on our livelihood as they continue
to improve efficiency, productivity, saving, quality, safety,
security, and convenience of our endeavors, which are
usually treated as being dull, dangerous, dirty, and difficult
[1–3]. +e applications of robots include search and rescue,
surveillance, transportation, healthcare, pedestrian naviga-
tion, reconnaissance, pursuit-evasion, assembly, pick and
place, and explorations in various environments [4–12].
+erefore, researchers around the world continuously and
consistently come up with many robotic systems and a large
array of real world applications and problems. Some of the
prominent robotic systems addressed in literature include
omniwheel robots [6, 13], car-like robots [3, 14, 15], tractor-
trailer systems [16], mobile manipulators [2, 7], hexacopters
[10], underwater robots [17], and Unmanned Aerial Vehicle
(UAV) [18–20]. One problem which has received attention
in the recent past is motion planning and control of robots,
which is basically a coordinated and collision free move-
ment, and completion of tasks either in known or unknown
environments [2, 3, 16, 21, 22]. Within this motion planning

and control problem, the recent influx and influence of the
bioinspired behaviors from nature, which help in making
inventions and designing algorithms and low-cost electro-
mechanical tools for real life applications, have been note-
worthy [23–25]. Some of the more common behaviors are
formation, swarming, flocking, crawling, swimming, run-
ning, climbing, and motion camouflage [3, 24, 26, 27]. In
addition, an assisting feature in nature to aid motion or
movement is landmark. +e landmarks are used by a
number of insects and animals to navigate to a goal position
in known or unknown environments [27–30].

A landmark is a geographic feature or visual cue which
has been habitually used by insects and animals to guide
them along their journey back home or to a foraging or
nesting site ([27, 28]). Some examples from nature include
the socially organized hymenoptera (ants, wasps, and
honeybees), hamsters, and birds. According to Collett et al.
[27], honeybees use landmarks to segment familiar routes.
+ey can associate, with a landmark, a memory that encodes
the direction and distance of the path segment between two
consecutive landmarks. Etienne et al. [31] report that
hamsters use external references to reset their path
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integrator by processing internal signals generated through
rotations and translations. Harris et al. [32] state that wood
ants utilize stored local view or snapshots of the landmarks
situated close to their goals or destinations. +e data are
stored in a small set of distinct features, which greatly differs
for the visually guided insects and birds.+e landmarks have
also been used by men in the early years and are also used in
the current age of information and communications tech-
nologies (ICT). Explorers and sailors use natural and arti-
ficial landmarks to find their way back or through an area
during their sea journey. Ships navigate within a veil of the
lighthouse, which acts as an artificial landmark and helps
prevent shipwrecking. More recently, navigation landmarks
have been utilized for service robots in constrained envi-
ronments [33], pedestrian autonomous navigation tech-
nology [12], long-range journeys through planetary
explorations and rescue in hazardous environments [34],
waypoints guidance [13, 17, 35, 36], and sampling of difficult
environments.

It is noted that while natural landmarks are objects or
features that are part of an environment and may have other
functions not restricted to navigation, artificial landmarks
are ones that need to be added to an environment for the sole
purpose of robot navigation [29]. +ese landmarks can be
incorporated with extra information, for example, in the
form of RFID, bar codes, relevant sensors, and IR coding
[12, 29, 33]. In literature, the concept of waypoints is linked
to landmarks where the waypoints can be stipulated as the
selected landmarks for a specific task or purpose. In addi-
tion, waypoints can also include physical objects, devices, or
coordinates that hold navigation and location details which
can be utilized to aid in robot navigation or human
movement/following [13, 17].

+e biologically inspired concept of landmarks has more
recently been introduced in the field of robotics especially in
the areas of path planning, communication, motion control,
and navigation of autonomous robots, under biorobotics.
+e navigation problem can be either local navigation where
the robot operates within a defined neighborhood such as
the service robots in a home environment [33] or global
navigation where the robot moves between different envi-
ronments [30] such as the robots in outdoor applications
(rescue in dangerous environments, pedestrian navigation
[12]) and long-range journeys (planetary explorations [34]).
Herein, the landmarks invariably serve two purposes: (1) to
guide a robot to a desired goal [13, 35–37] and (2) to enable a
robot in determining its position with respect to the land-
mark (self-localization and mapping) [38–40]. Over the past
two decades, majority of the researchers have primarily
focussed on the detection of the landmarks and their se-
lection based on user-defined metrics. +e latter promi-
nently depends on training and the new knowledge
subsequently communicated to the rest of the robots.

+e landmarks are detected using sensors; therefore, it is
important that landmarks have distinct feature(s) dis-
tinguishing them from the other objects in the environment
or workspace. Among many others in the literature, the
works of Jagannathan [41], Lee [42], Fujii et al. [40], Ishii
et al. [33], and Chand and Yuta [43] in this area are

noteworthy. Jagannathan [41] used colors as distinguishing
characteristic for landmarks so that the robot can differ-
entiate and recognize these from other objects. Lee [42] and
Ishii et al. [33] used infrared identification fused with en-
coder information, while Fujii et al. [40] used metallic
landmarks to guide the mobile robots. Recently, Xie et al. in
[19] presented a landmark detection and recognition algo-
rithm for UAV Autonomous Pitching.

