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The intersection collision warning system (ICWYS) is an emerging technology designed to assist drivers in avoiding collisions at
intersections. ICWS has an excellent performance in reducing the number of collisions and improving driving safety. Previous
studies demonstrated that when visibility was low under fog conditions, ICWS could help drivers timely detect hazardous
conflicting vehicles. However, the influences of ICWS on interactive driving behavior at unsignalized intersection between
different vehicles have barely been discussed. This study aimed to investigate the patterns of drivers’ interactive behaviors with the
assistance of a new kind of ICWS under fog conditions based on Multiuser Driving Simulation. The Multiuser Driving Simulation
allowed multiple drivers to operate in the same simulation scenario at the same time, and it could capture drivers’ interactions
preferably. Forty-eight licensed drivers completed the driving simulation experiment in three fog conditions (no fog, light fog, and
heavy fog) and two warning conditions (warning and no warning), in which the drivers drove in a straight-moving situation at
unsignalized intersection with potential collision risks caused by the encounter of two vehicles. The results verified that warning
and fog conditions were significant factors that affected the interactive driving behavior in the unsignalized intersection collision
avoidance process, including the driver’s decision, TTC of action point, average acceleration (deceleration) rate, and post-
encroachment time. Compared to conditions without ICWS, the ICWS could help drivers make collision avoidance actions earlier
and change the speed more smoothly. In addition, with the help of Multiuser Driving Simulation, associations between decision
driving behaviors of vehicles were discussed with caution. The results revealed the decision-making mechanism of drivers in the
process of interaction with other drivers. Under the influence of fog, interactive driving processes were fraught with increased risk
at unsignalized intersection. However, the ICWS helped drivers interact more harmoniously, safely, and efficiently. The findings
shed some light on the further development of ICWS and the study on interactive driving behavior.

Adverse weather conditions greatly increased the risk in
this process, which had significant impacts on visibility
distance, driving behavior, vehicle performance, pavement
conditions, travel demand, traffic flow characteristics, and
traffic safety [3]. Among different adverse weather condi-
tions, fog was the most hazardous conditions for drivers [4].

1. Introduction

The intersections are the crucial nodes in the road network
and also the sections with high incidence of serious traffic
accidents, especially the unsignalized intersection. The traffic
statistics shown that there were about 40% traffic accidents

occurring at the intersections, where 28% were unsignalized
intersections accidents and 12% were signalized intersec-
tions accidents [1]. Instead, the drivers dynamically decide to
speed up or slow down when the vehicles gradually approach
each other [2]. This process is fraught with insecurity due to
the uncertain personalized driving behavior.

According to the National Highway Transportation Safety
Administration’s (NHSTA) Fatality Analysis Reporting
System (FARS), fog/smoke contributed as a major factor in
3729 fatal crashes that occurred in the United States between
2000 and 2007 [5, 6]. Most previous studies about driving
performance in fog had focused on drivers’ speed control
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ability [3, 7, 8] and lane-keeping ability [8] in some certain
foggy scenarios. However, few studies have analyzed driving
performance in fog at unsignalized intersections. Foggy
weather could result in a reduction in visibility of unsign-
alized intersection, which was a direct accident cause of over
90% of all crashes at unsignalized intersections [9]. Ap-
propriate mitigation strategies were necessary since the
reduced visibility had a significant impact on driving be-
havior. Active safety technologies that could alert drivers to
various risk factors, were introduced to heighten driving
safety in unsignalized intersection [10].

Many scholars have proposed a variety of auxiliary
strategies about active safety technologies at intersections.
For example, ICWS (intersection collision warning system)
[11, 12] could detect all vehicles approaching the intersection
on vehicles’ real-time positions and speed with sensors (e.g.,
radar) equipped in vehicles or base station at intersections to
warn drivers of hidden dangers when the visibility was
restricted. Utilizing this method to gather information about
vehicle’s speed and location could model the real-time crash
process [13] or compute the collision probability in an in-
tersection. The outcomes of modelling and computing could
be applied to the main indicators to issue warning, usually
using TTC (time to collision) and TTA (time to avoidance)
[14], to alert the driver of an imminent collision. Some
studies paid special attention to warning drivers about the
presence of surrounding trucks [15], emergency vehicles,
and even roadside infrastructure [16]. Recently, methods
relied on V2V (vehicle to vehicle) technologies that could
transmit safety-related information from one vehicle to
surrounding vehicles by direct wireless communication,
provided a more accurate approach for ICWS [17].

ICWS’s advantages have been demonstrated; it could
help drivers deal with urgent situations in the critical in-
tersection and enhance drivers’ collision avoidance per-
formances [11, 18-21]. Experiments, conducted by Chang
et al. (2009), have shown that the driving performance of
young people was affected by a collision warning system.
What is more, the warning system assisted in making the
reaction time of drivers shorter [19] and the accident rate
lower [22]. In the study on the warning effect of the red-light
violation, some scholars found that the warning signal of red
light in the vehicle could increase the stopping frequency of
drivers when switching to yellow lights and reduce the
driving speed [23, 24]. In the case of unsignalized inter-
sections, the advantage of ICWS becomes more obvious
since the unsignalized intersections are filled with more
inevitable conflicts. ICWS could advance the driver’s re-
sponse time [1], which got the driver more time to avoid the
collision at unsignalized intersections. For the warning
timings, Kenji Tanaka et al. carried out experiments of is-
suing point of collision avoidance warnings at intersections
and proved that the issuing point of the warning was mainly
dependent on the distance between the vehicle and the
intersection [25]. For the modality of warning, visual
warning [26], auditory warning [3, 27, 28], and tactile
warning have aroused extensive discussions. Compared to
the visual warning and tactile warning, auditory warning
provided omnidirectional sound massages for drivers no
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matter where they were focused on, which led to less in-
terference with the driving task and less mental overload.
However, auditory warnings were hard to ignore; these were
more prone to cause annoyance which could impair com-
pliance especially after false alarms [29]. According to the
experiment conducted by Felix Schwarz [30] and Wolfgang
Fastenmeier [26], the visual warning was observed to have
advantages over the other warning designs concerning gaze
and braking reaction times, passing speeds, and collision
rates. Visual presentation of warnings was more effective
than auditory alternatives [31].

