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On an oversaturated urban rail transit line, passengers at downstream stations have to wait for more trains until they get aboard,
resulting in service imbalance problem. To improve the service quality, this paper proposes an integrated optimization approach
combining the train timetabling and collaborative passenger flow control, with the aim of minimizing indicators associated with
the passenger service imbalance and train loading capacity utilization. Considering train regulation constraints and passenger
loading dynamics, a mixed-integer linear programming model is formulated. Based on the linear weighting technique, an iterative
heuristic algorithm combining the tabu search and Gurobi solver is designed to solve the proposed model. Finally, a simple case
with different-scale instances is used to verify that the proposed algorithm can obtain near-optimal solution efficiently. Moreover,
a real-world case of Beijing Subway Batong Line is implemented to compare performances of the proposed approach with those
under the original timetable and noncollaborative passenger flow control.

1. Introduction

In many large cities worldwide, close attention has been
paid to public transportation in order to alleviate traffic
congestion and reduce pollution. Especially, the urban
rail transit system develops rapidly as its large capacity,
high efficiency, reliability, safety, and low emission.
Nevertheless, with passenger demands increasing un-
precedentedly, some systems are suffering great pressure.
For example, the passenger volume of metro networks
both in Beijing and Shanghai has exceeded ten million
per day [1].

Typically, the passenger arrival flow is extremely large
during the morning and evening peak hours on workdays, in
which overwhelming commuters are transported. Oversat-
uration occurs on an urban rail transit line when the train
capacity is insufficient to satisfy the large travel demands
over short periods of time; as a consequence, some pas-
sengers cannot board the first train and have to queue up on

platforms to wait for the following available trains. From the
welfare perspective of public transportation, operators are
supposed to strive for guaranteeing an equitable provision of
urban rail transit services, and equal individuals and groups
should be treated the same in the distribution of transport
resources (i.e., train capacity) [2, 3]. However, in the
aforementioned oversaturated situation, different passen-
gers obtain different service qualities at the same cost (i.e.,
ticket fare), and sometimes, the gap can differ a lot. Spe-
cifically, the train will be soon overloaded when the pas-
senger arrival volume at upstream stations is continuously
large, causing passengers at downstream stations possibly
waiting for several trains until they can get on board suc-
cessfully. -e distribution of train capacities is inequitable
for passengers at downstream stations of a line, as they suffer
more missed trains. Such service imbalance problem is
ubiquitous during peak hours and may lead to complainants
among passengers due to the long waiting time, which could
belong to a subsidiary category of social inequity matters.
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Increasing the capacity is a straightforward solution to
mitigate the service imbalance problem. But it is always
infeasible because of long construction cycle, line layout
conditions, and limited amount of available rolling stocks.
Under such circumstances, one potential operation ap-
proach is optimizing train timetables, which often takes total
passenger waiting time or average waiting time as the ob-
jective function to optimize train headways, routes, or stop
patterns based on dynamic passenger demands. In reality,
when the optimal timetables still cannot satisfy the passenger
demands, passenger flow control is a supplementary mea-
sure. By lowering the speed and flow rate of passengers
entering platforms at upstream stations, the capacity of each
train departing from upstream stations can be reserved for
passengers at subsequent stations, according to spatiotem-
poral passenger demands. Consequently, the passengers
waiting at downstream stations can get aboard with missing
fewer trains.

To our knowledge, the majority of current researches
focus on the above two methods separately due to the
complexity of the integrated problem. However, passenger
flow control is closely related to the practical timetables, and
in turn, the designed train schedules will greatly influence
the implement of passenger flow control strategies. Addi-
tionally, handling the train timetabling and passenger flow
control separately cannot cope with the service imbalance
problem well on an oversaturated urban rail line. Hence, this
paper intends to explore the integrated optimization of the
train timetabling and passenger flow control to redistribute
train capacities for each station and improve the overall
equity performance on an oversaturated urban rail transit
line.

-emain contributions of this paper are as follows. First,
the service imbalance problem caused by the supply-demand
mismatch under oversaturated situation is analyzed. -e
equity performance is measured by an imbalance indicator
associated with the number of missed trains. Second, to
improve the system-wide service quality, a mixed-integer
linear programming model with respect to the train time-
tabling and passenger flow control is formulated, aiming to
minimize the imbalance indicator as well as balance the train
loading capacity utilization. -ird, based on the linear
weighting method, an iterative heuristic algorithm inte-
grating the tabu search and Gurobi solver is proposed to
solve the two-objective model. And a simple case with
different-scale instances and the real-world operation data of
Beijing Subway Batong Line are implemented to demon-
strate the efficiency and effectiveness of the proposed
approach.

-e remainder of the paper is organized as follows.
Section 2 gives a review of relevant research work. Section
3 formulates the integrated optimization model of the
train timetabling and passenger flow control in a math-
ematical way. Section 4 proposes a hybrid iterative heu-
ristic algorithm to solve the integrated problem. Section 5
conducts a simple case and a real-world case of Beijing
Subway Batong Line to demonstrate performances of the
proposed approach. Section 6 draws the conclusions of
this paper.

2. Literature Review

Equity primitively refers to social matters [4]. Increasingly,
equity is becoming a long-term objective in urban trans-
portation plans, and transport equity analysis has been
conducted by many scholars [5]. -e majority of these re-
searches focus on revealing the potential connectivity pro-
vided by the current transport systems to different land uses
and groups of residents through using accessibility measures
from the macroscopic perspective [6–8]. Based on accessing
the equity of the current transport systems, their studies
intend to provide references for corresponding transport
planners and policymakers. However, realizing the transport
equity is related to not only the transport planning but also
operations, in which transport services are embodied ulti-
mately. For operations management, the focus of equity
might be more targeted and narrowed down to a spatial
balance of service on a rail line or bus route. In recent years,
the equity of operations management has gradually received
attention in rail and air services [9, 10], while studies fo-
cusing on operational equity performance of urban rail
transit networks are insufficient.