Once a set of landmarks in a definite workspace has been
detected, it is imperative that a robot selects an optimal
number and the exact landmarks which will be the way-
points to navigate along its way to target. Taking into ac-
count the cost and time constraints, it is impractical for a
robot to navigate through all the landmarks in the workspace
[44]. In the interest of brevity, selected work in this area
which has considered different metrics for the selection of
landmarks is presented. Deng et al. [45] in 1996 proposed a
solution for the selection of landmarks from multiple
landmarks so that the cost of sensing is minimized.Marsland
et al. [46] in 2001 presented an automatic landmark selection
algorithm that allowed a mobile robot to select conspicuous
landmarks from a continuous stream of sensory perceptions,
without any prior knowledge or human intervention during
the selection process. Frommberger [44] in 2008 investigated
a qualitative representation of landmarks for the selection
process, while Beinhofer et al. [47] linearized the whole
navigation cycle representing the landmark locations by a
discrete set and then used a user-defined bound for con-
servative approximation of landmark visibility and selection.
Lee et al. [48] presented a deep neural network-based
landmark selection method for optical navigation on lunar
highlands.

+is paper focusses on the landmark navigation problem
of planar robots and presents a solution based on a new
dynamic updating rule tagged to a robot’s orientation and
steering angle. If a workspace contains few landmarks, then a
2D point robot can easily navigate to its target via all
landmarks. However, a desired and optimized solution is
needed to select a set of landmarks from a cohort of
landmarks fixed randomly in a workspace. An algorithm will
be designed to select only those landmarks that lie in the
robot’s field of view so that the robot can navigate to its goal
via this selection, in the presence of obstacles.

+is new scheme for selection and changing of land-
marks, as well as the construction of the nonlinear control
laws, is better than the other control schemes because of the
following:

(1) For the selection of landmarks, the robot picks out
only those landmarks that are intersecting with the
field of view. +ese can be classified as waypoints
guiding navigation. +e updating rule tagged to the
robot’s orientation and steering angle allows for a
smooth landmark switching process.

(2) +e new method is systematic, elegant, and yet
simple compared to, for example, the Lyapunov-
based control scheme [2, 3, 7], where there is no
definite and standard procedure of constructing the
total potentials.
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(3) +e control laws ensure asymptotic stability of the
2D point robot system. With the introduction of the
field of view, the Euclidean distance between the
robot’s position and its target is always strictly de-
creasing; hence, the Direct Method of Lyapunov is
easily utilized to prove that the equilibrium point of
the system governing the motion of the robot is
asymptotically stable.

(4) +e algorithm for 2D point robots can be easily
applied to other planar robots such as car-like robots,
tractor-trailer systems, and mobile manipulators. As
an illustration, the navigation of the car-like robot is
guided via waypoints or specific landmarks selected
from the robot’s field of view, guaranteeing eventual
uniform stability of the system using theorem from
Yoshizawa [49].

+emain contributions of this research are as follows: (1)
a new dynamic updating rule based on the orientation and
steering angle of a robot for the selection of a set of relevant
landmarks; (2) the velocity-based controllers which guar-
antee asymptotic stability of 2D point robot system; and (3) a
new set of rules governing the robot’s field of view for
waypoints. As an application, the nonlinear controls of a
nonholonomic car-like robot in the presence of obstacles are
considered, validating the updating rule and eventually
uniform stability of the robotic system.

+e rest of the paper is organized as follows: In Section 2,
the definition of workspace and point mass is given followed
by the kinematic model of a 2D point robot. Section 3 gives a
solution to the landmark navigation problem where the
robot has to maneuver from an initial position to the target.
In Section 4, obstacles are introduced in the workspace.
Section 5 discusses the landmark navigation of a car-like
mobile robot as an application. In Section 6, the strengths
and weaknesses of the proposed method are discussed. Fi-
nally, Section 7 provides a discussion on the contributions
and future research possibilities for the landmark navigation
problem.

2. Framework and Objective

+e nomenclature of [7, 50] is adopted to define and set the
parameters of the research framework.

Definition 1. +e workspace is a fixed, closed, and bounded
rectangular region for some η1 > 0 and η2 > 0. Precisely, the
workspace is the set WS � (z1, z2) ∈ R2: 0≤ z1 ≤ η1, 0􏼈

≤ z2 ≤ η2}.

Definition 2. Let P be a 2D point robot in the z1z2 plane,
positioned at (x, y) with a circular protective region of
radius rP ≥ 0 and moving with a velocity of v at time t≥ 0.
+e 2D point is a set

P � z1, z2( 􏼁 ∈ R2
: z1 − x( 􏼁

2
+ z2 − y( 􏼁

2 ≤ r
2
P􏽮 􏽯. (1)

Now, suppose that u1 and u2 are the z1 and z2 com-
ponents, respectively, of v; then, the kinematic model of P

can be expressed as

_x � u1, _y � u2,

x0 ≔ x t0( 􏼁, y0 ≔ y t0( 􏼁.
􏼩 (2)

System (1) is a description of the instantaneous velocities
of the 2D point robot, where u1 and u2 are classified as the
velocity-based controllers. Hereafter, the vector notation x �

(x(t), y(t)) is used to refer to the position of the 2D point
robot in the z1z2-plane.