However, most of these methods simply give informa-
tion about the risk of driving, such as icons; few warning
systems attempted to warn drivers quantitatively. For the
purpose of improving the safety of unsignalized intersec-
tions, our study also put forward a visual collision warning
system assisted by the HUD (head-up display), which would
provide drivers with a quantified, accurate, and real-time
updated warning about the potentially possible collision.
Automotive head-up displays (HUDs) could reduce the
driver’s eye-off-the-road time (EoRT) and reac-
commodation demands by presenting visual information
within the driver’s forward field of view (FoV), at a focal
plane further into the forward scene. Some studies have
empirically demonstrated the positive effects of HUDs in
terms of performance of primary and secondary driving
tasks, driver distraction, and workload [32]. A driving
simulation experiment would be conducted to verify the
effectiveness of this kind of unsignalized intersection
warning system in foggy weather. Compared to empiricism,
our results were more scientifically based. In general, these
kinds of ICWS efficacy test research were mostly achieved by
one driving simulator. For simplicity, a lot of assumptions,
such as constant speed and constant deceleration, were made
in these previous efficacy tests. It was well known that the
vehicle must slow down or stop to avoid accidents, but in the
previous efficacy test, it could not simulate the real scene
exactly because one of the conflicting vehicles was controlled
by the system. In reality, drivers could avoid collisions
through a variety of behaviors, more than braking. There-
fore, in order to explore the effectiveness of the ICWS more
effectively, this research considered using two-linked driving
simulators to simulate a more realistic experimental scene,
where two subjects could have stronger interactions than the
ordinary driving simulator.

From previous studies, multiple linked driving simu-
lation experiments were a relatively immature research
field. Houtenbos et al. used two linked driving simulators to
examined the effects of an audiovisual display that provides
warning information [33]. However, in Houtenbos’s ex-
periments, one simulator was driven by the subject and the
other by the experimenter to create more abundance
scenarios. It meant that the multiple linked driving sim-
ulator has not been used to its fullest extent. In this study,
scenarios were set up where the subject would be able to
drive more freely and the interaction between the subjects
was stronger. Driving performances were complex and
diverse. Even drivers from different directions had different
performances.
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Accordingly, this driving-simulator-based study was
conducted to investigate how straight-moving drivers per-
form under different conditions at unsignalized intersection.
A new form of ICWS was proposed, and its efficacy would be
studied on the basis of driving simulation experiments. In
addition, for the purpose of testing, the property of the ICWS
in adverse weather-fog weather (light fog and heavy fog) was
introduced as an important factor in the experiment.

2. Method

2.1. Apparatus. The equipment used in this experiment was
the Multiuser Driving Simulation (MDS), which was de-
veloped by Beijing Huiyitiancheng Digital Technology Co.,
Ltd. MDS system was a driving simulation system with high
integration, excellent performance, and realistic effect. It
could support driving simulation experiments on various
urban traffic environments under laboratory control
according to different experimental purposes and conduct
corresponding experimental results. The followings are the
main features of MDS:

(1) Support multiuser networking: online simulation
was a domestic initiative with international leading
technology, and the number of users could be ex-
panded freely.

(2) Rich traffic events: MDS had an expanding traffic
event library, various event trigger systems, and
programmable scripts to build complex traffic
events. MDS broke through the realization of visual
editing of scene variables (including an unlimited
map, traffic facilities, vehicles, pedestrians, signal
system, environment, and trigger events).

(3) Support mass simulation analysis: MDS could record
simulation data in the whole process and support
data export in various formats.

The system consisted of ten single driving simulators,
which were connected by a server, as shown in Figure 1. This
experiment used two of these linked driving simulators.
Each single simulator was equipped with a driver seat, an
automatic gearbox, a gas pedal, a brake pedal, and three
screens to project the front-view driving scenarios with a
120-degree view, and so forth.

2.2. Subjects. A total of 48 subjects participated in this
research. In order to eliminate the interference of the
internal differences of the subjects, this experiment in-
tentionally recruited drivers who were of the same gender
(all of them were male) and age (average age was 24,
ranging from 22 to 30 years old). Every subject held a valid
driver’s license in China, and the driving experience of
each subject was between 2 and 4 years. Subjects were
divided into pairs of 24 groups, in which two drivers in
each group would enter the same scene and encounter at
the same unsignalized intersection. The experiment lasted
about 60 min in total, and each subject received 300
Chinese RMB (about 51 US dollars) after the experiment
was completed.

FIGURE 1: The Multiuser Driving Simulation.

2.3. Scenarios Design. There are 6 experimental scenarios:
« » <« . » «y: » « s » <«

no fog” and “warning,” “light fog” and “warning,” “heavy
fog” and “warning,” “no fog” and “no warning,” “light fog”
and “no warning,” and “heavy fog” and “no warning.” The
scene where the two straight-moving vehicles would en-
counter in an unsignalized intersection was designed.