As a key component of urban rail transit operations,
train timetabling can improve the overall service quality and
equity performance to some extent. Lots of scholars have
provided excellent contributions on different optimization
problems in the field of train timetabling. In general, train
timetabling mainly aims to optimize the arrival and de-
parture times of each train at each station. In the process of
timetabling, various feasible methods, such as heterogeneous
headways, short-turning routes, skip-stop pattern, and ex-
press/local mode, are considered to reduce the compre-
hensive cost of operators and passengers. Barrena et al. [11]
studied the design and optimization of nonperiodic train
timetabling adopted to a dynamic demand environment,
with an aim of minimizing the average waiting time per
passenger. -eir results showed that nonperiodic timetables
can yield improvements in the passenger average waiting
time with respect to the regularly periodic cases. Further-
more, Barrena et al. [12] applied the nonperiodic timetable
to a rapid rail line. -ey formulated two nonlinear math-
ematics and introduced a fast-adaptive large neighborhood
search metaheuristic for large-scale instances. Sun et al. [13]
built three formulations to design capacitated demand-
sensitive peak/off-peak timetables on the concept of
equivalent time. Performances of these proposed models
were evaluated on a metro line in Singapore. Niu and Zhou
[14] focused on train timetabling on a heavily congested
urban rail corridor and developed a nonlinear optimization
model. In order to describe effective passenger loading time
periods, the latest arrival time of boarded passengers was
introduced. A local algorithm using cumulative input-out-
put diagrams and the genetic algorithm were presented to
solve individual cases and multistation problems, respec-
tively. Gao et al. [15] proposed a train timetable rescheduling
model in the case of a metro disruption. In this model, the
skip-stop patterns were considered to speed up the circu-
lation of trains and ease the platform pressure resulting from
numerous stranded passengers faster. Shang et al. [16]
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derived an equity-oriented timetable model based on the
multicommodity flow formulation, in which skip-stop
patterns and FIFO principles were considered to portray the
passenger boarding process. A linear programming model
was formulated to reduce the number of passengers suffering
the maximum number of missed trains and was decomposed
into two subproblems by using Lagrangian relaxation
framework. Li et al. [17] developed a mixed-integer non-
linear model, incorporating the express/local mode and train
schedule, to minimize passenger travel time. In this model,
two train services were provided, and overtaking was
allowed at some specific locations, such as sliding and
crossing tracks. With a joint aim of minimizing passenger
waiting time and operational costs, as well as balancing train
loads, Li et al. [18] established an MINP model combining
short-turning strategies and heterogeneous headways for a
congested urban rail line. Zhou et al. [19] proposed an
approach for the energy-efficient timetable scheduling to
minimize the net energy consumption considering utilizing
regenerative energy. In addition, Gallo et al. [20] examined
the problem of designing metro frequencies under the as-
sumption of elastic passenger demands, in which the split of
passenger demands among different transport modes de-
pends on the corresponding service quality.

Commonly, in oversaturated circumstances (i.e.,
morning and evening peak hours), optimally designed
timetables still cannot fully satisfy the temporally large
passenger demands. -us, passenger flow control is highly
needed, and it has already been taken by some Chinese
metro systems to balance the safety and efficiency for pas-
sengers. For example, ninety-six stations in Beijing metro
network use inflow control strategies during the peak hours
in their daily operations [21]. Unfortunately, the currently
adopted control methods are usually implemented by the
subjective judgements and experiences of operation staffs.
-e determination of control stations, inflow volume at each
station, and time to carry out control strategies is lack of
mathematical formulations [22]. Based on this, the opti-
mization of passenger flow control attracts an ongoing in-
terest of scholars. At the microscopic level, lots of studies
focus on simulating passenger behaviors and evaluating the
facility capacity of different layouts at a single station
[23–25]. For instance, Xu et al. [24] extended the concepts of
the station service capacity into three in different demand
scenarios, in which the volume and ratio of inbound, out-
bound, and transfer passengers are uncertain. Mathematical
models were put forward to evaluate the above three station
capacities, and a uniform simulation-based algorithm was
presented to find the optimal flow control volumes for
different passenger types. Such station-based flow control
methods neglect the potential collaboration among stations
along the same line, or in a network, as a result, some studies
tried to develop coordinated passenger flow control ap-
proaches. Wang et al. [26] built an integer programming
model to achieve the optimal flow control state for a metro
line, with an objective function of minimizing average
passenger delay time. Jiang et al. [22] proposed a novel
reinforcement learning-based method to optimize the co-
ordinated inflow volume at each station. Additionally, Yang

et al. [27] integrated passenger flow control and bus-
bridging services as a compound strategy, and a two-stage
MINP model was formulated. In this model, stations and
time periods for implementing passenger controls were
determined in the first stage, and then the second stage
allocated the optimal bus-bridging services. At the network
level, Zou et al. [28] established a traffic assignment model
without capacity limits first to distribute the passenger flow
on ametro network and then the target control stations; time
and strength were determined through identifying capacity
bottlenecks by considering the transport capacity of each
interstation segment. Xu et al. [29] proposed a bilevel
programming to regulate volumes of inbound and transfer
passengers, in which the upper level was to optimize the
control strategies, while the lower level was to redistribute
passengers in metro networks. Shi et al. [30] proposed an
integer linear programming model for the network pas-
senger flow control problem to jointly minimize the total
passenger waiting time and passenger accumulation risks at
all stations.

We note that the above researches mainly focus on the
train timetabling and passenger flow control separately. In
recent years, a few scholars have attempted to investigate a
joint optimization method for the dynamic train timetabling
and passenger flow control with different objectives. Such
objectives are usually relevant to passengers and operators,
such as minimizing the total passenger waiting time [31],
minimizing the number of stranded passengers [32], min-
imizing the amplitude of control action [33], or minimizing
the timetable and headway deviations [34]. Here, it is worth
pointing out that, although some researchers have studied
the integrated problem of the train timetabling and pas-
senger flow control from different perspectives, to our
knowledge, the equity performance on an oversaturated
urban rail line and equilibrium of train loading capacity are
quite limited in the literature.

3. Mathematical Formulation

-is paper considers an oversaturated urban rail transit line
with heterogeneous headways and passenger flow control
strategies, as shown in Figure 1. -e stations are numbered
as 1 to m sequentially. Since there are two directions op-
erating on different tracks and passenger demands and train
operations in different directions are relatively independent
to each other, this study only considers the trains and
passengers in the more congested direction from station 1 to
station m. Furthermore, for the purpose of implementing
inflow control strategies, a virtual waiting area is introduced
for each station. In this way, arrival passengers between any
two consecutive trains have to wait at the virtual waiting
areas until they are allowed to enter platforms and board the
coming trains according to the control strategies.

So as to handle the time-varying passenger demands, the
considered time period is equally divided into several in-
tervals, in which the interval unit can be any value, such as
1min and 30 s according to operational requirements
[13, 14]. -e number of train services in the planning period
can be predetermined properly by service providers.
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Additionally, for the sake of the Automatic Fare Collection
(AFC) systems, the origin-destination passenger demands in
each discrete time interval can be obtained from the previous
travel data.