Sharma et al. in [2, 3, 7] designed continuous nonlinear
controllers u1 and u2 using a new Lyapunov-based control
scheme (LbCS) so that the robot moves straight from an
initial to the goal position. In this paper, the same motion
planning and control (MPC) problem is solved, but the
robot will be guided to its goal by selected landmarks in the
workspace, essentially the landmark navigation problem.
+e problem statement is as follows.

Given a set of landmarks in the z1z2-plane, design the
controllers u1 and u2 so that the robot can navigate using
landmarks based upon some a priori known metric and
reach the target. If the workspace contains multiple land-
marks scattered randomly, then design an algorithm which
can select a subset of those landmarks that can be used to
guide the robot to its target. Moreover, if the workspace is
cluttered with circular or elliptical obstacles, then the robot
should be able to successfully avoid them and reach the
target safely via the landmarks.

+e control scheme showing the design of the controllers
is shown in Figure 1. +e scheme will consider all the ob-
stacles in the workspace, thus giving the motion planner a
global view of the workspace and picking out the safest path
among the obstacles. +e turning/steering angle of the robot
as a function of the reciprocal of the distance from the robot
to an obstacle is designed. Since this distance appears in the
denominator, the magnitude of turning/steering angle will
increase as the robot approaches an obstacle, thus deviating
the robot away from the obstacle.

3. A Solution to the Landmark
Navigation Problem

Definition 3. +e kth landmark with the position (2D Eu-
clidean) coordinates (lxk, lyk) in the z1z2-plane is given by

LMk � z1, z2( 􏼁 ∈ R2
: z1 − lxk( 􏼁

2
+ z2 − lyk( 􏼁

2
� 0􏽮 􏽯, (3)

for k � 1, 2, . . . , r.

Assumption 1. +e positions of the landmarks are a priori
known.

Assumption 2. +e robot goes through each of the land-
marks selected by the dynamic updating rule.

Consider a scenario where the 2D point robot has to
maneuver via landmarks randomly fixed in WS en route to
its target. To solve this problem, let dk(t) � ‖(x − lxk, y −

lyk)‖ for k � 1, 2, . . . , r be the distance between the 2D point
robot, P, and the kth landmark, LMk, at time t≥ 0 and define
(lxr+1, lyr+1) ≔ (p1, p2). Assume that d1 <d2 < · · · <dr and
a velocity of
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v(t) � μ x − p1, y − p2( 􏼁
����

����, (4)

(where μ> 0 is a constant) is applied to the 2D point robot P

in the direction ψ(t) measured from the positive z1-axis.
+en the controllers u1 and u2 can be expressed as

u1 � v cosψ,

u2 � v sinψ.
(5)

While the velocity algorithm given by (4) is capable of
moving the robot, it is ψ(t) that determines the direction of
the robot’s movement. +us, the landmark navigation
problem can be solved by carefully defining ψ(t). Two
simple cases are illustrated below.

Case 1. Navigation via all landmarks
For P to navigate via all the landmarks, the following dif-
ferential form of ψ(t) is proposed:

_ψ(t) �
0, if dk ≠ 0 or (x(t), y(t)) � p1, p2( 􏼁,

tan− 1
lyk+1 − y(t)( 􏼁cosψ(t) − lxk+1 − x(t)( 􏼁sinψ(t)􏼂 􏼃, if dk � 0,

⎧⎨

⎩

ψ(0) � a tan 2 ly1 − y(0), lx1 − x(0)􏼂 􏼃,

(6)

for t> 0 and k � 1, 2, . . . , r.
+e differential form governed by (4) will ensure that the

robot will navigate through all the landmarks in the definite
and bounded workspace en route to its target. While the
workspace can contain landmarks scattered all over, it is
impractical, costly, laborious, and with no real need for the
robot to navigate using all the landmarks [44]. +e following
case defines a new procedure of selecting only the landmarks
which fall under a new set of metrics.

Case 2. Navigation via selected landmarks
Assume that the workspace contains finitely many

landmarks scattered all over. Only those landmarks that fall
under a new set of metrics are selected, which essentially
defines a new field of view of the robot between its initial and
target positions. A unique field of view is defined and in-
troduced in this paper as follows.

Definition 4. Given a predetermined scalar ζ ∈ (0, (π/2)),
the set

FV � z1, z2( 􏼁 ∈ R2
: z1 ∈ x(t) + λ p1 − x(t)( 􏼁cos τ􏽮

− λ p2 − y(t)( 􏼁sin τ, z2 ∈ y(t) + λ p2 − y(t)( 􏼁cos τ

+ λ p1 − x(t)( 􏼁sin τ, 0≤ λ≤ 1, |τ|≤ ζ􏼉,

(7)

is the robot’s field of view. +e newly stipulated field of view
(FV) contains all the points in the z1z2 plane that lie within
an angle of ζ on either side of the line joining the robot’s
current position and the target. +is FV is illustrated in
Figure 2.

Note that the field of view is initially calculated at t � 0
and is updated at each landmark. +is would ensure that the
robot does not unnecessarily change the field of view if it
encounters obstacles on its way.

A metric for the selection of the landmarks is defined as
follows:

(1) +e selected landmark should lie within the FV and
between the robot’s position (x, y) and its target
(p1, p2).

(2) +e selected landmark should be at a sufficient
distance D∗ > 0 away from the previous landmark.
+is would mean that no two selected landmarks are
very close to each other (within a distance of D∗ > 0).

