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/e vehicle-following behavior is a self-organizing behavior that restores dynamic balance under the stimulation of external
environmental factors. In fact, there are asymmetric problems in the process of acceleration and deceleration of drivers. /e
existing traditional models ignored the differences between acceleration and deceleration of vehicles. In order to solve this
problem, the vehicles driving on the road are compared to interacting molecules. Vehicle-following characteristics are studied,
and the molecular following model is established based on molecular dynamics. /e model parameters under different
conditions are calibrated considering the required safety distance by the vehicle and the reaction time of the driver. With the
help of the vehicle running track graphs, speed, and acceleration graphs, the numerical simulations of the molecular following
model and the classical optimal speed vehicle-following model are carried out./e results of the comparative analysis show that
the acceleration in the process of acceleration and deceleration is not constant but more sensitive to the deceleration of the
preceding vehicle than to the acceleration and more sensitive to the acceleration/deceleration of the short-distance vehicle than
to the acceleration/deceleration of the long-distance vehicle. /erefore, the molecular following model can better describe the
vehicle-following behavior, and the research results can provide a theoretical basis and a technical reference for the analysis of
traffic flow dynamic characteristics and adaptive cruise control technology.

1. Introduction

/e vehicle-following behavior is an important part of traffic
safety. /e concept of vehicle-following (CF) originated in
the early 1950s and was proposed by Pipes [1]. Scholars have
conducted systematic research on the vehicle-following
model. After more than 60 years of development, the related
research on the vehicle-following model has also been
continuously improved and perfected, so that a variety of
situations have emerged. According to their starting points
and angles, they can be divided into two categories: data-
driven and theoretical-driven.

Data-driven model: by extracting and calculating the
measured data, a large number of high-precision and high-
quality vehicle trajectory data are fitted to establish a vehicle-
following model. Although this type of model does not have
a very clear physical meaning, it can reasonably display and

predict complex traffic phenomena that cannot be simulated
by some data-driven vehicle-following models. Among
them, the most widely used is the backpropagation (BP)
neural network proposed by Rumelhart et al. [2]. Subse-
quently, Kehtarnavaz et al. first applied BP neural network in
traffic simulation to model the vehicle-following behavior in
[3]. By entering the speed of the following vehicle and the
headway between the vehicle pair, the relative speed of the
two vehicles can be obtained. Later, other scholars began to
study the vehicle-following behavior based on neural net-
works [4–6], but the BP neural network model requires a lot
of data for training. During the training process, the training
will produce a large error prediction for extreme values
(such as acceleration equal to zero), and because this type of
model does not introduce the relevant theory of vehicle
following, its simulation of some vehicle-following behav-
iors may even have errors [7, 8]. /erefore, support vector
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regression was subsequently used to study vehicle following.
In 2010, Wei first proposed a vehicle-following model based
on support vector regression in [9]. Its input is the speed of
the following vehicle, the relative speed of the two vehicles,
and the vehicle distance at the current moment, and the
output is the speed of the following vehicle at the next
moment. /e evaluation index shows that the model has
obtained good simulation results. Later, with the emergence
of online traffic simulation technology, Wang established a
vehicle-following model based on online support vector
regression in [10]. /eoretically, the use of support vector
regression to model the vehicle-following behavior is better,
but the current research based on such models is still in its
infancy, and there are not many relevant results.

/eory-driven model: according to fuzzy theory, chaos
theory, nonchaos theory, and other related theories of ve-
hicle-following behavior, the vehicle-following models were
established by using differential and dynamic knowledge.
/e physical meaning of this type of model is clear, and it is
used in many kinds of traffic simulation software. In the
development of theory-driven vehicle-following models,
the stimulus-response model was the most classic, including
the famous General Motors (GM) model [11]. It can be said
that many stimulus-responsemodels aremostly based on the
GMmodel./e GMmodel assumes that the vehicle does not
overtake or change lanes while following the vehicle. De-
rived from the driving dynamics theory, the basic formula is

an+1(t + T) � λv
m
n+1(t + T)

Δv(t)

[Δx(t)]
l
, (1)

where an+1(t + T) is the instantaneous acceleration of the
following vehicle at time (t + T); vn+1(t + T) is the instan-
taneous velocity of the following vehicle at time (t + T);
Δv(t) is the speed difference between the vehicle pair at time
t; Error Reference source not found is the space headway
between the vehicle pair at time t; T is the reaction time; λ is
the sensitivity parameter; m and l are also parameters to be
calibrated.