In brief, an integrated optimization model combining
heterogeneous headways and passenger flow control strat-
egies is formulated based on time-varying origin-destination
passenger demands, aiming to rebalance the service of
various stations and equilibrate the train loading capacity
utilization.

3.1.Assumptions. Practically, train operations and passenger
organizations are affected by many obscure factors. Hence,
we first make the following assumptions throughout the
current research.

Assumption 1. For simplicity, the optimization method
is proposed for only one direction of a congested urban
rail line, whose operations are not interfered by un-
certainties. Every train stops at all stations, and the
running time at any interstation segment and dwelling
time at any station are pregiven. -is assumption aims
to make sure that the trains and passengers are orga-
nized as planned, which is common in timetabling
studies [14].
Assumption 2. -e time-varying number of arrival
passengers for each station is pregiven. Besides, for any
single station, the destination proportion of arrival
passengers in each time interval is constant. -is as-
sumption is reasonable since the majority of trips in
peak hours is commuting trip, and the residential lo-
cations and job places are relatively fixed.
Assumption 3. -e total capacity of all train services
provided can finally satisfy the total passenger demands
in the studied time horizon. And all the involved
passengers arrive at their individual origin stations
before the last train departs.

Assumption 4. Since passenger flow control is imple-
mented, every passenger will comply with the control
arrangements and queue up at waiting areas. No
stranded passengers will give up their trips or shift to
other transit modes.
Assumption 5. Simplistically, the walking time from
waiting areas to platforms will not be considered. -e
similar assumption can also be found in Shi et al. [31].

3.2. Notations. To facilitate the modeling process, defini-
tions of sets, indices, parameters, and variables used in the
formulation are summarized in Table 1.

3.3. Constraints

3.3.1. Train Timetable Constraints

(1) Headway. Commonly, overtaking is not permitted, and
the operation sequence of all trains remains unchanged. To
ensure operation safety and acceptable service quality, the
headway between any two sequential trains should be re-
stricted in a reasonable range. Note that the running time at
any interstation segment and dwelling time at any station is
fixed, and we only need to require the headway at the start
terminal station to satisfy the minimum/maximum re-
quirement (Hmin/Hmax). Let hk denote the headway between
train k and train k − 1 at the terminal station, and this
constraint can be expressed as follows:

Hmin ≤ hk ≤Hmax, k ∈
K

1{ }
. (1)

Besides, the variation in two adjacent headways should
not exceed the permitted value Hdiff for the smoothness of
the timetable:

− Hdiff ≤ hk − hk− 1 ≤Hdiff , k ∈
K

1, 2{ }
. (2)

1 2 3 4 mm – 1
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Time
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Alighting
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Figure 1: Urban rail line with heterogeneous headways and control strategies: (a) urban rail line; (b) train headways; (c) passenger flow
control.

4 Journal of Advanced Transportation



(2) Last Train Timetable. In this study, the departure times
of the first and last trains at the start terminal station are
pregiven. -is constraint can be characterized as follows:

AF + 􏽘
n

k�2
hk � AL. (3)

(3) Departure Time. Note that the interstation segment
running time TRi′ and station dwelling time DWi′ are
pregiven constants, and the departure time for each train at
each station di,k can be calculated through the headways at
the start terminal station:

di,k � AF + 􏽘
k

k′�2

hk′ + 􏽘
i

i′�2

DWi′ + TRi′( 􏼁, i ∈ S, k ∈ K.

(4)

(4) Effective Arrival Time Period. Furthermore, to facilitate
evaluating the number of arrival passengers at each station
between any two adjacent trains, a binary variable bi,k,t is

intermediately introduced to identify whether time interval t

is between train k − 1 and train k at station i.
As shown in Figure 2, each train departs from station i at

the end of one discrete time interval, and the effective time
period for passengers arriving at station i between train k − 1
and train k can be denoted as (di,k− 1, di,k]. If t ∈ (di,k− 1, di,k],
then bi,k,t � 1; otherwise, bi,k,t � 0. -e effective arrival time
period can be formulated as follows:

bi,k,t < 1 +
t − di,k− 1

U
, i ∈ S, k ∈ K, t ∈ T. (5)

bi,k,t ≤ 1 −
t − di,k

U
, i ∈ S, k ∈ K, t ∈ T, (6)

􏽘

p

t�1
bi,k,t � di,k − di,k− 1, i ∈ S, k ∈ K. (7)

Equation (5) describes that time intervals less than or equal
to the departure time of train k − 1 are infeasible for pas-
sengers arriving between train k − 1 and train k. Note that
di,k− 1 is set as zero if k is equal to 1. Similarly, Equation (6)
identifies that time intervals greater than the departure time

Table 1: Notations used throughout the paper.

Sets and indices
S Sets of stations indexed by i, i′; S � 1, 2, 3, . . . , m{ }

K Sets of train services indexed by k, k′; K � 1, 2, 3, . . . , n{ }

T Sets of discrete time intervals indexed by t; T � 1, 2, 3, . . . , p􏼈 􏼉

Parameters
Hmin, Hmax -e minimum and maximum headways between two adjacent trains
Hdiff -e maximum variation for two adjacent headways
Hpfc -e headway threshold for implementing passenger flow control
AF, AL Departure times at the start terminal station for the first and last trains
DWi Dwelling time at station i

TRi Running time from station i − 1 to station i

Ai,t Number of passengers arriving at station i in time interval t

CIi Maximum capacity of facilities at station i for one-unit interval
ρi,i′ Proportion of arrival passengers at station i whose destination is station i′
CT Maximum train loading capacity
CPi Maximum capacity of the platform at station i

Lave
i Average train load factor of the segment between station iand station i + 1

F(k′ − k) -e penalty for passengers who miss k′ − ktrains, which should be a monotone increasing function of k′ − k

U A large positive number
Intermediate
variables
di,k Departure time of train k at station i

bi,k,t

Binary variable, which is 1 if time interval t is larger than the departure time of train k − 1 at station i and no larger
than the departure time of train k at the same station and is 0 otherwise

qa
i,k Number of arrival passengers at station i between train k − 1 and train k

μi,k,k′
Binary variable, which is 1 if all passengers arriving at station i between train k − 1 and train k have entered the

platform when train k′ departs from the same station and is 0 otherwise
qe

i,k Number of passengers entering the platform at station i between train k − 1 and train k

qb
i,k Number of passengers boarding train k at station i

qali,k Number of passengers alighting from train k at station i

qoni,k Number of passengers on train k after departing from station i

Decision variables
hk Headway between train k − 1 and train k at the start terminal station

qi,k,k′
Number of passengers arriving at station i between train k − 1 and train k who enter the platform between the

subsequent train k′ − 1 and train k′
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of train k is inefficient. Equation (7) guarantees that bi,k,t is
equal to 1 when the time interval t belongs to (di,k− 1, di,k].