(3) +e selected landmark should be at a sufficient
distance D∗ > 0 away from the target.

(4) +e next landmark should be selected only when the
robot reaches its current landmark.

An algorithm for the selection of landmark based on the
above metric is developed. +is is described in Algorithm 1.

Algorithm 1. Let the selected landmark be denoted as
(lx∗, ly∗). Note that (lx∗, ly∗) will be determined initially at
t � 0 and then updated when ‖(x(t) − lx∗, y(t) − ly∗)‖ � 0
as it is desired that the robot actually goes through the
selected landmark. Suppose that there are r landmarks in the
workspace. Let S � 1, 2, 3, . . . , r{ } such that
d1 <d2 < · · · < dr. Next, the kth subset, Sk ⊆ S, is defined as

Sk �

k{ }, if lxk, lyk( 􏼁 ∈ FV, dk >D
∗
,

lxk − p1, lyk − p2( 􏼁
����

����>D
∗
,

{ }, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(8)

for k � 1, 2, . . . , r. +en, the landmark to be selected is given
by

lx
∗
, ly
∗

( 􏼁 �
p1, p2( 􏼁, if M � { };

lxminM, lyminM( 􏼁, otherwise,
􏼨 (9)

Target
information

Field of
view

Selected
landmarks

Control
laws

Kinematic
model

Trajectory

Obstacle
information

Figure 1: Block diagram illustrating the control scheme.
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where M � ∪ r+1
k�1Sk.

To ensure that the robot goes through the selected
landmark, the following differential form of ψ(t) is
proposed:

_ψ(t) � tan− 1
ly
∗

− y(t)( 􏼁cosψ(t) − lx
∗

− x(t)( 􏼁sinψ(t)􏼂 􏼃,

ψ(0) � a tan 2 ly
∗

− y(0), lx
∗

− x(0)􏼂 􏼃.

(10)

+e effectiveness of the proposed solution is illustrated in
Simulation 1.

Simulation 1. Figures 3 and 4 show simulations with dif-
ferent initial and final positions. +e positions of the land-
marks were randomly generated within the workspace. +e
initial and final positions are given in the figure captions while
the constant ζ andD∗ are π/4 and 5, respectively. As shown in
the figures, with the landmarks scattered all over the work-
space, the robot only navigates through selected landmarks
which lie in its field of view. It can clearly be noticed that no
two selected landmarks (or a selected landmark and the
target) are within a distance of D∗ � 5 units.

+e discussion so far can be summarized in the following
theorem.

Theorem 1. Let u1 and u2 be as defined by (5). �en, the
point e � (p1, p2) is the only equilibrium point of system (2)
and is asymptotically stable.

Proof. Note that ( _x, _y) � (0, 0) only if u1 � u2 � 0, which
implies that v(t) � 0. From (4), it is clear that v(t) � 0
implies that x(t) � (p1, p2). +us, e is the only equilibrium
point of system (2).

To prove asymptotic stability, consider a Lyapunov
function of the form

L(x) �
1
2
‖x(t) − e‖2, (11)

which is defined, continuous, positive, and radially un-
bounded over the domain D � x ∈ R2􏼈 􏼉. Clearly, L(x) has
continuous first partial derivatives on the region D of the
neighborhood of the equilibrium point e of system (2).
Moreover, in the region D, L(e) � 0 and L(x)> 0 for all
x ≠ e. Now, the time derivative of L(x) along a trajectory of
system (2) is given by

Target

Initial
position

0

5

10

15

20

25

30

z2

30250 20155 10
z1

Figure 3: Landmark navigation of the 2D point robot with initial
position (5, 5) and the target placed at (25, 25).

Target

Initial
position

0

5

10

15

20

25

30

z2

5 10 15 20 25 300
z1

Figure 4: Landmark navigation of the 2D point robot with initial
position (25, 5) and the target placed at (5, 25).

Target

FV

ζ
ζ

(x,y)

z2

z1

Figure 2: Schematic representation of the robot’s field of view (FV).
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_L(x) � x − p1( 􏼁u1 + y − p2( 􏼁u2. (12)

It is clear that, in the region D, _L(e) � 0. Next, it will be
shown that _L(x)< 0 for all x ≠ e. Note that, for x ≠ e, the _L(x)

is simplified as
_L(x) � − v p1 − x( 􏼁cosψ + p2 − y( 􏼁sinψ􏼂 􏼃

� −
v p1 − x( 􏼁 lx

∗
− x( 􏼁 + p2 − y( 􏼁 ly

∗
− y( 􏼁􏼂 􏼃

lx
∗

− x, ly
∗

− y( 􏼁
����

����
.

(13)

Note that ‖(lx∗ − x, ly∗ − y)‖> 0 since (lx∗, ly∗) is
updated as ‖(lx∗ − x, ly∗ − y)‖⟶ 0. Next, since
ζ ∈ (0, (π/2)) and (lx∗, ly∗) ∈ FV, it follows that the angle,

β, between the nonzero vectors p1 − x

p2 − y
􏼠 􏼡 and lx

∗
− x

ly
∗

− y
􏼠 􏼡

satisfies β ∈ (− ζ, ζ)⊆(− (π/2), (π/2)). +us,

p1 − x( 􏼁 lx
∗

− x( 􏼁 + p2 − y( 􏼁 ly
∗

− y( 􏼁

�
p1 − x

p2 − y
􏼠 􏼡 ·

lx
∗

− x

ly
∗

− y
􏼠 􏼡> 0.