It can be seen that the GM model has the characteristics
of simple form, clear physical meaning of each part, and
groundbreaking, and it can better reflect the vehicle-fol-
lowing characteristics, but there is a problem that the vehicle
has excessive acceleration during parking and starting in this
model. Later, Newell proposed a new vehicle-following
model in [12], which constantly adjusts the speed of the
following vehicle to achieve the optimal speed according to
the changing distance between two vehicles. /is also laid
the foundation for the later optimal velocity (OV) model.
/eOVmodel is nowwidely used. It can reasonably describe
the state change of macrotraffic flow from the microscopic
simulation, but the model also has some shortcomings; that
is, unrealistic traffic phenomena will occur during the
simulation; for example, the acceleration value of some
vehicles may be too high, the speed data may appear negative
value, and the vehicle may collide. To deal with these
problems, many scholars have continued to improve and
optimize them, so that the model continued to improve
[13–18].

In summary, whether it is a classic GM model or a
subsequent OVmodel, the interpretation of the macroscopic
phenomenon of traffic flow is more in line with the actual
situation. But the accuracy of the microinteraction between
vehicles varies greatly, and they ignore the asymmetry in the
acceleration and deceleration operations caused by the
driver’s psychological changes and vehicle performance.

Aiming at the problems of the theory-driven model, this
paper follows the physical law that “force is the internal
cause of changing the motion state of the object,” starting
from the single-lane vehicle interaction relationship, using
the molecular interaction relationship to describe the ve-
hicle-following behavior. Like the traffic on the road to
particles, the change of individual’s motion state may cause
the corresponding change of other individuals’ motion state.
/is dynamic associated change is an interactive behavior,
which can be regarded as a coupling relationship. /e
distance between vehicles traveling on the road is neither too
far nor too close, which is very similar to the phenomenon of
molecular motion. Figure 1 shows the relationship between
the forces of the molecules, where r� r0 is the equilibrium
distance between molecules.

As shown in Figure 2, there is also a dynamic following
balance distance between the vehicles at different speeds,
which is called the required safe distance. It is a flexible
mapping for following vehicles to drive safely. /e change in
the direction of the resultant force on following vehicle
drives the vehicle to accelerate or decelerate. When X � L,
following vehicle and leading vehicle just keep the required
safe distance and are in a steady-state balance. When X<L,
following vehicle is accelerated by gravitation; when X>L,
following vehicle is decelerated by repulsive force. /e ve-
hicle-following behavior is the operation of searching for a
suitable safety distance and then accelerating or decelerating.
From a physical point of view, the change of the vehicle’s
state is the movement under the combined action of the
gravitation and repulsion of the surrounding vehicles, which
is similar to the behavior between molecules. /is physical
phenomenon between molecules provides inspiration for
this paper.

/e following content of this paper is divided into four
parts: the second section is based on dynamics to establish a
single-lane molecular following model; the third section is to
use the NGSIM data set and the driver’s reaction time to
calibrate the parameters of the molecular vehicle-following
model; the fourth section is the numerical simulation of the
built model and the classic OV follow-up model; the fifth
section is the analysis and discussion of the simulation
results; the sixth section is a summary and prospect of the
research results achieved in this paper.