3.3.2. Passenger Flow Control Constraints

(1) Arrival Passengers. Based on the effective arrival time
period for passengers at each station, the total number of
passengers arriving at station i between train k − 1 and train
k, denoted by qa

i,k, can be calculated as follows. Note that Ai,t

denotes the pregiven passenger arrival volume at station i

and time interval t:

q
a
i,k � 􏽘

p

t�1
Ai,tbi,k,t, i ∈ S, k ∈ K. (8)

(2) Passengers Entering Platforms. As discussed above,
once passenger flow control strategies are implemented,
and arrival passengers are required to queue up at
waiting areas until they are allowed to enter platforms
consecutively. -e passenger flow control process is il-
lustrated in Figure 3, in which the time horizon is divided
into several control periods. For description conve-
nience, control period k represents the time range be-
tween train k − 1 and train k. -erefore, the control
variables, denoted by qi,k,k′ , are the decision objects in
this paper, which means the number of passengers who
arrive at station i in control period k and enter the
platform in the subsequent control period k′. And μi,k,k′
denotes an intermediate variable that decides whether all
passengers arriving at station i between train k − 1 and
train k have entered the platform when train k′ departs
from the same station:

−
q

a
i,k − 􏽘

k′
x�k

qi,k,x

U
< μi,k,k′ ≤ 1 −

q
a
i,k − 􏽘

k′
x�k

qi,k,x

U
, i ∈ S, k≤ k′ ∈ K,

(9)

qi,k,k′ ≤Uμi,k− 1,k′ , i ∈ S, k − 1, k≤ k′ ∈ K, (10)

hk − Hpfc

U
< μi,k,k′ , i ∈ S, k≤ k′ ∈ K, (11)

􏽘
n

k′�k
qi,k,k′ � q

a
i,k, i ∈ S, k ∈ K, (12)

q
e
i,k � 􏽘

k

k′�1qi,k′ ,k, i ∈ S, k ∈ K. (13)

Specifically, equations (9) and (10) describe the temporal
FIFO principle, in which passengers arriving early have the
absolute priority to enter the platform at the same station.
Equation (9) identifies whether passengers arriving at station
i in control period k have already enter the platform
completely when it is in the subsequent control period k′.
-at is, if qa

i,k � 􏽐
k′
x�k qi,k,x, then μi,k,k′ � 1; otherwise,

μi,k,k′ � 0. On this basis, Equation (10) guarantees that
passengers arriving at station i cannot enter the platform
before those who arrive earlier.

Equation (11) identifies the time to implement passenger
flow control strategies. When the designed headways exceed
the threshold Hpfc, it reflects that the current train loading
capacity can accommodate the passenger demands already.
-us, the passenger flow control is unnecessary, and μi,k,k′ is
equal to 1.

Equation (12) indicates that the whole passengers in-
volved in considered time horizon at every station will be
served eventually.

Equation (13) evaluates the total passengers allowed to
enter the platform at station i in control period k, which is
denoted by qe

i,k.

(3) Facility Capacity. Realistically, the number of passengers
permitted to enter platforms at waiting areas is limited by
entrance facilities, which means qe

i,k should be bounded by
the corresponding passing capacity. Note that CIi is the
maximum capacity of entry facilities at station i within one
unit interval, and hk is set as Hmin when k is equal to 1:

q
e
i,k ≤CIihk, i ∈ S, k ∈ K. (14)

3.3.3. Dynamic Passenger Loading Constraints

(1) Boarding Passengers. -e vital goals of adopting col-
laborative passenger flow control are to prevent platforms
from high passenger accumulations and guarantee the safety
of passengers. It is desirable that the remaining train loading
capacity can satisfy all the passengers stranded at platforms.
To this end, the control strategies optimized in this study
require that all passengers on platforms can get on the first
coming train.-us, the number of passengers boarding train
k at station i, denoted by qb

i,k, can be expressed as follows:

Station i

Train departure time

Train k – 1 Train k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Headway hk

0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

1 2 3 5 6 7 8 10 11 12 13 14 15 16 17
Discrete time interval

4 9

bi,k,t

Figure 2: Illustration of train operation.
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q
b
i,k � q

e
i,k, i ∈ S, k ∈ K. (15)

(2) Alighting Passengers. As assumed above, the destination
proportion of passengers at one specific station is fixed, and
then, the number of passengers alighting from train k at
station i, denoted by qal

i,k, can be calculated according to the
number of boarding passengers at upstream stations. ρi′,i is
the predetermined proportion of passengers who take a train
from station i′ to station i:

q
al
i,k � 􏽘

i− 1

i′�1

ρi′,iq
b
i′ ,k, i ∈ S, k ∈ K. (16)

(3) Train Capacity. -e variation in passengers in each train
at each interstation segment depends on the boarding and
alighting process dynamically. In addition, the maximum
number of passengers on train is limited by the train loading
capacity. -en, the number of passengers on each train after
departing from each station, denoted by qoni,k , can be char-
acterized in equations (17) and (18). CT is the maximum
loading capacity for one train:

q
on
i,k �

q
b
i,k, if i � 1,

q
on
i− 1,k + q

b
i,k − q

al
i,k, if 2≤ i≤m,

⎧⎪⎨

⎪⎩
k ∈ K, (17)

q
on
i,k ≤CT, i ∈ S, k ∈ K. (18)

(4) Platform Capacity. Since all the passengers at platforms
will give way to the alighting passengers first and then get on
board. -e maximum assembling at platforms occurs at the
end of alighting process and should not exceed the platform
capacity CPi:

q
b
i,k + q

al
i,k ≤CPi, i ∈ S, k ∈ K. (19)

3.4. Objective Function

(1) Equity Performance. As a key component of public
transportation, urban rail transit should provide equitable
services to any individual or group. Specifically, the

number of missed trains for every passenger is supposed to
be equal [16]. However, some passengers waiting at rela-
tively downstream stations always suffer more missed
trains in congested situations; as a result, service imbalance
problem occurs and leads to low service quality. In this
study, an imbalance indicator E is introduced to describe
the overall equity performance of an oversaturated urban
rail line, which is calculated as a penalty value of the
number of missed trains, shown as follows:

E �
􏽘

m

i�1􏽘
n

k�1􏽘
n

k′�k
F k′ − k( 􏼁qi,k,k′􏼐 􏼑

􏽘
m

i�1􏽘
p

t�1Ai,t

, (20)

where, in Equation (18), k′ − k means the number of trains
missed by passengers who arrive at their origin stations in
control period k and enter platforms in control period k′.
Obviously, k′ is greater than or equal to k. -e function
F(k′ − k) is essentially a parameter that denotes the
penalty for passengers missing k′ − k trains. For passen-
gers who miss more trains, the penalty is expected to be
larger. Consequently, the larger the number of missed
trains k′ − k is, the larger the value of F(k′ − k) is. Based
on the above principle, F(k′ − k) could be a monotone
increasing function of the number of missed trains k′ − k.
In this study, we set F(k′ − k) � (k′ − k)2 subjectively. -e
similar practice of parameter choice can be seen in [16] as
well.