(14)

In addition, since v> 0, it is clear that _L(x) < 0 for all
x ≠ e. Hence, it can be concluded that e is an asymptotically
stable equilibrium point of system (2).

To numerically verify the stabilizing results obtained
from the Lyapunov function, the graph of the Lyapunov
function and its derivative for the trajectory shown in
Figure 4 is generated. +e graph of L(x) and its time de-
rivative _L(x) is shown in Figure 5. One can notice that L(x)

is a monotonically decreasing and both L(x) and _L(x)

vanish at the target. □

4. Inclusion of Obstacles in the Workspace

+e landmark navigating problem becomes even more
challenging when the WS is injected with stationary ob-
stacles. Researchers have used various schemes and strate-
gies for avoiding obstacles of various kinds (artificial,
moving, static) and shapes. Some of the prominent ones in
the literature are potential field method [2, 3], artificial
neural networks [22], and geometric based approach [51], to
name a few. In addition, the authors of this research have
designed an approach similar to the one discussed in the
paper for obstacle and collision avoidance alike.+e reader is
referred to [51] for a detailed account of the avoidance
scheme.

Let q> 0 solid bodies be fixed within WS. Elliptic ob-
stacles of random sizes are considered since most 2-di-
mensional objects can be represented in an elliptic form or
can be inscribed within an ellipse with minimum overlap.

Definition 5. +e lth elliptic obstacle with center (ol1, ol2) and
constants al > 0 and bl > 0 on the z1z2 plane is described as

FOl � z1, z2( 􏼁 ∈ R2
:

z1 − ol1( 􏼁
2

a
2
l

+
z2 − ol2( 􏼁

2

b
2
l

≤ 1􏼨 􏼩,

(15)

for l � 1, 2, . . . , q.

Definition 6. +e region surrounding the elliptic-shaped
obstacles given by the set

S � 􏽛

q

l�1
z1, z2( 􏼁 ∈ R2

:
z1 − ol1( 􏼁

2

al + dmax( 􏼁
2 +

z2 − ol2( 􏼁
2

bl + dmax( 􏼁
2 ≤ 1

⎧⎨

⎩

⎫⎬

⎭,

(16)

is denoted as the sensing zone, where dmax > 0 is a control
parameter used to determine the size of the sensing zone.

Assumption 3. +e selected landmark does not intersect
with the sensing zone.

For the 2D point robot P to avoid the stationary obstacles
while navigating via the landmarks, the idea proposed by
Prasad et al. in [14, 51] is adopted. +e controllers u1 and u2
are defined as

u1 � v cos(ψ + ε),

u2 � v sin(ψ + ε),
(17)

where ε determines the direction in which the 2D point
robot P should turn to avoid an obstacle on its path, while
the differential form of ψ(t) is given in (10).

Figure 6 shows the proposed path robot P should follow to
avoid an obstacle along its path to the kth landmark. Let Rl �

((x − ol1)/al)
2 + ((y − ol2)/bl)

2 − 1 be a measure of the dis-
tance fromP to the circumference of the lth fixed obstacle; then,

ε � tan− 1
􏽘

q

l�1

αlβl

Rl

⎛⎝ ⎞⎠, (18)

˙

L(x)

L(x)

50 100 150 200 250 3000 350 400
Time

–100

–50

0

50

100

150

200

250

300

350

400

Ly
ap

un
ov

 fu
nc

tio
n

Figure 5: Evolution of the Lyapunov function (solid line) and its
derivative (dashed line) for the trajectory shown in Figure 4.
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where αl � max 0, dmax − Rl􏼈 􏼉 and

βl �
1, if x − ol1( 􏼁 ly

∗
− y( 􏼁 − y − ol2( 􏼁 lx

∗
− x( 􏼁≤ 0,

− 1, if x − ol1( 􏼁 ly
∗

− y( 􏼁 − y − ol2( 􏼁 lx
∗

− x( 􏼁> 0.

⎧⎨

⎩

(19)

Substitute (18) into (17) and simplify to get

u1

u2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �
μ x − p1, y − p2( 􏼁

����
����

1, 􏽐
q

l�1 αlβl/Rl􏼐 􏼑
�����

�����

×

1 − 􏽘

q

l�1

αlβl

Rl

􏽘

q

l�1

αlβl

Rl

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

cosψ

sinψ
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

(20)

where the function ψ(t) is as defined in (10). Since the
selected landmark should not intersect with the sensing
zone, the set Sk in Algorithm 1 is refined as

Sk �

k{ }, if lxk, lyk( 􏼁 ∈ FV, lxk, lyk( 􏼁 ∉ S,

dk >D
∗
, lxk − p1, lyk − p2( 􏼁

����
����>D
∗
;

{ }, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(21)

for k � 1, 2, . . . , r.

Simulation 2. Figures 7 and 8 show simulations with different
sets of initial and final positions of robotP.With the landmarks
and elliptic-shaped obstacles (with randomized radii) ran-
domly scattered over the workspace, the robot only navigates
through selected landmarks which lie in its field of view while
avoiding any obstacle that it encounters along its path. +e
circular objects (in red) are the stationary obstacles while the

black dots represent the landmarks. Constant ζ � π/6, D∗ � 3,
and dmax � 3 for both simulations. With regard to the evo-
lution of L(x) and _L(x), a similar trend to those of the previous
example is seen, again reaffirming that L(x) is a decreasing
function and both L(x) and _L(x) vanish at the target.