2. Methods

2.1. Single-Lane Molecular Vehicle-Following Model. /e
single-lane vehicle following can be regarded as a linear
motion model on only one of the coordinate axes in two-
dimensional space. According to the change characteristics
of the single-lane vehicle following, it is divided into 4
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processes, as shown in Figure 3. /ey are original following,
start of reaction, variable speed stage, and secondary balance:

State 0 is the original following; that is, the distance
between the two vehicles is kept to drive stably at the
required safe distance. At this time, satisfy
L0 � Xn � XL0 − XF0.
State 0⟶ State 1: the leading vehicle starts to perform
a uniform deceleration motion as the acceleration
aLand the duration is t1. /e distance between the two
vehicles is gradually smaller than the required safe
distance; that is, XL1 − XF1 � L1 <Xn; this stage is also
the reaction time of the following driver.
State 1⟶ State 2: the leading vehicle continues to do a
uniform deceleration with acceleration aL and the
duration is t2, and when it reaches State 2, it will start
driving at a constant speed. /e following vehicle starts
to decelerate at an average acceleration aF.
State 2⟶ State 3: the leading vehicle keeps moving at
a constant speed, and the following vehicle also re-
covers its constant speed when it reaches State 3 after t3
time. After that, the following vehicle achieves sec-
ondary balance.

/e equation can be obtained from State 0⟶ State 2:

L0 + d3 � L2 + d2,

d3 � t1 · vL0 + t
2
1 ·

aL

2
,

d2 � t1 · vF0 + t2vF0 + t
2
2 ·

aF

2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where vF0, vL0 are the initial speeds of following vehicle and
leading vehicle, respectively, and vF0 � vL0; d2, d3 are the
distance traveled by following vehicle and leading vehicle at
this stage, respectively.

/e equation also can be obtained from State 2⟶ State
3:

L2 + d5 � L3 + d4,

d5 � t3 · vL1,

d4 � t3 · vF1 + t
2
3 ·

aF

2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where vF1, vL1 are the speeds of following vehicle and leading
vehicle when they reach State 2; vL1 can be calculated from
vL1 � vL0 − aL · t2; vF1 can be calculated from

r0

Frepulsion

O
r

Fgravitation

Figure 1: Molecular forces.
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Figure 2: Force diagram of vehicle following.
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vF1 � vF0 − aF · t2; d5, d4 are the distances traveled by the
front and rear vehicles during time t3, respectively.

By combining equations (2) and (3), we can get

aF �
2
t
2
2

2t2t3 − t
2
3

t
2
1

L2 − Xn( 􏼁 + t2 vL1 − vF1( 􏼁 +
t
2
1

t
2
3

L2 − L3( 􏼁􏼢 􏼣.

(4)

In order to better describe the influencing factors of the
following vehicle’s acceleration, let t2 � bt1, t3 � ct1 and
simplify equations (4) to (5):

aF �
2

b
2
t
2
1

2bc − c
2

􏼐 􏼑 L2 − Xn( 􏼁 + bt1 vL1 − vF1( 􏼁 +
1
c
2 L2 − L3( 􏼁􏼢 􏼣.

(5)

Introducing dimensionless α, β, and c to make

2
b
2
t
2
1

α L2 − Xn( 􏼁 + βt1 vL1 − vF1( 􏼁 + c L2 − L3( 􏼁􏼂 􏼃

�
2

b
2
t
2
1

2bc − c
2

􏼐 􏼑 L2 − Xn( 􏼁 + bt1 vL1 − vF1( 􏼁 +
1
c
2 L2 − L3( 􏼁􏼢 􏼣.

(6)

Set L2 − Xn � k(L3 − L2), vL1 � p · vF1; for deceleration,
set t1 · vF1 � q(L2 − L3); for acceleration, set
t1 × vF1 � q(L3 − L2); and for k> 0, p, q< 1, substitute them
into equation (6) and we can get

[αk + βq(1 − p) + c] L2 − L3( 􏼁 � k 2bc − c
2

􏼐 􏼑 + bq(1 − p) − 1􏽨 􏽩

· L2 − L3( 􏼁.