(2) Train Load Factor. In addition to equity performance, the
train load factor is another crucial indicator related to the
train timetabling. Typically, urban rail operators want to
reduce the average train load factor and balance the loading
capacity utilization for each train under oversaturated cir-
cumstances. Since the number of train services and travel
demands involved in the studied time horizon is pre-
determined, the average train load factor at each segment,
denoted by Lave

i , is irreducible and can be calculated in
advance. -erefore, this study only considers the load factor
equilibrium L for each train at each segment, which is
described as follows:

− Li,k ≤
q
on
i,k

CT
− L

ave
i ≤ Li,k, i ∈ S, k ∈ K, (21)

L � 􏽘
m− 1

i�1
􏽘

n

k�1
Li,k. (22)

Equation (21) identifies Li,k as the absolute difference be-
tween the load factor for each train and the average value
at the same segment, and Equation (22) describes the sum
of absolute differences. Note that the absolute value is
linearized from the initial expression Li,k � |qoni,k /CT − Lave

i |

in constraint (21), as the aim of the method is to minimize
train load factor equilibrium indicator L in constraint
(22).

3.5. Model. As all the constraints and objective functions
have been established linearly, the mixed-integer linear
programming model with respect to the train timetabling
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Figure 3: Illustration of the passenger flow control process.
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and passenger flow control (simplified as TPFC model) is
formulated as follows:

min E,

min L,

constraints (1) − (22),

hk ∈ N, k ∈ K.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

4. Solution Algorithm

-e formulated optimization model turns out to be a
multiobjective mixed-integer linear programming model,
which is difficult to accurately find the optimal solution.
-us, the following discussion aims to develop a heuristic
algorithm to obtain an approximate optimal solution effi-
ciently. We first transfer the multiobjective problem into an
equivalent single-objective problem; then, an iterative
heuristic method is designed, and detailed techniques are
introduced.

(1) Single-Objective Transformation. -e linear weighting
method is a common and simple approach to solve mul-
tiobjective problems [35]. In this study, weighting coeffi-
cients ω1 and ω2 are introduced for the imbalance indicator
E and train load factor equilibrium indicator L, respectively;
thus, the original multiobjective functions are as follows:

minZ � ω1E + ω2L. (24)

Typically, when we set ω1 � 1, then ω2 � ENPFC/LNPFC.
Here, ENPFC and LNPFC are values of the imbalance indicator
and train load factor equilibrium indicator under the sce-
nario with respect to the original timetable and non-
collaborative passenger flow control (simplified as NPFC
model).

(2) :e Iterative Heuristic Method. As for the appropriate
solution method, the complexity of the proposed model is
discussed first. Clearly, the scale of TPFC model depends on
the numbers of stations, train services, and interval time-
stamps, and crucial variables and constraints are listed in
Table 2. Intuitively, we consider an urban rail line with 10
stations and 40 train services, and the time horizon is divided
into 100 timestamps. In this case, the model consists of 8240
decision variables and more than 100,000 constraints. As
expect, it is obvious that the scale of the proposed TPFC
model is larger for real-world cases. As a consequence, the
existing accurate optimization methods are hard to deal with
this integrated problem.

-eoretically, an effective method to address such large-
scale optimization model is decomposing it into several
tractable small-scale subproblems, which can be solved by
accurate or heuristic methods. Note that the binary variables
bi,k,t develop the connection between the train timetabling
and passenger flow control and account for a large pro-
portion of the problem complexity. If we predetermine the
headways of all the trains, variables bi,k,t can be evaluated

easily in advance. -en, the remainder is a passenger flow
control problem with a scheduled timetable, which consists
of a relatively small-scale variables and constraints and can
be solved efficiently by commercial optimization solvers (i.e.,
Gurobi). In this paper, the original integrated problem is
decomposed into train timetabling subproblem and pas-
senger flow control subproblem. -e train timetabling
subproblem is solved by the tabu search method to obtain
feasible train headways, and the results of the former sub-
problem are taken as inputs for the passenger flow control
subproblem. We then optimize the passenger flow control
strategies by Gurobi solver, and its optimal objective value
will be an assessment index to guide the search process in the
next iteration. -e specific iterative heuristic search pro-
cedure is summarized as Algorithm 1.

Some notations in the algorithm are identified in the
following discussion. x denotes the iteration index, while
Xmax is the maximum number of iterations. y denotes the
index that the current best solution has not updated, while
Ymax is the maximum limitation.-e timetable is denoted by
a headway vector H � (h1, h2, h3, . . . , hn− 1, hn) for all the
consecutive trains; specifically, Hx,0 denotes the seed solu-
tion for iteration x, and H∗ denotes the current best so-
lution. Hx

NS � Hx,c | c � 1, 2, . . . , nNS − 1, nNS􏼈 􏼉 denotes the
set of neighbor solutions for iteration x, in which nNS is the
number of neighbors. TL denotes the tabu list, whose length
is nTL. Zx denotes the best objective value for iteration x, and
Z∗ denotes the current best objective value.

5. Case Study

In this section, the proposed approach is applied to a simple
case and a real-world case of Beijing Subway Batong Line.
-e simple case is to verify the efficiency of the proposed
algorithm in comparison to using the Gurobi solver directly
through several different-scale instances. Furthermore, the
real-world case based on Beijing Subway Batong Line is
implemented to demonstrate performances of the proposed
integrated method combining the train timetabling and
collaborative passenger flow control.

5.1. Simple Example. A simple numerical case with five
stations, named by A, B, C, D and E, is assumed to compare
the proposed algorithm to use the Gurobi solver directly.-e

Table 2: Numbers of crucial variables and constraints in the model.