5. Application: Landmark Navigation of a
Car-like Robot

In this section, the technique proposed in the above sections
is applied to address the landmark navigation problem of a
car-like mobile robot containing nonholonomic constraints.
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Figure 7: Landmark navigation of the 2D point robot with initial
position (3, 3) and the target placed at (28, 28).
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Figure 8: Landmark navigation of the 2D point robot with initial
position (28, 3) and the target placed at (3, 28).

ψ

P

LMk

dmax

FOl

z2

z1

∈

Proposed
path

Sensing zone

Figure 6: Schematic representation of the avoidance scheme with
parameter dmax (modified from [51]).
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+e rear wheel driven car-like vehicle model is adopted from
[7]. Referring to Figure 9, (x, y) denotes the center of mass
(CoM) of the car, θ gives the car’s orientation with respect to
the z1-axis, and ϕ gives the steering wheel’s angle with
respect to car’s longitudinal axis. +e constants ε1 and ε2 are
the clearance parameters. +e configuration of the car is
given by (x, y, θ, ϕ) ∈ R4, and its position is given as the
point (x, y) ∈ R2.

+e configuration of the car is given by (x, y, θ, ϕ) ∈ R4,
and its position is given as the point x∗ � (x, y) ∈ R2. If ℓ is
the distance between the two axles and w the length of each
axle, then the kinematic model of the car-like vehicle is
given by

_x � v cos θ −
v

2
tanϕ sin θ,

_y � v sin θ +
v

2
tanϕ cos θ,

_θ �
v

ℓ
tanϕ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(22)

where v is the translational velocity and ϕ is the steering
angle.

Hereafter, the vector notation x � (x, y, θ) ∈ R3 shall be
used to describe the variables in (22), while v and ϕ are
treated as controllers. In addition, no slippage (i.e.,
_x sin θ − _y cos θ � 0) and pure rolling (i.e.,
_x cos θ + _y sin θ � υ) of the platform wheels are assumed.
+ese nonintegrable constraints, denoted as the non-
holonomic constraints, are captured in system (22).

Assume that there are q ∈ N stationary solid objects
which the car-like robot has to avoid while navigating
using the landmarks to reach its target (p1, p2). +e
stationary objects are defined in Definition 5 and the

sensing zone is provided in Definition 6. Assume that the
target position does not intersect with the sensing zone.
For the robot to steer safely past an obstacle, the entire
vehicle is enclosed in the smallest circle possible with
center (x, y) and radius

rV �
1
2

ℓ + 2ε1, w + 2ε2( 􏼁
����

����, (23)

as shown in Figure 9. Since a nonholonomic vehicle is
considered, it is important for safety of the vehicle that the
robot must slow down on approach to an obstacle [7, 14, 51].
Moreover, the vehicle’s steering angle is restricted as
|ϕ(t)|≤ ϕmax, where ϕmax < π/2 is the maximum steering
angle [2, 7]. A limitation on the steering angle is important
for the safety of the car-like robot as well as for preventing
situations where the robot can get jammed when its front
wheel is normal to the longitudinal axis of its body. Next,
assume that there are r landmarks scattered randomly in
WS. For the selection of the landmarks that lie in the robot’s
FV, Algorithm 1 developed in Section 3 is used. For
avoidance of the solid objects and convergence to the target
via landmarks, the following forms of the controllers v(t)

and ϕ(t) are proposed:

v(t) � μ x(t) − p1, y(t) − p2( 􏼁
����

���� 􏽙

q

l�1
1 −

αl(t)

dmax
􏼠 􏼡,

ϕ(t) �
2ϕmax

π
tan− 1 ξ(t) + 􏽘

q

l�1

αl(t)βl(t)

Rl(t)
⎛⎝ ⎞⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

where ξ(t) is obtained by the numerically solving the dif-
ferential equation

_ξ(t) �
ly
∗

− y(t)( 􏼁cos θ(t) − lx
∗

− x(t)( 􏼁sin θ(t)

lx
∗

− x(t), ly
∗

− y(t)( 􏼁
����

���� + c
− ξ(t),

ξ(0) � a tan 2 ly
∗

− y(0), lx
∗

− x(0)( 􏼁 − θ(0).

(25)

+e constants μ> 0 and c> 0 are user-defined, and the
variables Rl(t), αl(t), and βl(t) are

Rl(t) �
x(t) − ol1

al + rV

,
y(t) − ol2

bl + rV

􏼠 􏼡

��������

��������

2

− 1,

αl(t) � max 0, dmax − Rl(t)􏼈 􏼉,

βl(t) �

1, if x(t) − ol1( 􏼁 ly
∗

− y(t)( 􏼁

− y(t) − ol2( 􏼁 lx
∗

− x(t)( 􏼁≤ 0,

− 1, if x(t) − ol1( 􏼁 ly
∗

− y(t)( 􏼁

− y(t) − ol2( 􏼁 lx
∗

− x(t)( 􏼁> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)
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Figure 9: A rear wheel driven vehicle with front wheel steering and
steering angle ϕ adopted from [14].
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+e controller ϕ(t) is bounded as − ϕmax <ϕ(t)<ϕmax
for all t> 0. +is is because tan− 1(·) is bounded as
|tan− 1(·)|< (π/2). Hence,

|ϕ(t)|<
2ϕmax

π
·
π
2

� ϕmax, ∀t> 0, (27)

or equivalently− ϕmax <ϕ(t)< ϕmax for all t> 0. Also note
that the term 􏽑

q

l�1(1 − ((αl(t))/dmax)) will ensure that the
robot slows down as it approaches an obstacle.+e landmark
position (lx∗, ly∗) is determined using Algorithm 1, except
that the set Sk is defined as