(7)

When only considering the influence of (L2 − Xn), then
c⟶ 0 and β⟶ 0; we can obtain

αk � k 2bc − c
2

􏼐 􏼑 + bq(1 − p) − 1. (8)

/en (2α/b2t21) � (2/b2t21)[(k(2bc − c2) + bq(1 − p) −

1/k)] is the driver’s response intensity to (L2 − Xn).
When only considering the influence of (vL1 − vF1), then

α⟶ 0 and c⟶ 0; we can obtain

βq(1 − p) � k 2bc − c
2

􏼐 􏼑 + bq(1 − p) − 1. (9)

/en (2β/b2t21) � (2/b2t21)[(k(2bc − c2) + bq(1 − p)

−1/q(1 − p))] is the driver’s response intensity to
(vL1 − vF1).

When only considering the influence of (L2 − L3), then
α⟶ 0 and β⟶ 0; we can obtain

c � k 2bc − c
2

􏼐 􏼑 + bq(1 − p) − 1. (10)

/en (2c/b2t21) � (2/b2t21)[k(2bc − c2) + bq(1 − p) − 1]

is the driver’s response intensity to (L2 − L3).
Set m≥ 1, n≥ 1, h≥ 1, and (1/m) + (1/n) + (1/h) � 1.

Let(1/m), (1/n), and (1/h) be the respective weights of
(L2 − Xn), (vL1 − vF1), and (L2 − L3) in the factors that affect
the acceleration of the following vehicle, multiply them by

Following vehicle Leading vehicle

XL0

XF0

Xn

XnXF1

XL1

L0 d0

L1d1

Xn
XF2

XL2

d3

d2 L2

L3

d5

d4

State 0

State 1

State 2

State 3

Leading vehicleFollowing vehicle

Leading vehicleFollowing vehicle

Leading vehicleFollowing vehicle

Figure 3: Analytical diagram of speed change of single-lane-following model.
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the reaction intensity under each influencing factor, and add
up them; we can obtain

α
m

k +
β
n

q(1 − p) +
c

h
� k 2bc − c

2
􏼐 􏼑 + bq(1 − p) − 1. (11)

By combining equation (5), the acceleration equation
under deceleration can be obtained

aF �
2 k 2bc − c

2
􏼐 􏼑 + bq(1 − p) − 1􏽨 􏽩

mkb
2
t
2
1

L2 − Ln( 􏼁

+
2 k 2bc − c

2
􏼐 􏼑 + bq(1 − p) − 1􏽨 􏽩

nq(1 − p)b
2
t1

vL1 − vF1( 􏼁

+
2 k 2bc − c

2
􏼐 􏼑 + bq(1 − p) − 1􏽨 􏽩

hb
2
t
2
1

L2 − L3( 􏼁.

(12)

Transform equation (11) into

aF � λ0 L2 − Xn( 􏼁 + λ1 vL1 − vF1( 􏼁 + λ2 L2 − L3( 􏼁,

λ0 �
2 k 2bc − c

2
􏼐 􏼑 + bq(1 − p) − 1􏽨 􏽩

mkb
2
t
2
1

,

λ1 �
2 k 2bc − c

2
􏼐 􏼑 + bq(1 − p) − 1􏽨 􏽩

nq(1 − p)b
2
t1

,

λ2 �
2 k 2bc − c

2
􏼐 􏼑 + bq(1 − p) − 1􏽨 􏽩

hb
2
t
2
1

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Similarly, the acceleration equation in the accelerated
state can be obtained:

aF � λ0 L2 − Xn( 􏼁 + λ1 vL1 − vF1( 􏼁 + λ2 L2 − L3( 􏼁,

λ0 �
2 k 2bc − c

2
􏼐 􏼑 + bq(p − 1) − 1􏽨 􏽩

mkb
2
t
2
1

,

λ1 �
2 k 2bc − c

2
􏼐 􏼑 + bq(p − 1) − 1􏽨 􏽩

nq(1 − p)b
2
t1

,

λ2 �
2 k 2bc − c

2
􏼐 􏼑 + bq(p − 1) − 1􏽨 􏽩

hb
2
t
2
1

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Equations (11) and (12) are unified and expressed as