Variables or constraints Dimension
Decision variables
hk |K|

qi,k,k′ |S| · (|K| + 1) · |K|/2
Crucial constraints
Constraint (1) |K| − 1
Constraint (2) |K| − 2
Constraints (3), (20), (22) 1
Constraints (4), (7), (8), (12)–(19), (21) |S| · |K|

Constraints (5)-(6) |S| · |K| · |T|

Constraint (9) |S| · (|K| + 1) · |K|

Constraints (10)-(11) |S| · (|K| + 1) · |K|/2
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planning timetable horizon is one hour, in which the first
and last trains depart the start terminal station at 3min and
48min, respectively. -e running time at each interstation
segment is 150 s, and the dwelling time at each station is 30 s.
Moreover, the minimum and maximum headways are 2min
and 6min, respectively, and the allowed maximum headway
variation is set as 1min. When the headway exceeds 5min,
passenger flow control is not performed. Besides, the train
capacity and platform capacity are set to be 500 and 900,
respectively, and the entrance facilities of each station allow
270 persons to enter the platform per minute. In addition,
the total passenger demands, time range, and destination
rate for arrival passengers at each station are shown in
Table 3; meanwhile, arrival passengers at each station obey
the distribution illustrated in Figure 4. -e values of other
parameters are Xmax � 50, Ymax � 10, nNS � 45, and
nTL � 10. Note that the values of ENPFC and LNPFC are
evaluated from the original timetables with equal headways.

In this simple case, the numbers of train services and
timestamps are considered to generate different instances.
For description convenience, we use I-T-K to represent the
instance, in which T denotes the number of timestamps
and K denotes the number of train services. For example,
I-120-10 represents that the one hour horizon is divided into
120 timestamps and 10 train services are provided. In each
instance, all the parameters are the same except that the total
passenger demands are adjusted in proportion to the total
train capacity. All instances are computed on a personal
computer with an Intel Core i5, 1.60 HGz CPU, and 8GB
RAM. -e version of Gurobi solver is Academic 9.0, and
corresponding options are default except that time limit is
set as 3600 s.

Table 4 shows the computational results of the proposed
“TS +Gurobi” algorithm and Gurobi, including the objective
value, CPU time, and optimality gap between two methods.
It can be found that the CPU time for Gurobi increases a lot
when the number of timestamps and trains increase, while
the proposed algorithm can obtain near-optimal results with
a fairly short time. Particularly, in the instances with more
than 180 timestamps and 13 train services, the Gurobi solver
cannot generate objective values with a MIPGap less than

30% in one hour, while the results obtained by the proposed
algorithm are significantly more optimal, resulting in neg-
ative gaps. Furthermore, Figure 5 plots the tendency of the
best objective values of each iteration for instance I-240-13.
It is clear that the proposed algorithm iteratively decreases
the objective value, and the best solution is achieved after 13
iterations. In iterations 1 to 6, the encountered objective
value is reduced significantly, while in iterations 7 to 13, the
objective value decreases with a relatively flat tendency. -e
above results imply that the proposed algorithm combining
the tabu search and Gurobi solver can solve the integrated
problem with a high efficiency.

5.2. Practical Experiments on Beijing Subway Batong Line

5.2.1. Basic Data. Beijing Subway Batong Line is 18.94 km
and comprises 13 stations. It originates from TQ Station to
SH Station, linking the residential zone in Tongzhou District
and Beijing central business zone of Guomao, shown in
Figure 6. SH and SHD Stations are transfer stations con-
necting to Beijing Subway Line 1, and a great many of
commuters boarding the trains in the TQ⟶ SH direction
get off here or transfer to other stations.

-e direction from TQ Station to SH Station is the focus
in this case study, and the morning peak hours from 7:00 to
10:00 on a typical -ursday are selected as the considered
time horizon. -e unit discrete time interval is set as 30
seconds; thus, the time horizon is divided into 360 time-
stamps. In the study period in Batong Line, the original
headway at TQ Station is 3min, 4min, and 5min, respec-
tively, for 7:00∼8:20, 8:20∼9:00, and 9:00∼9:30. -us, the
total number of 41 train services is considered, and the first
and last trains depart TQ Station at 7:05 and 9:25, respec-
tively. -e rated loading capacity for each train is 1460, and
the maximum load factor should not exceed 130%, resulting
in a maximum train capacity of 1898. -e capacity of
platforms for transfer stations SH and SHD is 950, and that
for other stations is 850. Additionally, the dwelling time and
running time are displayed in Table 5. As for optimization,
the minimum and maximum headways are 2min and 6min,
respectively, and the allowed maximum headway variation

Step 1: Initiation. Set x � 0, y � 0, and TL � null. Input the original seed solution Hx,0 and then use the Gurobi solver to optimize the
passenger flow control strategies and obtain corresponding objective value Zx. Let H∗ � Hx,0, Z∗ � Zx, and Hx+1,0 � Hx,0. Update
x � 1 and go to step 2.
Step 2: generate neighbor set Hx

NS iteratively as follows (initially set c � 1):
(1) Duplicate Hx,0 as Hx,c and then select two elements h1x,c and h2x,c in Hx,c and generate a random variation Δh ∈ [1, Hdiff ]; then,
let h1x,c � h1x,c − Δh and h2x,c � h2x,c + Δh.
(2) If Hx,c satisfies headway constraints Equations (1) and (2), then optimize the control strategies and obtain the corresponding
objective value; insert Hx,c into Hx

NS and set c � c + 1.
(3) If c> nNS, then go to step 3; otherwise, continue this iteration.
Step 3: obtain the best solution Hx from Hx

NS and its corresponding objective value Zx. If Zx <Z∗, then let H∗ � Hx, Z∗ � Zx,
x � x + 1, and y � 0, update the next iteration seed Hx,0 � Hx, and insert Hx,0 into TL; otherwise, obtain the best solution Hx′ from
Hx

NS that is not in TL, and let x � x + 1, y � y + 1, and Hx,0 � Hx′ ; insert Hx,0 into TL. Go to step 4.
Step 4: if x≤Xmax and y≤Ymax, go to step 2; otherwise, output the optimal timetable H∗and corresponding passenger flow control
strategies and objective value and stop.

ALGORITHM 1: An iterative heuristic algorithm to solve the proposed model.
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between any two adjacent trains is limited within 1min.
Besides, passenger flow control is not applied when the
headways exceed 5min.