Sk �

k{ }, if lxk, lyk( 􏼁 ∈ FV, lxk, lyk( 􏼁 ∉ S,

dk >D
∗
, lxk − p1, lyk − p2( 􏼁
����

����>D
∗
;

{ }, otherwise,

⎧⎪⎪⎨

⎪⎪⎩

(28)

for k � 1, 2, . . . , r.

Simulation 3. Figures 10 and 11 show simulations with
different initial and final positions of the car-like robot. With
the landmarks and obstacles (random size) scattered ran-
domly all over the workspace, the robot navigates through
landmarks which lie in its FV while avoiding any fixed
obstacles that it encounters along its path to the target.
Table 1 gives the values of the parameters used in the
simulations.

Figures 12 and 13 show the evolution of controllers for
the trajectory shown in Figures 10 and 11, respectively. +e
controllers are continuous for all time t> 0 and vanish as the
robot reaches its target. +e concave sections of the velocity
graph indicate that the robot slowed down on approach to
obstacles. After it avoids collision with the fixed obstacles,
the robot gained speed but then finally slowed down on
approach to the target. Eventually, at the center of the target,
the velocity and the steering angle became zero.

5.1. Stability of System (22). As seen in the simulations for
the car-like robot, the planar trajectory
x∗(t) � (x0(t), y0(t)) of system (22) is, in general, even-
tually stable, which means that initially the system trajectory
could move away from the target p � (p1, p2), but after a
certain time T> 0 the trajectory converges to a vicinity of the
target and remain there for all time t≥T.

+e concept of eventual stability was developed by
Yoshizawa [49] in 1966. +is is briefly described below and
the reader can refer to [16] for more details.

Let I denote the interval 0≤ t<∞ and Rn denote Eu-
clidean n-space. Consider a system of differential equations

_X � F(t, X), (29)

where X is an n-vector and F(t, X) is an n-vector function
defined on a region in I × Rn. +e 0-set of the set of points
(t, X) is denoted such that t ∈ I, _X � 0.

Theorem 2 (see Yoshizawa [49]). Suppose that F(t, X) of
(29) is continuous on I × SH, H> 0, where SH denotes the set
of X such that ‖X‖≤H. Suppose that there exist a Lyapunov
function V(t, X) defined on I, ‖X‖<H, which satisfies the
following conditions:

(1) a(‖X‖)≤V(t, X)≤ b(‖X‖), where a(r) and b(r) are
continuous increasing, positive definite functions.

(2) _V(11) ≤ h(t)q(t, X), where 􏽒
∞
0 |h(t)|dt<∞ and

q(t, X) is bounded.
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Figure 10: Landmark navigation of a car-like robot in an obstacle-
ridden workspace with initial position at (5, 5) and target at
(45, 45).
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Figure 11: Landmark navigation of a car-like robot in an obstacle-
ridden workspace with initial position at (5, 45) and target at
(45, 5).
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Then the 0-set is an eventually uniform stable set of
system (29) with respect to t.

The next theorem shows how this concept of eventual
stability is applied to system (9).

Theorem 3. �e target p � (p1, p2) of system (22) is even-
tually uniform stable provided that the control inputs, v and
ϕ, are as defined in (24).

Proof. +e proof is adopted from [16]. Consider a Lyapunov
function of the form

L t, x∗(t)( 􏼁 �
1
2
x∗(t) − p

����
����
2
e

− t
, (30)

defined on I � [0,∞) and ‖x∗(t) − p‖<H for some suffi-
ciently large H> 0. Clearly, our Lyapunov function satisfies
the first condition of +eorem 2 in R2 since

0≤L t, x∗(t)( 􏼁≤
1
2
x∗(t) − p

����
����
2
, (31)

and ‖x∗(t) − p‖2 is a continuously increasing positive def-
inite function inR2. Next, along a planar trajectory of system
(22), we see that

_L � −
1
2
x∗ − p

����
����
2
e

− t

+ e
− t

v x − p1( 􏼁cos θ(t) + y − p2( 􏼁sin θ􏼂 􏼃

−
e

− t
v tanϕ
2

x − p1( 􏼁sin θ − y − p2( 􏼁cos θ􏼂 􏼃

� − e
− t 1

2
d
∗

( 􏼁
2

􏼚 +vd
∗ cos(θ − ψ) +

1
2
tanϕ sin(θ − ψ)􏼔 􏼕􏼛,

(32)

where d∗(t) � ‖x∗(t) − p‖ and ψ(t) � tan− 1[(p2 − y(t))

/(p1 − x(t))] for x∗ ≠p. (Note that _L(t, p) � 0 for all t≥ 0.)
Now, since ϕ and v are bounded as |ϕ|≤ϕmax and v≤ vmax, it
follows that

_L≤ e
− t 1

2
x∗(t) − p

����
����
2

􏼚

+vmax x∗(t) − p
����

���� 1 +
1
2
tanϕmax􏼔 􏼕􏼛.