aF � λ0′ L − Xn( 􏼁 + λ1′ vL − vF( 􏼁 + λ2′ L − L3( 􏼁, (15)

where λ0′, λ1′, λ2′ are the undetermined parameters, obtained
by experiment; L is the instantaneous relative distance
between the vehicle pair; vL and vF are the instantaneous
speeds of the leader and follower, respectively; Xn is the
required safe distance at the instantaneous speed of the

follower; L3 is the space headway during secondary
balance.

2.2. Parameter Calibration. In order to get the speed and
acceleration data from the camera, Wu et al. [19] and Zhu
et al. [20] used the video analysis software called “TrajCap,”
which can accurately identify the vehicle model and the
distribution position of the wheel track in the lane and
transform the coordinates in the video to the actual road
coordinates. /e vehicle trajectory data of the eastbound
I-80 interstate highway in Emeryville from the Federal
Highway Administration NGSIM data set were used in this
paper. /e data were collected by seven cameras installed on
the 30-storey Pacific Park Plaza building on Christie Avenue
at 10 frames per second. /e study area is 503-meter long
and is divided into 6 lanes. Lane 1 is a High Occupancy
Vehicle Lanes (HOV), and lane 6 is a collector-distributor
lane, as shown in Figure 4.

In order to ensure the universality of vehicle-following
behavior, vehicle trajectory data from 2 : 30 p.m. to 4 : 45
p.m. were selected for research. In order to avoid the
potential difference of car-following behavior between
different types of vehicles, we processed the existing data
sets, that is, extracted the vehicle data set with the vehicle-
following relationship, only studied the vehicle-following
behavior between compact vehicles, and removed the ve-
hicle data in the HOV lane and the collector-distributor
lane to ensure that the vehicles under study have similar
driving behaviors. We used single-lane data to avoid the
impact of lane changing behavior on vehicle-following
behavior. A total of 2880 sets of data were obtained after
data processing.

Statistical data shows that there is a strong correlation
between vehicle-following speed and space headway. As
shown in Figure 5, the faster the speed, the larger the space
headway. But there is also a phenomenon that follower’s
speed is very fast and keep a close headway with the leader.
In addition, following speed’s distribution is most con-
centrated when the space headway is between 60m and
80m, while following speed’s distribution is most dispersed
when the space headway is less than 20m. And the vehicle-
following speed of all groups shows a normal symmetrical
distribution. It should be noted that the parameters of the
model are calibrated according to the statistical data range in
Figure 5.

/e required safe distance of the vehicle at different
following speeds is related to the driver’s reaction time and
the braking performance of the vehicle. /e relational ex-
pression can be expressed by the following equation:

Xn � Ls + Lr, (16)

where Ls is the braking distance, and it can be calculated
from Ls � v2/2μg. Under normal conditions, the friction
coefficient μ of asphalt road is taken as 0.6; Lr is the vehicle’s
driving distance during the reaction time.

Due to the differences in the driver’s reaction time, in
order to make the model more accurate, it is necessary to
determine the driver’s reaction time reasonably. Zhang
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and Bham [21] studied the vehicle trajectory to obtain the
driver’s reaction time distribution of following vehicle, as
shown in Figure 6. /rough calculation, the mean value of
the reaction time is 0.396 s, and the standard deviation is
0.109. In this paper, 0.4 ± 0.1 s is taken as the driver’s
reaction time of the following vehicle. After calculation,

the correspondence between the vehicle’s speed and the
required safe distance can be obtained, as shown in
Figure 7.

Since the model’s parameters corresponding to dif-
ferent vehicle’s running states are different, we select 50
groups of vehicle-following data in each vehicle-following
state and use the genetic algorithm described in [22] to
solve them. /e results of the model’s parameters are
shown in Table 1.