It is assumed that a virtual train departing from TQ
Station at 7:02 will take all the stranded passengers away
at each station; therefore, the passengers involved in this
case study are those arriving at each station between the
departure times of the virtual train and the last practical
train. Specifically, the time range for arrival passengers
and destination rate at each station are pregiven in Ta-
ble 6. TQ Station and CMDX Station are taken as

examples to illustrate time-varying arrival passengers,
shown in Figure 7.

In the iterative heuristic algorithm, we set Xmax � 80,
Ymax � 10, nNS � 60, and nTL � 10. -e passenger flow
control strategies are solved by Gurobi 9.0 Academic Ver-
sion with the MIPGap 0.1% and time limit 5min.

5.2.2. Optimization Results. In the experiment for Beijing
Subway Batong Line, we first evaluate the service perfor-
mance considering the original timetable and
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Figure 4: Temporal distribution of arrival passengers.

Table 3: Characteristics of passenger flow for each station.

Stations Passenger demands∗ (person) Time range [ts, te]
Destination rate

A B C D E

A 1790 [0, 48] 0.00 0.12 0.20 0.24 0.44
B 1070 [3, 51] 0.00 0.13 0.33 0.54
C 1570 [6, 54] 0.00 0.59 0.41
D 930 [9, 57] 0.00 1.00
E 0 [12, 60] 0.00
∗Passenger demands are for instances with 10 train services; ts and te denote the start and end arrival times for passengers involved in the study, unit: min.

Table 4: Performance comparison of Gurobi and TS +Gurobi

Instances Method Objective CPU time (s) Gap (%)

I-60-10 Gurobi 0.4954 2.3 —
TS+Gurobi 0.4954 36.0 0.00

I-60-16 Gurobi 0.5174 59.5 —
TS+Gurobi 0.5196 142.1 0.43

I-120-10 Gurobi 0.4721 30.4 —
TS+Gurobi 0.4724 43.9 0.06

I-120-16 Gurobi 0.4230 2300.3 —
TS+Gurobi 0.4233 247.3 0.07

I-180-13 Gurobi 0.3578 3600/36.2%∗ —
TS+Gurobi 0.3330 76.5 − 6.93

I-240-13 Gurobi 0.4596 3600/44.4%∗ —
TS+Gurobi 0.3935 99.4 − 14.38

I-240-16 Gurobi 0.5617 3600/54.2%∗ —
TS+Gurobi 0.3882 192.7 − 30.89

I-240-19 Gurobi 0.8901 3600/45.9%∗ —
TS+Gurobi 0.7809 442.7 − 12.27

-e value with ∗ is the MIPGap of Gurobi solver in a given time limit 3600 s. MIPGap is an internal index of the Gurobi solver that evaluates the relative
difference of the current solution with the possible optimal solution. -e gap is calculated by (ObjectiveTS+Gurobi − ObjectiveGurobi) /ObjectiveGurobi.).
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noncollaborative passenger flow control strategies (denoted
by the NPFC model). In the NPFC model, arrival passengers
are allowed to enter platforms as long as the coming trains
have sufficient loading capacity. Consequently, the values of
the imbalance indicator and train load factor equilibrium

indicator turn out to be 7.07 and 63.4, respectively. -e
timetable and resulted passenger accumulation situation are
illustrated in Figure 8. Without collaborative passenger flow
control, passenger accumulation situations at CMDX and
SQ Stations are extremely unbalanced. In particular, the
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Figure 6: Batong Line in Beijing subway network.
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Figure 5: Variation tendency of the best objective value for instance I-240-13.

Table 5: Dwelling time and running time.

Stations Dwelling time (s) Segments Running time (s)
TQ 45 TQ⟶ LHL 75
LHL 30 LHL⟶ LY 105
LY 30 LY⟶ JKS 105
JKS 30 JKS⟶GY 90
GY 30 GY⟶TZBY 120
TZBY 45 TZBY⟶BLQ 135
BLQ 30 BLQ⟶GZ 150
GZ 45 GZ⟶ SQ 135
SQ 45 SQ⟶CMDX 135
CMDX 45 CMDX⟶GBD 135
GBD 30 GBD⟶ SHD 120
SHD 30 SHD⟶ SH 135
SH 45

Journal of Advanced Transportation 11



Table 6: Time range and destination rate for arrival passengers at each station.

Stations Time range
Destination rate (%)

2 3 4 5 6 7 8 9 10 11 12 13
TQ 7:02∼9:24 0 0 0.05 0 2.81 0 1.15 3.21 1.82 5.33 41.98 43.65
LHL 7:03∼9:25 0 0 0 3.41 0 0.42 3.14 2.09 4.48 43.08 43.39
LY 7:06∼9:28 0 0 1.97 0 1.00 3.04 1.90 3.99 43.79 44.31
JKS 7:08∼9:30 0 1.49 0 0.45 2.35 1.90 4.48 45.05 44.28
GY 7:10∼9:32 0 0 0.82 2.08 1.94 4.40 45.73 45.04
TZBY 7:13∼9:35 0 0.57 3.53 2.41 6.31 46.16 41.02
BLQ 7:15∼9:37 0 0.91 1.14 2.86 47.47 47.61
GZ 7:19∼9:41 0.18 0.41 2.95 49.81 46.65
SQ 7:22∼9:44 0 0.75 49.47 49.78
CMDX 7:25∼9:47 0 50.15 49.85
GBD 7:27∼9:49 54.23 45.77
SHD 7:30∼9:52 100
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Figure 7: Time-varying passenger volumes at (a) TQ Station and (b) CMDX Station.
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capacity of several trains arriving at CMDX Station in 7:
45–8:35 has been fully occupied; therefore, passengers
waiting at these two stations cannot board trains and
congestion occurs, leading to serious safety and service
imbalance problem.

In order to alleviate the congestion and improve the equity
performance, as well as balance the train capacity utilization, the
timetable and passenger flow control strategies are optimized by
the TPFC model and the proposed heuristic algorithm. -e
optimal results show a great improvement on the imbalance
indicator and train load factor equilibrium indicator with re-
spect to 0.35 and 23.8, and the corresponding timetable and
passenger accumulation situation are shown in Figure 9. Note
that the optimal headways in 7:45–8:30 are smaller than the
original headways, while for other time period, the headways are
adjusted to be larger.-is result demonstrates that the headway
schedule is optimized to bemore accommodativewith the time-
dependent characteristics of passenger demands.When treating
passengers at each station and the number of missed trains as
one class of passengers and the cost of these passengers, re-
spectively, we can see that costs for passengers at CMDXand SQ
Stations are reduced, which results in a more equitable dis-
tribution of costs among different classes of passengers.
Moreover, the passenger volume entering the platform and
boarding trains at each station is well regulated by the optimal
collaborative passenger flow control strategies. In detail, only
control strategies at TQ and CMDX Stations are illustrated in
Figure 10. We can see that passengers are collaboratively or-
ganized to occupy the capacity of each train, and the extremely
large number of trainsmissed by passengers at CMDXStation is
prevented.