2.3.1. Road Network Design. Considering the adequacy
and integrity of data, three consecutive unsignalized
intersections were set up. The scenario was designed as a
bidirectional straight rural road with a speed limit of
40 km/h, and the total length of the roads was 3000 m
(the blue vehicle gone along the blue line, and the red
vehicle gone along the red line) as shown in Figure 2.
There was no traffic flow in the whole scene except for the
two subject vehicles. The roads were all at the same level,
and there were no fixed objects blocking the driver’s
sight.

In order to enable the two vehicles to reach the conflict
point of the intersection at the same time, each driver was
required to stop at 250 m in front of each intersection, and
then two subjects in each group would start driving si-
multaneously according to the instruction from the corre-
sponding experimenter for each subject.

For the purpose of studying the efficacy of the ICWS
under different fog conditions, three different levels of fog
conditions, no fog (visibility was greater than 600 m), light
fog (visibility was 150 m), and heavy fog (visibility was 60 m),
were set. Road environments under different fog levels are
shown in Figure 3.

2.3.2. ICWS Design. The system was designed to provide a
“broad and clear view” for drivers whose visibility is limited
by foggy weather at unsignalized intersections, which meant
that drivers could learn the information of the conflicting
vehicle within the boundaries of an intersection by ICWS,
even if drivers could not see it with their naked eye. For
example, when vehicle V, approaches the intersection, if the
system detected that it has reached the point DxD; as shown
in Figure 4, the system would detect whether there were
other vehicles approaching the intersection within the range
of the intersection. When the other vehicle V', was detected,
AT was calculated:
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Ficure 2: Foundation road network and the route of each vehicle.
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FIGURe 3: Driving interface in different fog conditions. (a) No fog. (b) Light fog. (c) Heavy fog.
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FIGURE 4: The process of the driver approaching intersection.
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AT = , (D

where AT is the ATTC difference value of the two vehicles’
time to the intersection and X, and X, are the distance of V;
and the right V, to the intersection, respectively. V, and V,
are the speed of V1 and V2, respectively.

If AT <5.0 s [14], the system would determine that there
was a high probability of a collision. At the moment, the
warning system would feed the conflict state back to the
driver through HUD based on the collected information in
order to remind the driver of the danger from the conflicting
vehicle at this intersection.

The interface of the warning system could update the
location of other vehicles and its distance to the intersection
in real time. When the system detected the potential conflict,
the warning interface would automatically fire bullets at the
lower right corner of the display, as shown in Figure 5. And
the image would automatically disappear after the conflict
was eliminated.

When or where the warning system released warning
information to the driver could significantly affect the
driver’s subsequent collision avoidance behavior. The
setting principle of Dy was to ensure that the driver had
sufficient reaction time. The collision rate of vehicles sig-
nificantly decreased when the release time of warning
information was increased from 4.0 seconds to 5.5 seconds
and also pointed out that 5.5 seconds was the optimal
warning condition scheme [34]. When determining the
release time of warning information, the reaction time of
the driver and the effective time of collision avoidance
decision reserved for the driver should be taken into ac-
count [35]. Reaction time was set at 2.5 s according to the
previous study [3, 36]. The calculation formula of the
warning release position is as follows:

L,V TV

D =L+ ,
xT T 36 T 36

(2)
where D, donates the position where the warning system
releases; Lgg donates the safe stopping distance,
Ly = (V/3.6)/2a%, a = 1.2m/s* TrT, is the reaction time
(T,=2.5s T,=2.55s); Vj is the speed limit of the section
(Vy=40km/h V;=40km/h); and T, is the time that the
warning needs to be issued in advance (T,=5.5s)
(T, =5.5s). The formula eventually gives the approximate
D,of 150 m.

2.4. Procedure. Upon arrival, each subject was briefed on the
content and requirements of the experiment first and signed
an informed consent form (per IRB, Institutional Review
Board). Before the formal start of the experiment, subjects
needed to be trained, including attempting to change speed,
change lanes, turn, start and stop, and other driving skills. In
addition, drivers would also learn the warning system. The
scene used for training was a section of road which is similar
to the experimental scene, including intersections and
straight sections. Subjects were then advised to drive and
behave as they normally would and to adhere to traffic laws

as they would in real-life situations. Subjects were also
notified that, during the experiments, if they had strong
dizziness and other physical discomforts, the driver could
quit the experiment at any time. After preparation and
training, the driver could start the experiment formally. Each
experiment involved two subjects, who were placed in po-
sition according to their ID number, experimental group
number, and machine number. Each experimental group
entered six scenes in turn to complete the driving task where
the three fog conditions (no fog, light fog, and heavy fog) and
two warning conditions (warning, no warning) occurring in
a random sequence (to eliminate the learning effect). Each
scene lasted for about 5 minutes and the experimental driver
could rest for 5 minutes after completing the driving task of
each scene. Besides, two subjects cannot communicate with
each other during the whole process. After completing the
driving tasks, the subjects were organized to fill in the
questionnaire.

2.5. Data Analysis Methods. During the experiment, the
simulator data were sampled at 30 Hz. The data within 200 m
from the intersection are selected as the analysis objects. 432
cases of intersection driving data were obtained. A total of
399 cases were analyzed due to the exclusion of those who
did not follow the instruction of the experimenter.