After calibrating the parameters of the model, we can
simulate and verify the algorithm through the block diagram
in Figure 8.
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Table 1: Parameter calibration results of molecular following
model.

Vehicle-following state Samples λ0 λ1 λ2
Acceleration 102 3.214 0.421 0.863
Deceleration 117 2.765 0.464 -3.159
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2.3.Numerical Simulationof theModel. In order to verify the
rationality of the molecular vehicle-following model, we
choose to compare it with the classic OV model. After
decades of development, the OV model has produced many
forms, among which the model proposed by Bando is typical
[23], and the model expression is

a(t) � α Vov − V(t)􏼈 􏼉, (17)

where a(t) is the acceleration of the follower; t is time; αis
the sensitivity coefficient; Vov is the optimal velocity
function.

We choose Vov � V1 + V2 · tan h[C1 · (xgap − lc) − C2]

as the optimal velocity function, where C1 andC2 are di-
mensionless undetermined parameters; we use the same data
set to calibrate the OV model parameters; α is 0.52;
C1 andC2 are 0.15 and 1.7, respectively; lc is the effective size
of leader, which is taken as 5m. After calculation, we can
obtain V1 � 6.72m/s and V2 � 7.86m/s.

In the simulation, the friction coefficient of the asphalt
pavement is 0.6, and the number of vehicles is 4. We assume
that the dynamic performance of each vehicle is the same,
and they are numbered A to D in the order of the front and
rear of the vehicle, as shown in Figure 9./e trajectory of the
first vehicle A under the two following models is input based
on the measured data, and we get the spatiotemporal tra-
jectory of the vehicles during the period from 25 s to 115 s, as
shown in Figure 10.

3. Results and Discussion

Figures 10(a) and 10(b) show the process of the location
change caused by the change of the leading vehicle’s speed
under different models. It can be seen that there are dif-
ferences in the reactions of the follower to the leader in
different running states. Specifically, as can be seen from
Figure 11, for the leader A and the follower B with close
headway, the deceleration of B under molecular vehicle-
following model is more sensitive than that of OV model in
the initial 30∼40 s deceleration phase. /at is to say, the
follower B decelerates at higher acceleration. For the leader B
and follower C with long distance, the deceleration change of
B has less stimulation on C in the molecular following model
than in the OVmodel; that is, the follower C decelerates with
a relatively small acceleration.

During the acceleration period between 50 s and 70 s in
Figure 11, the speed change of vehicle B in the molecular
vehicle-following model is more gentle than that in the OV
following model; it is shown that the vehicle B accelerates
and follows with a relatively small acceleration. Com-
paring the two states of acceleration and deceleration, in
some words, the acceleration process lasts for a long time,
and the absolute value of acceleration is small as a whole;
the duration of vehicle deceleration process is short, and
the absolute value of acceleration is large as a whole./at is
to say, the acceleration process of the vehicle is slower and
the deceleration process is more rapid, and the degree of
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reaction to long-distance following operations is weaker
than that at close range, which reflects the asymmetry of
the car-following process, which is very consistent with the
theoretical analysis and the actual situation.

Under the guidance of the same measured vehicle A,
taking the measured speed data of measured vehicles B, C,
and D as the benchmark (set as 0), the error between the
simulated speed and the measured speed of the same vehicle
under different models is analyzed to compare the reliability
of the model in Figure 12. For vehicle B which keeps close
following with vehicle A, the absolute value of the error
between the simulated speed and the measured speed
fluctuates in the range of [0, 2.48]. /e maximum speed
error of MF model is 0.87, while that of OV model is 2.48. It
can also be seen that, under the MF model, the error of the

simulated car is closer to the baseline in the whole process,
indicating that it is closer to the real value.