(33)
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Figure 13: Evolution of controllers, v(t) (solid line) and ϕ(t)

(dotted line), for the trajectory shown in Figure 11.

Table 1: Values of the parameters used in the simulations.

Initial and final configuration
Initial and final position Refer to the figures
Initial orientation θ � 0 rad

Robot parameters
Dimensions ℓ � 3m, w � 1.4m
Safety parameters ε1 � 0.2m, ε2 � 0.1m

Other parameters
Workspace dimensions 0≤ z1 ≤ 50, 0≤ z2 ≤ 50
Obstacle avoidance dmax � 4
Field of view ζ � π/6

Constants

D∗ � 5,
μ � 0.05,
c � 0.01,

ϕmax � 7π/18 rad
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Figure 12: Evolution of controllers, v(t) (solid line) and ϕ(t)

(dotted line), for the trajectory shown in Figure 10.
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Note that 􏽒
∞
0 |e− t|dt � 1<∞ and

q t, x∗( 􏼁 ≔
1
2
x∗(t) − p

����
����
2

+ vmax x∗(t) − p
����

���� 1 +
1
2
tanϕmax􏼔 􏼕

<
1
2
H

2
+ vmax H 1 +

1
2
tanϕmax􏼔 􏼕,

(34)

is bounded; thus, the second condition of +eorem 2 is
also satisfied. Hence, the proof of +eorem 3 is
complete. □

6. Discussion

In this section, the strengths and weaknesses of the proposed
method are discussed. Firstly, the algorithm proposed in this
paper for landmark selection depends on the field of view
and those points that lie in between the robot’s position and
its target. +is ensures that all those points which lie behind
the robot or behind the target are automatically discarded.
For the landmark changeover, the differential form of the
functions ψ(t) ensures that the trajectories at all points
(including the landmarks) are smooth. +is means that the
velocity controllers and the corresponding Lyapunov
function are all continuous for all time t≥ 0. With a clear
definition of the field of view, it is shown that all trajectories
starting near the equilibrium point are guaranteed to con-
verge to the equilibrium point. Hence, the equilibrium point
is asymptomatically stable as seen in +eorem 1.+e tech-
nique and the new dynamic updating rule are applied to a
car-like robot system.+rough simulations, it is seen that the
trajectory produced by the car-like robot is smooth at all
points, and the graph of the control laws is continuous all the
time. It was noted that the planar trajectory of the car-like
system is, generally, eventually stable, which means that
initially the system trajectory could move away from the
target, for example, if the target is located on the sides or
directly behind the robot, but after a certain time it con-
verges to a vicinity of the target and remains there for all
time t≥T. A theorem proposed by Yoshizawa [24] in 1966
was used to carry out the stability analysis and theoretically
show that the target point of our system is eventually
uniform stable.On the other hand, this paper proposes only
the velocity-based control laws. For 2D point robots, velocity
controls are fine; however, for nonholonomic systems such
as a car-like robot, it is important to accommodate dynamics
of the system by including the acceleration.+e acceleration-
based control laws will allow motion control at higher
speeds. +e current kinematic model defined in (22) reduces
the significance of the results to low speeds. +is will be
considered in the future.

7. Conclusion

+e paper successfully provides a new stabilizing solution to
the landmark navigation problem using a single autono-
mous robot. For the first time, the problem is solved using a

time-variant, yet continuous, updating rule of the robot’s
steering angle and orientation parameters only, while the
navigation to the target is facilitated by a newly constructed
velocity-based algorithm.

+e research becomes more interesting and challenging
when multiple landmarks are introduced randomly in the
workspace cluttered with randomly fixed obstacles. Note
that different metrics have been designed in the literature for
the selection of relevant landmarks required for the motion
control problems. In this case, the authors have designed a
new dynamic updating rule to select landmarks from a newly
constructed metric to capture the field of view of the robot.
+e algorithm was then successfully applied to a car-like
robot with nonholonomic constraints. +e effectiveness of
the proposed solution was consistently verified through
computer simulations using Matlab and its stability proved
theoretically.

While the concept of landmark navigation is recent, the
potential for practical applications cut across a number of
sectors and workplaces. One such workplace where the
concept can be utilized is loading/offloading in a constrained
environment such as docks. +e landmarks can guide au-
tonomous robots to park correctly in designated spots or
parking bays for precise loading/offloading. Such artificial
landmarks can also be used to find simpler vehicle routes in a
network of streets and highways, especially during heavy
traffic when the cost of taking different routes differs; hence,
the landmarks can also assume different (negative/positive)
roles. Similarly, for longer routes when the cost of having the
entire journey predetermined and preloaded into autono-
mous vehicles is very high, again these landmarks can be
very useful in providing the relevant guidance to far placed
targets.

A limitation of this research paper is that the theoretical
contribution is not proved with an experimental design
using real robots. +is provides scope for future under-
takings. Future work will also consider landmark navigation
problem of multiple three-dimensional robots with the
inclusion of nonconvex obstacles and dynamic landmarks.
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