2.5.1. Definition of Critical Stages of Drivers’ Driving Inter-
action Process. Drivers’ interaction process in unsignalized
intersection was divided into three continuous stages.
Figure 6 illustrates the relationship among the three stages.
The first stage is called the “approaching stage” during
which drivers noticed the unsignalized intersection and
headed straight for it. The following stage is the “decision
stage.” In this stage, drivers receive the warning and
generate collision avoiding intentions, then synthetically
judge the acquired information, and are ready to make the
initial collision avoidance decision. Until the “action
point,” vehicles speeds change. Therefore, the “action
point” is the point at which vehicles’ speed starts to change.
The third stage is the “adjustment stage”. In this stage,
drivers execute the collision avoidance decision and drivers
take the initial action. Then, they will continue to adjust
their speed and drive towards the intersection. It is worth
noting that some drivers may not make any decisions and
there will be no obvious fluctuation of speed during the
whole driving process. This study used the average time of
the decision stage (DT) of the data with acceleration or
deceleration behavior to determine the location of action
points in the behavioral data without significant speed
fluctuations.

Origins and terminations of stages are shown in Table 1.
The boundary between the approaching stage and the ad-
justment stage is the point at which the warning is issued. In
this study, this point is set 150 meters from the intersection.
The adjustment stage and the decision stage were counted
individually for each driver depending on different action
points.
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FIGURE 6: Drivers’ interaction process in unsignalized intersection.

TaBLE 1: Interpretation of variables.

Stage Definitions of behavioral measures Notation

Difference of two vehicles’ distance at the end point of the approaching stage DD

Approaching stage Difference of two vehicles’ speed at the end point of the approaching stage SD
Difference of two vehicles’ TTC at the end point of the approaching stage TD

Speed at the end point of the approaching stage IS

Travel time in the decision stage DT

Decision stage Initial decision at the action point ID
Distance between the action point and intersection APD
Time to the intersection at the action point APT

Average acceleration (deceleration) rate of the initial action. AA

Duration time of the initial action AT

Adjustment stage The lowest speed of the entire adjustment stage LS
Finial speed at the end point of the adjustment stage FS
Postencroachment time at the end point of the adjustment stage PET

Collision or not CON
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2.5.2. Behavioral Measures. Several measures of the own
vehicle were adopted for describing the driving behaviors for
each defined stage, as shown in Figure 6 and described in
Table 1.

In the approaching stage, there were almost no driving
operation actions leading to invariant speeds of the vehicles.
But the difference of two vehicles’ distance (DD), the dif-
ference of two vehicles’ speed (SD), the difference of the two
vehicles’ TTC (TD), and the speed at the end of this stage (IS)
were extracted as an influence variable for the following
stage.

In the decision stage, drivers were aware of the potential
for conflict but did not take any action. The speed of the
whole stage is relatively stable until drivers made the initial
decision and begun to take the initial action (acceleration or
deceleration). Some of the drivers might keep a constant
speed in the whole process, which was defined as “no re-
sponse” conditions. Therefore, there were three categories of
the initial decision. In this stage, travel time in the decision
stage (DT), the initial decision at the action point (ID), the
distance between the action point and the intersection
(APD), and time to intersection at the action point were
measured.

In the adjustment stage, drivers made the initial ac-
tion, but as the speed changes, a second decision might be
made. In this stage, the average acceleration (deceleration)
rate of the initial action (AA), duration time of the initial
action (AT), the average speed of the entire adjustment
stage (AS), lowest speed of the entire adjustment stage
(LS), finial speed at the endpoint of the adjustment stage
(FS), and postencroachment time at the endpoint of the
adjustment stage (PET) and collision or not (CON) were
measured. In this study, PET was introduced as a risk
assessment criterion. Surrogate safety measures included
time-to-collision (TTC), time extended TTC (TET),
postencroachment time (PET), and deceleration rate (DR)
[37]. PET was most commonly used to identify the
crossing conflicts between two road users. It referred to
the time interval between two instances when the first
vehicle leaves a conflict point and the second vehicle
enters into it. PET had all the essential properties of
surrogate safety measures. Similar to other surrogate
measures, PET was estimated from observable noncrash
events and indicated the resulting event of conflicts be-
tween vehicles, how closely a collision had been avoided
[38].

There were two kinds of independent variables. Part of
them came from external factors, including fog, warning,
and direction of the other vehicle. When two vehicles
crossed to an unsignalized intersection, generally speaking,
vehicles on the left more likely to yield vehicles on the right
[33]. It means that the direction of the other vehicle might
affect driving behaviors. Therefore, the direction was
treated as an independent variable. Part of them was the
state of the other vehicle, including speed, the distance to
intersection, and acceleration pattern of the other vehicle
(acceleration, deceleration, or no response). States of the
other vehicle changed dynamically with the motion of the
own vehicle.

3. Results

3.1. Approaching Stage. In the approaching stage, no specific
behavioral measures were extracted. Vehicles moved to-
wards the intersection according to drivers’ judgment.
However, DD, SD, TD, and IS in the endpoint of the
approaching stage (the start point of the decision stage) were
extracted for subsequent analysis.

3.2. Decision Stage. In the decision stage, four behavioral
measures, i.e., DT, APT, APD, and ID, were observed and
analyzed. Table 2 summarizes ANOVA and the Pearson
correlation results for DT, APT, and APD. It should be
noted that ID is a categorical variable that is analyzed using
a multinomial logit model whose results are reported in
Table 3. Independent variables were warning, fog, the
direction of the other vehicle, and states of the other
vehicle. States of the other vehicle included the other ve-
hicle’s acceleration pattern and mean speed in the decision
stage of the own vehicle and the distance between the other
vehicle and intersection when the own vehicle was at the
start of the decision stage.