For vehicle C which keeps long distance following with
vehicle B, the speed error generated under the two models
will increase correspondingly. /e absolute value of the
speed error fluctuates in the range of [0, 4.92], while for
vehicle D which keeps following with vehicle C at close
distance, the absolute value of its speed error is up to 6.10
under the OV model and 3.27 under the MF model. /e
reason may be that vehicle C, which is following vehicle B at
a long distance, has accumulated a large speed error during
the driving process, which causes the error to propagate
backward and causes the error of the vehicle D to increase.
But whether it is a vehicle C or vehicle D, from the per-
spective of the whole process, its error is still closer to the
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Figure 10: Comparison of spatiotemporal trajectories. (a) OV following model. (b) Molecular following model. (c) Measured data.
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baseline under the MF model, which proves that its speed is
closer to the true value.

To further verify the accuracy of theMFmodel, the mean
absolute error (MAE) and root mean square error (RMSE)
are used as the model evaluation indicators, and the
mathematical expression is

MMAE �
1
N

􏽘

N

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

RRMSE �

�������������

1
N

􏽘

N

i�1
yi − 􏽢yi( 􏼁

2

􏽶
􏽴

,

(18)

where yi represents the actual data; 􏽢yi represents the data
obtained by the model.

It can be seen from the evaluation results in Table 2 that
the mean values of RRMSE and MMAE in the molecular ve-
hicle-following model are less than the OV following model,
regardless of whether the vehicle is accelerating or decel-
erating. It proves that the model built can more accurately
reflect the vehicle-following behavior. /e essence can be
discussed from the perspective of molecular physical me-
chanics: (1) When the adjacent vehicle’s distance is gradually
smaller than the required safe distance, that is, x1 <X1

n, the
two vehicles behave as repulsion. /e repulsive force re-
ceived increases with the continuous decrease of the dis-
tance, and the driver of following vehicle adopts a more
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Figure 11: Measured speed curve and speed curves under different vehicle-following models. (a) OV following model. (b) Molecular
following model. (c) Measured data.
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aggressive deceleration operation so that the vehicle de-
celerates with gradually increasing acceleration. (2) For
close-distance vehicles, when the distance between vehicle
pair is gradually farther than the required safe distance, that
is, x2 >X2

n, two vehicles behave as gravitation. /e gravi-
tational force suffered decreases with the continuous in-
crease of the vehicle distance in the early stage, and the driver

accelerates in a relatively gentle manner. /at also confirms
that the driver is more inclined to choose an acceptable and
comfortable way to accelerate, rather than choosing the
optimal solution. (3) For long-distance vehicles, that is,
x3≫X3

n, the follower accelerates slightly by the small
gravitational force, and the corresponding reality is that the
vehicle running at a high speed has less accelerating space
and the accelerating requirement is also smaller.

4. Conclusion

In this paper, the molecular vehicle-following model
established from the perspective of molecular mechanics can
better explain the driver’s asymmetry between acceleration
and deceleration in the vehicle-following process at different
distances and makes up for the defect that the traditional
vehicle-following model ignores the driver’s psychological
characteristics. /e numerical simulation results show that
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Figure 12: Velocity error curves of vehicles B, C, and D.

Table 2: Different model evaluation results.

Vehicle-following state Model
Evaluation

index
MMAE RRMSE

Accelerate OV following 0.314 12.577
Accelerate Molecular following 0.175 7.346
Decelerate OV following 0.288 15.331
Decelerate Molecular following 0.142 9.215
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the acceleration of vehicle during acceleration and decel-
eration is not fixed under the molecular vehicle-following
model. Precisely speaking, following vehicle is more sensi-
tive to the deceleration of the leading vehicle than accel-
eration, and the following vehicle is more sensitive to the
acceleration/deceleration of the leading vehicle in a short
distance than that of the leading vehicle in a long distance.
/e results of the simulation can be well analyzed from the
intermolecular forces. /e built model can better describe
the driver’s following behavior, so that following vehicle can
better predict the speed fluctuation of the leading vehicle.
/e next step is to apply the model to the following behavior
of the connected autonomous vehicle. And we plan to study
the comfort and safety of following vehicles under the
molecular following model by calculating the jerk and
setting the threshold of force.
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