For performance comparison with and without the inte-
grated approach, analyses on service equity, train load factor,
passenger waiting time, and passenger accumulation are con-
ducted in detail as follows.

(1) Performance Comparison on Service Equity. As shown in
Figure 11, in the NPFC model, the evaluated results show
that 87.1% of passengers can board the first coming train,
while 8.5% of passengers have to wait at least 5 trains.
Unacceptably, the maximum number of missed trains for

passengers at SQ and CMDX Stations reaches 7 and 16,
respectively. In comparison, the passengers missing 3 and 4+
trains decrease by 0.8% and 8.5%, while passengers missing 1
and 2 trains increase by 24.8% and 0.7% for the TPFCmodel.
-is fact demonstrates that all the passengers can get aboard
within 4 missed trains, and the gap of the number of missed
trains for different individuals is bridged efficiently. Al-
though 16.2% of passengers who can board the first train
previously need to wait for two trains now, we have to point
out that this loss is acceptable, as passengers who need to
miss at least three trains are most inequitable. -erefore, the
TPFCmodel can shift nearly 9.3% of passengers who need to
miss at least three trains to the state with lower missed trains,
which improves the overall equity performance in the
oversaturated Batong Line.

(2) Performance Comparison on Train Load Factor. Figure 12
shows the train load factor of each train at each segment.
Intuitively, after applying the proposed TPFC model, the
train loading utilization becomes more uniform and crim-
son segments are significantly reduced. By statistics, there
are 51, 84, and 101 segments with the train load factor greater
than 130%, 120%, and 110% in Figure 10(a), while these
numbers in Figure 10(b) decrease to 12, 31, and 91, re-
spectively. We note that the segments with the train load
factor greater than 100% keep the same in the TPFC model
in comparison with the NPFC model. But, the optimal
timetable and passenger flow control strategies can reduce
the extremely overloaded segments, as well as increase train
loading capacity at some segments to be more efficiently
utilized, contributing to improve the transport service
quality.

(3) Performance Comparison on Passenger Waiting Time.
Table 7 gives the total passenger waiting time outside
platforms, on platforms, and at stations. In the NPFC, we
obtain the total passenger waiting time at stations 5284.5 h,
in which more than 50% is contributed by passengers
waiting outside platforms. When the TPFC model is
implemented, the train loading capacity and inbound pas-
sengers are collaboratively regulated. -erefore, the total
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Figure 12: Comparison on train load factor: (a) NPFC; (b) TPFC.
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Figure 10: Passenger flow control for (a) TQ and (b) CMDX Stations.
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passenger waiting time at stations decreases by 38.51%, as
the passengers stranded outside platforms are reduced
significantly. Likewise, the passenger waiting time on plat-
form increases slightly because more passengers are allowed
to enter platforms to wait for trains with less queuing time at
waiting areas.

(4) Performance Comparison on Passenger Accumulation.
Figure 13 demonstrates the detailed comparison of boarding
passengers for each train and accumulated passengers at
CMDX Station with the NPFC and TPFC models. For
NPFC, only few passengers can get trains before 8:30 because
the involved trains are fully occupied by passengers boarding
at upstream stations. -is leads to a fast accumulation at
CMDX Station, and the maximum accumulation number is
approximately 2633 at 8:37. Later, the passenger demands at
upstream stations decrease to below the train capacity, then
the stranded passengers are transported, and congestion
fades away gradually. As for TPFC, the loading capacity of
each train is partly reserved for passengers at CMDX Station
according to the optimized strategies, so the number of
passengers boarding each train is relatively balanced and the
high accumulation is prevented. Under this circumstance,
the maximum number of passenger accumulation at CMDX
Station is 437 at 7:45, which is insufficient to result in a
congestion situation.

6. Conclusions

On an oversaturated urban rail line, some passengers at
downstream stations may wait for more trains than pas-
sengers at upstream stations, leading to a service imbalance
problem. To improve the overall service quality, this paper
studied the equity-oriented train timetabling as well as
collaborative passenger flow control. A multiobjective

mixed-integer linear programming model is formulated,
and the proposed model aimed to minimize an imbalance
indicator related to the number of missed trains, as well as
the train load factor equilibrium indicator. -e linear
weighting method was used to convert the multiobjective
model into a single-objective model, which was later
decomposed into two subproblems. Based on the de-
composition, an iterative heuristic algorithm integrating
the tabu search and Gurobi solver was proposed to solve the
model.

A simple case and a real-world case of on Beijing Subway
Batong Line were conducted to demonstrate the effective-
ness and efficiency of the proposed integrated model and
heuristic algorithm. In the experimental results, it was
verified that optimized heterogeneous headways and pas-
senger flow control strategies can balance the train loading
capacity utilization for each train and reduce the number of
passengers suffering the maximum number of missed trains.
Since the train loading capacities were redistributed
according to spatiotemporal demands with optimal train
and passenger regulations, high accumulation situations
were prevented and total passenger waiting time at stations
was reduced significantly.

-is paper preliminarily explored the integrated opti-
mization of the train timetabling and passenger flow
control for one direction of an oversaturated urban rail
line, while urban rail lines are usually bidirectional. In this
case, the proposed approach might not be the optimal one.
One of our future researches could be to study a bidi-
rectional urban rail line and implement a more applicable
equity-oriented timetable considering train connections. In
addition, only heterogeneous headways are employed in
the train scheduling process in this study. Other train
operation approaches, such as skip-stop patterns and short-
turning routes, are likely lead to more safe and efficient
operations of urban rail networks, which is another

Table 7: Passenger waiting time.

Waiting time (h)
Outside platforms On platforms At stations

NPFC 2850.3 2434.1 5284.5
PFCT (variation %) 478.9 (− 83.20) 2770.6 (+13.82) 3249.5 (− 38.51)
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Figure 13: Passenger loading dynamics at CMDX Station: (a) boarding passengers; (b) accumulated passengers.
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significant topic for future researches. Finally, social equity
is extended and narrowed down to the service imbalance
problem, and discussions on distribution of benefits or
costs among different class of passengers are insufficient. It
is worthy in the further research to classify passengers and
qualify benefits/costs more clearly and explore their con-
nections on equity.
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