3.2.1. Travel Time in the Decision stage (DT). DT is the
reaction time of the driver. ANOVA and the Pearson cor-
relation results of DT are shown in Table 2. The warning had
an evident impact on DT (F=116.447, P = 0.000). Figure 7
shows the fitted mean profiles of DT with respect to warning.
Mean DT of conditions without warning was 8.53 s, which
was lower than conditions with the warning (6.41s). It
meant that the reaction time of the driver became shorter
with the help of the warning system. In the absence of the
warning system, drivers needed longer reaction times to
make decisions. The distance of the other vehicle showed a
positive correlation (the Pearson correlation=0.121"",
P =0.001) with DT. If the distance between the other vehicle
and intersection was closer, the reaction time of the driver
would be shorter. The mean speed of the other vehicle and
DT  were negatively correlated  (the  Pearson
correlation = —0.079", P = 0.025). It meant that if the mean
speed of the other vehicle was higher, reaction time would be
shorter.

3.2.2. Time to the Intersection at the Action Point (APT).
APT is defined as the time to the intersection at the action
point. ANOVA and the Pearson correlation results of APT
are illuminated in Table 2. It was found that warning
(F=114.000, p = 0.000) significantly influenced APT. From
Figure 7, the mean of APT under the warning condition
(7.05s) was significantly larger than the no warning con-
dition (5.11s), signifying that the warning system assisted
the driver to gain nearly two seconds to adjust speed.
Distance (the Pearson correlation =-0124", p = 0.000) of
the other vehicle showed a negative correlation with APT.

3.2.3. Distance between the Action Point and Intersection
(APD). APD is defined as the distance between the action
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TaBLE 2: ANOVA and the Pearson correlation results of DT, APT, and APD.
DT APT APD
Source ANOVA test
F-value Sig. F-value Sig. F-value Sig.
Warning 116.447 0.000 114.000 0.000 120.835 0.000
Fog 1.818 0.163 0.354 0.702 0.640 0.527
Direction 2.261 0.133 1.935 0.165 0.642 0.423
Acceleration pattern 0.802 0.449 0.225 0.799 0.127 <0.881
Pearson correlations
Value Sig. Value Sig. Value Sig.
Distance 0.121** 0.001 -0.124** 0.000 -0.114** 0.001
Mean speed -0.079* 0.025 0.048 0.172 0.056 <0.112
**Correlation is significant at the 0.01 level (2-tailed). *Correlation is significant at the 0.05 level (2-tailed).
TaBLE 3: Multinomial logit model results for ID.
Acceleration Deceleration
B Sig. Exp (B) B Sig. Exp (B)
Intercept 1.819 0.255 6.673 0.000
Mean speed —0.087 0.006 0.917 —-0.057 0.034 0.944
Distance 0.016 0.010 1.016 -0.025 0.000 0.975
Warning (reference level: no warning) Warning 0.581  0.005 1.788 0190  0.356 1.209
Fog (reference level: no fog) Light fog —0.288 0.241 0.750 0.191 0.432 1.210
& ' 8 Heavy fog =~ -0.499 0042 0607 0164 0496 1178
Direction (reference level: right) Left -0.025  0.906 0.975 0.271 0.195 1.311
Acceleration pattern =1 (reference level: constant speed) Acceleration  =0.647. 0.020 0.523 0215397 0-806
p ' p Deceleration ~ 0.011 0965 1011  -0.683 .010  0.505

point and the intersection. Table 2 lists ANOVA and the
Pearson correlation results of APT. It was found that
warning (F=120.835, p =0.000) significantly influenced
APD. As shown in Figure 7, the mean of APD under the
warning condition (mean =78.85 m) was significantly larger
than the no warning condition (mean =57.49 m). The dif-
ference between the two values was more than 20 m. Dis-
tances (the Pearson correlation =-0114", P = 0.001) of the
other vehicle and APD were negatively correlated.
According to Table 2, other factors do not significantly affect
APD.

It is rational that executing the behavior of the driver at
the decision stage largely depends on the warning and states
of the other vehicle, irrespective of fog and direction of the
other vehicle.

3.2.4. Initial Decision (ID). There are three categories of ID,
namely, acceleration, deceleration, and no response. A
multinomial logit model was developed to investigate the
effects of factors on ID and the results are reported in
Table 3. In contrast to conditions without the warning,
drivers were more likely to accelerate under conditions with
warning. Under the heavy fog, drivers were less likely to
accelerate and more likely to keep a constant speed. When
the other vehicle accelerated, drivers were less likely to
choose to accelerate, and when the other vehicle deceler-
ated, drivers were less likely to decelerate. When the average
speed of the other vehicle increased, drivers were less likely
to accelerate and decelerate and more likely to maintain a

constant speed. When the distance of the other vehicle
increased, the probability that the driver chose to accelerate
increased, and the probability of decelerating decreased.
As shown in Table 4, the result of the chi-square test
indicates that the acceleration pattern had a significant
impact on ID (P = 0.000). When acceleration patterns of
other vehicles were acceleration, 50% of drivers chose de-
celeration. When acceleration patterns of other vehicles were
deceleration, 51% of drivers chose to accelerate. When ac-
celeration patterns of other vehicles were no response, 42.1%
of drivers decelerated and 37.9% of the drivers accelerated.

3.2.5. Association between DD, TD, SD, IS, and ID. 1D is the
most important result of the decision stage. DD, TD, SD, and
IS were upstream variables of ID. Therefore, the classifica-
tion tree was used to the association between DD, TD, SD,
IS, and ID. Figure 8 illustrates the result of the classification
tree that generated the following classification rules for
drivers’ driving decisions.

The final variables into the classification tree were DD
and TD. From Node 1, when DD was less than —3.834 m,
58.3% of drivers accelerated, and 23.4% of drivers decel-
erated. Under this situation, from Node 6 and Node 7, if TD
>—0.404 s, the probability of drivers choosing to accelerate
was 40.9% and the probability of choosing to decelerate was
43.9%. If TD < —0.404s, the probability of drivers choosing
to decelerate dropped to 18.3%, and the probability of
choosing to accelerate and no response rose slightly. TD is a
variable that reflects who can reach the intersection first
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TaBLE 4: Crosstab and Chi-square test result of ID.
1D Chi-square test
Acceleration (%) Deceleration (%) No response (%) Value Sig.
Acceleration 24.0 50.0 26.0 34.997 0.000
Acceleration pattern Deceleration 51.0 29.7 19.3
No response 37.9 42.1 20.0

while traveling in the current state. If the driver judged that
the other vehicle arrived at the intersection first, the
probability that he chose to decelerate was relatively high.

From Node 1, Node 2, Node 3, and Node 4, with the
increasing of DD, the probability of drivers choosing to
decelerate gradually increased, and the probability of
choosing to accelerate decreased. When DD was higher
than 14.483m, however, the probability of drivers
choosing to decelerate declined. In these cases, the driver
made the decision mainly by the distance from the vehicle
to the intersection. As the vehicle got farther and farther
from the intersection than the other vehicle, the driver was
more likely to decelerate. However, when the vehicle was
far enough away, the probability of a collision between the
two vehicles was very small, and the probability of the
driver choosing to accelerate increased.

3.3. Adjustment Stage. In the action stage, seven behavioral
measures, that is, AA, AT, FS, LS, PET, and CON, were
observed and analyzed. Table 5 summarizes the results of

ANOVA and the Pearson correlations for these measures
and Figure 9 illustrates the fitted mean profiles with respect
to different levels of factors, using the corresponding
ANOVA models. Independent variables were warning, fog,
the direction of the other vehicle, and states of the other
vehicle. States of the other vehicle included the other ve-
hicle’s acceleration pattern and mean speed in the adjust-
ment stage of its vehicle and distance between the other
vehicle and intersection when the own vehicle was at the
action point. CON is a categorical variable with two values:
collision (1) and noncollision (0). A binary logit model was
used to analyze CON, as listed in Table 6.

3.3.1. Average Acceleration (deceleration) Rate at Adjustment
Stage (AA). AA reflects the stability of the vehicle’s speed
during initial action. From Table 5, AA significantly
depended on warning (p = 0.003) and fog (p = 0.008). As
illustrated in Figure 8, the average of AA under conditions
with the warning was 0.03 m/s?, while under conditions
without warning it was —0.58 m/s>. It verified that, with the
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D

Node 0
Category % n
W Acceleration 37.7 311
B Deceleration 42.2 348
No response  20.0 165
Total 100.0 824
[ =]

DD

Adj. p value = 0.000, Chi-square = 114.507,

df=8
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Node 1 Node 2 Node 3 Node 4 Node 5
Category % n Category % n Category % n Category % n Category % n
B Acceleration 53.8 177 B Acceleration  40.6 67 B Acceleration 24.1 20 B Acceleration 232 19 B Acceleration 17.0 28
m Deceleration 234 77 mDeceleration 46.1 76 B Deceleration 51.8 43 B Deceleration 67.1 55 B Deceleration 588 97
No response  22.8 75 No response  13.3 22 No response  24.1 20 No response 9.8 8 No response  24.2 40
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| =
TD
Adj. p value = 0.000, Chi-square = 19.543,
df=2
I
< -0.404 > -0.404
I I
Node 6 Node 7
Category % n Category % n
B Acceleration 57.0 150 B Acceleration 40.9 27
B Deceleration 183 48 B Deceleration 43.9 29
No response  24.7 65 No response 152 10
Total 31.9 263 Total 20.0 165
B Acceleration
m  Deceleration
No response
FiGgure 8: Classification tree result of ID.
TaBLE 5: ANOVA and the Pearson correlation results of AA, AT, LS, FS, and PET.
AA At LS ES PET
Source ANOVA
F-value Sig. F-value Sig. F-value Sig. F-value Sig. F-value Sig.
Warning 8.984 0.003 62.880 0.000 2.041 0.154 25.436 0.000 42.944 0.000
Fog 4.898 0.008 2.320 0.099 8.262 0.000 8.326 0.000 4.774 0.009
Direction 1.154 0.283 7.280 0.007 0.034 0.854 0.953 0.329 0.000 0.995
Acceleration pattern 11.300 0.000 30.839 0.000 17.839 0.000 3.231 0.040 1.586 0.205
Pearson correlations
Value Sig. Value Sig. Value Sig. Value Sig. Value Sig.
Distance 0.319%* 0.000 0.601** 0.000 0.217** 0.000 0.307** 0.000 0.159** 0.000
Mean speed —-0.160"* 0.000 0.069* 0.047 -0.032 0.356 -0.087* 0.013 —-0.123** 0.001

**Correlation is significant at the 0.01 level (2-tailed). *Correlation is significant at the 0.05 level (2-tailed).

help of the warning system, the vehicle’s speed would change
more smoothly. Compared with no fog (0.16 m/s”) and
heavy fog (0.44 m/s*) conditions, speed change processes of
vehicles were most unstable under light fog conditions
(-0.58 m/s). The acceleration pattern of the other vehicle
also significantly affected AA. When the acceleration pattern
of the other vehicle was acceleration, the own vehicle’s speed
changed more sharply with a mean value of —0.77 m/s”. As
shown in Figure 10, when the acceleration pattern of the
other vehicle was deceleration, the mean value was 0.26 m/s?,
which represented a more stable speed adjustment process.

Distance (the Pearson correlation =0.319"", P = 0.000) and
mean speed (the Pearson correlation = —0.160"", P = 0.000)
of the other vehicle, also significantly correlated with AA.
According to Table 5, other factors do not significantly affect
AA.

3.3.2. Duration Time of the Initial Action (AT). AT was
defined as the duration time of the initial action. All factors
significantly influenced AT except for fog. From Figure 8,
compared with cases without warning (mean=5.55s), the
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FIGURre 9: Fitted mean profiles of AA, AT, FS, LS, and PET with respect to different levels of factors. (a) AA; (b) AT; (c) LS; (d) FS; and (e)

PET.

duration time of the initial action of the case with the
warning (mean=7.26s) was longer. When the other ve-
hicle came from the left, the average AT of the own vehicle
was 6.68 s. By contrast, when it came from the right, the
average AT became shorter (mean =6.08s). States of the
other vehicle also had impacts on the behavior of the own
vehicle. From Figure 11, when the acceleration pattern of

the other vehicle was deceleration, the average AT of the
own vehicle was 5.42 s, which was shortest compared with
the average AT when it was deceleration or no response.
Distance (the Pearson correlation=0.601"", P = 0.000)
and mean speed (the Pearson correlation=0.069",
P =0.047) of the other vehicle and AT were positively
correlated.
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TABLE 6: Binary logit model results for CON.
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B Sig. Exp (B)

Warning (reference level: no warning) -2.695 0.000 0.068
Fog (reference level: no fog) 0.618
Light fog ~0.442 0.341 0.642
Heavy fog -0.283 0.537 0.753
Direction: Left (reference level: right) 0.193 0.621 1.213
Speed 0.022 0.199 1.022
Acceleration pattern (reference level: no response) 0.000
Acceleration —-0.869 0.241 0.419
Deceleration 1.359 0.019 3.893
Distance —-0.016 0.022 0.984
Constant -3.032 0.004 0.048
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FiGure 10: Fitted mean profiles of AA with respect to acceleration
pattern.

0.08 -
T
- L
— 0.06
= -+
H
<
S 0.04
g 7.08 7.19
= 5.42
0.02
0.00
Acceleration Deceleration No response

Acceleration pattern

FiGure 11: Fitted mean profiles of AT with respect to acceleration
pattern.

3.3.3. The Lowest Speed of the Entire Adjustment Stage (LS).
LS is the minimum speed of the adjustment stage, which
reflects the driving safety in this stage to some extent. As
illustrated in Table 5, fog and direction had significant effects
on LS. From Figure 9, in heavy fog conditions, average LS
was 28.20 km/h, which was lower than the no fog condition
and the light fog condition. As shown in Figure 12, when the
acceleration pattern of the other vehicle was deceleration,
average LS of the own vehicle was the highest
(mean = 33.62 km/h). The distance of the other vehicle was
positively ~ correlated  with LS  (the  Pearson
correlation=0.217"", P = 0.000).

Acceleration pattern

FiGure 12: Fitted mean profiles of LS with respect to acceleration
pattern.

3.3.4. Finial Speed at the Endpoint of the Adjustment Stage
(FS). FS is the final speed of the vehicle as it passes the
intersection. From Table 5, warning and fog significantly
influenced FS. As illustrated in Figure 9, in the case of the
warning effect, the average FS was 48.1 km/h, which was
higher than the case without the warning effect
(mean =42.25km/h). The average of FS was the lowest in the
heavy fog condition (mean=42.02km/h). Distance (the
Pearson correlation=0.307"", P =0.000) and FS were
positively correlated, and the mean speed (the Pearson
correlation =-0.087", P = 0.013) of the other vehicle and FS
were negatively correlated. It meant that if the mean speed of
the other vehicle got higher, the final speed of the own
vehicle got lower.

3.3.5. Postencroachment Time of the Two Vehicles at the End
of Action Point (PET). PET (postencroachment time) re-
flects the chance of conflict between the two vehicles. Among
those factors, warning and fog a significant had impact on
PET. From Figure 9, the average value of PET varied a lot
with (mean=4.75s) and without (mean=3.73s) the
warning. Apparently, the probability of a collision was
higher without warning. But contrary to common sense,
collisions were least likely in heavy fog, where PET was
4.46s. Distance (the Pearson correlation=0.159"",
P =0.000) and PET were positively correlated, and the mean
speed (the Pearson correlation = —0.123"", P = 0.001) of the
other vehicle was negatively correlated with PET. The farther
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the distance between the other vehicle and the intersection
when the own vehicle was at the action point, or the lower
the average speed of the other vehicle, the safer it was for the
drivers.

3.3.6. Collision or Not (CON). From Table 6, the warning
and acceleration pattern and distance of the other vehicle
had a significant impact on CON. Compared with condi-
tions without warning, collisions were less likely when there
were warnings. Collisions were more likely when the other
vehicle accelerated and the smaller the distance between the
other vehicle and the intersection is, the more likely an
accident would occur.

3.4. Association between the Key Variables during the Whole
Process. PET is the result of the whole process. For
drivers, the higher the PET, the safer the crossing. As
illustrated in Figure 13, the classification tree was used to
analyze the association between the key variables during
the whole process and PET. The final variables into the
classification tree were APT and LS. It meant that
whether the driver could safely pass the intersection was
determined by the time to the intersection at the action
point of the vehicle and the minimum speed of the whole
process.

If APT was lower than 2.579s, the mean of PET was
2.187 s (Node 1). If APT was higher than 2.579 s, the mean
was 4.439s (Node 2). Under this situation, from Node 3,
Node 4, and Node 5, as LS increased, PET showed a de-
creasing trend. When LS was greater than 19.556 km/h, the
mean of PET was 4.177 s (Node 5). At this point, if APT >
5.276 s, the mean of PET was 4.326 s, which was higher than
the situation when APT was lower than 5.367s.

4., Discussion

By using multiuser driving simulator, this study investigated
drivers’ collision avoidance performance at unsignalized
intersection with consideration of the intervention of ICWS
and fog conditions. Obviously, ICWS could really improve
driving safety under fog conditions and the results have been
measurable and significant.

Previous studies on driving behavior in fog have been
carried out using different kinds of driving simulators.
However, the experimental results indicated consistent
findings regarding driving behavior. Reduced visibility in fog
increased the risk of collision to some extent, and most
drivers were likely to perform safety-related adaptations in
order to give themselves more time to react to hazards [39].
Some experiments indicated the driver could maintain a
good lane-keeping ability, but the visibility was restricted
and the driver could not avoid road danger effectively [8].
The findings of this study reiterated the general consensus in
the driving literature. Acceleration behaviors decreased with
reduced visibility, suggesting that drivers were more cau-
tious. Despite that, the driving risk did not decrease, causing
the driver’s reaction to be slower than when there was no fog.
The results indicated that although drivers tended to
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perform more cautiously in fog, the driving risk was still
increased due to the difficulty in perceiving the environment
[40].

However, what was different from the past was that the
speed of the whole process changed more sharply in light
fog conditions than heavy fog conditions. As mentioned
above, there were many ways that drivers might com-
pensate for fog weather, including avoiding certain situ-
ations and performing extra eye or head movements, and
one simple way to compensate was by slowing down
[41, 42]. Our results indicated that drivers were more
cautious in heavy fog than light fog and no fog conditions
because the minimum speed in the heavy fog was the lowest
compared with other conditions. From Figure 12, the
minimum speed had a significant impact on PET. It meant
that the minimum speed to some extent determined
whether or not a collision occurred. That is why in this
experiment, drivers were less likely to have an accident in
heavy fog.

Previous surveys [24] have illustrated that the collision
avoidance systems were effective in enhancing drivers’
performances and successfully assisting drivers to avoid
potential accidents as indicated by lower collision rates. It
was found that earlier warning conditions could provide
drivers more time and distance to be ready to respond
accordingly with the most appropriate actions [43]. A
similar benefit of this ICWS was achieved in this study. The
ICWS designed in this paper expanded the limited vision of
drivers to some degree. Drivers can more accurately judge
how to avoid conflicts through the information provided by
the warning interface, that is why drivers had different
behavioral preferences under different warning conditions.
Acceleration behavior was more frequent in the warning
condition, which was an active way to avoid collision rather
than meaning radical or dangerous. Besides, under the
warning condition, drivers made decisions earlier, and the
speed changing process was more smooth. The most sig-
nificant aspect was that the warning system immensely
reduced the risk of driving, judging from the mean profile of
PET under different warning conditions. These findings
confirmed previous research results on the warning system
[44-47].

Few studies have analyzed the interactive decision-
making mechanism due to defects in real vehicle data and
single driving simulator. This experiment carried out by
MDS recorded the interactive decision-making process
of two drivers in detail. In the process of vehicles passing
through the intersection, for each individual driver, they
mainly used DD (distance difference) and TD (time
difference) to make decisions, as analyzed in Figure 8.
The effect of states of the other vehicle on the own vehicle
was significant. When the other vehicle accelerated, the
driver was more likely to decelerate. In contrast, when
the other vehicle decelerated, the driver was more likely
to accelerate. The speed and distance to the intersection
of the other vehicle also significantly influenced the
driver’s behavior. At the same time, these also deter-
mined whether the driver could safely cross the
intersection.
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FicUre 13: Classification tree result of PET.

5. Conclusions

The limitation of this study is that there was always the risk
that subjects might not interpret the experimental task as
they would in real life. In other words, their behavior might
not be completely realistic under simulated driving condi-
tions [7]. Although the simulated fog was similar to real fog,

it was not exactly the same. Furthermore, the methods of
using relative variables of the drivers to represent the in-
teraction relationship and the left and right vehicles were
analyzed separately simplifying the cooperative decision-
making mechanism, which requires further study. The
warning conditions of this study were designed for the visual
intersection collision warning system only, in which
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conclusions should be carefully applied for addressing other
collision warning scenarios.

In summary, this study has illustrated the effects of the
visual collision avoidance warning system on drivers’ be-
havior in no fog, light fog, and heavy fog scenarios based on
MDS. The results indicated that the fog and warning con-
ditions, even direction, had a significant influence on driving
behavior. With the assistance of ICMS, drivers could obtain
more detailed and accurate environmental information;
therefore, drivers’ decisions were more reasonable and ef-
ficient. The interactive decision process of the two vehicles
was explained amply. The findings of this study would be
useful for improving the effectiveness of the visual inter-
section collision warning system and interactive driving
behavior study.
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