Hindawi

Journal of Advanced Transportation
Volume 2020, Article ID 8897710, 11 pages
https://doi.org/10.1155/2020/8897710

Research Article

WILEY

Hindawi

Effective Evolutionary Algorithm for Solving the
Real-Resource-Constrained Scheduling Problem

Huu Dang Quoc ®,' Loc Nguyen The (,” Cuong Nguyen Doan (,*> and Naixue Xiong

IYhuong Mai University, Hanoi, Vietham

’Hanoi National University of Education, Hanoi, Vietnam

4

*Military Institute of Science and Technology, Hanoi, Vietnam

“Northeastern State University, Tahlequah, OK, USA

Correspondence should be addressed to Huu Dang Quoc; huudq@tmu.edu.vn and Loc Nguyen The; locnt@hnue.edu.vn

Received 20 August 2020; Revised 19 September 2020; Accepted 30 September 2020; Published 14 October 2020

Academic Editor: Hongju Cheng

Copyright © 2020 Huu Dang Quoc et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper defines and introduces the formulation of the Real-RCPSP (Real-Resource-Constrained Project Scheduling Problem), a
new variant of the MS-RCPSP (Multiskill Resource-Constrained Project Scheduling Problem). Real-RCPSP is an optimization
problem that has been attracting widespread interest from the research community in recent years. Real-RCPSP has become a
critical issue in many fields such as resource allocation to perform tasks in Edge Computing or arranging robots at industrial
production lines at factories and IoT systems. Compared to the MS-RCPSP, the Real-RCPSP is supplemented with assumptions
about the execution time of the task, so it is more realistic. The previous algorithms for solving the MS-RCPSP have only been
verified on simulation data, so their results are not completely convincing. In addition, those algorithms are designed only to solve
the MS-RCPSP, so they are not completely suitable for solving the new Real-RCPSP. Inspired by the Cuckoo Search approach, this
literature proposes an evolutionary algorithm that uses the function Reallocate for fast convergence to the global extremum. In
order to verify the proposed algorithm, the experiments were conducted on two datasets: (i) the iMOPSE simulation dataset that
previous studies had used and (ii) the actual TNG dataset collected from the textile company TNG. Experimental results on the
iMOPSE simulation dataset show that the proposed algorithm achieves better solution quality than the existing algorithms, while
the experimental results on the TNG dataset have proved that the proposed algorithm decreases the execution time of current

production lines at the TNG company.

1. Introduction

Scheduling is used to arrange the resources and tasks in
many fields, where scheduling algorithms can have an
important impact on the effectiveness and cost. In a lo-
gistic system, not only are cargo vehicles characterized by
the factors of speed and carrying capacity, but also the skill
of the driver is the most important factor in determining
the quality of transportation. By taking into account all
the factors, especially the driver’s skill one, scheduling
algorithms help manage and coordinate the transport
system. An intelligent scheduling algorithm helps man-
agers exploit the maximum potential of resources in-
cluding vehicle and driver to get the project done.

In the wireless sensor networks, the node scheduling
aims at selecting a set of nodes (i.e., sensors) that provide the
data service. This scheduling can effectively reduce the
number of nodes and messages and at the same time extend
the network lifetime [1-3]. The basic goal of Edge Com-
puting [4] is finding the optimal scheduling for extending
the Cloud’s resources such as servers and routers from
remote data centers to the edge of the Cloud where they are
closer to users, thus overcoming the bottlenecks issue by
cloud computing and providing higher performance.

Solving the MS-RCPSP [5-7] problem is to find out the
schedule to execute the project in the shortest possible time
without breaking any constraints. In other words, the
scheduling algorithm’s goal is to find a schedule with the
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smallest execution time while meeting any task and resource
constraints. In this paper, the term “makespan” will be used
to refer to the distance in time that elapses from the start of
work to the end of execution time. MS-RCPSP is among the
most commonly investigated optimization problems that
have received a lot of attention due to their significant role in
network resource scheduling and controlling.

MS-RCPSP appears in many practical situations such as
logistics and cargo transportation, widely applied to military
operations such as sorting missions and determining travel
routes [8]. Hosseinian and Baradaran [9] used an evaluation
method to make plan decisions with MS-RCPSP. Nazafzad
etal. [10] employed a biobjective optimization model for the
MS-RCPSP considering shift differential payments and
time-of-use electricity tariffs. Their study tried to minimize
the cost and the makespan of a given project. Younis and
Yang [11] propose the heuristic algorithm to solve a par-
ticular case of the MS-RCPSP occurring in grid computing.

However, the MS-RCPSP has one serious defect. What
often happens in practice is that a resource with a higher skill
level has a shorter processing time. This paper presents a new
problem, which is a more practical extension of the MS-
RCPSP, called the Real-RCPSP. In other words, Real-RCPSP
is a specific case of the MS-RCPSP. In the Real-RCPSP, the
processing time depends on the skill level of the resource.
The real-life nature of Real-RCPSP comes from production
lines at the industry factory, where the higher the skill level
of a worker is, the faster he can make the product.

This paper is organized as follows. The next section
presents some previous algorithms for solving the Resource-
Constrained Scheduling Problem. This section also briefly
introduces the Cuckoo Search strategy [12], one of the most
widely used metaheuristics. Section 3 formulates the Real-
RCPSP. The proposed algorithm (called R-CSM) is de-
scribed in the fourth section. Section 4 introduces the most
important components of R-CSM, consisting of the function
Reallocate, the schedule representation, and a novel schedule
measurement model. To verify the performance of the
proposed algorithm, in Section 5 and Section 6, we arrange
the experiments on the iMOPSE dataset and TNG’s dataset,
respectively. In these two sections, the experimental results
are analyzed to compare the performance of the proposed
algorithm R-CSM with the best previous algorithms such as
GreedyDO and GA. Finally, Section 7 ends the paper with
the conclusion and future works.

2. Related Works

Despite the importance of the Real-RCPSP, no one to the
best of our knowledge has studied this problem. This paper is
the first work that mentions Real-RCPSP; thus this section
introduces the existing algorithms to solve another problem
that is close to the Real-RCPSP, namely, MS-RCPSP. In
Section 5 and Section 6, these algorithms will be used as
reference algorithms in our experiments.

Myszkowski et al. [6] proved that MS-RCPSP is an NP-
hard problem, so it is difficult to deal with classical opti-
mization methods. Until now, many different solutions have
been introduced for solving the MS-RCPSP; among them,
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the most successful metaheuristics are the GA [13] and ACO
[14].

In their research, Maghsoudlou et al. [15] and Bibiks
et al. [16] applied the Cuckoo Search algorithm to build
multirisk project implementation schedules based on three
different evaluation objectives. Zhu et al. [17] proposed an
evolutionary algorithm based on the multiverse and several
other heuristic algorithms.

Myszkowski et al. [6] have built a hybrid algorithm that
combined the Difference Evolution and greedy heuristic for
managing human and machine resources in factory pro-
duction projects. The proposed hybrid algorithm tried to
minimize makespan and production costs. Besides, iMOPSE
[6], a dataset that was generated based on real-world data
from the project scheduling problem, was introduced.

As a specific case of the MS-RCPCP problem, Real-
RCPSP is researched and applied in many fields of the
Internet of Things. Hosseinian and Baradaran [18] proposed
a greedy heuristic for maximizing the modularity to find
high-quality communities of employees and to arrange them
to the tasks based on the founded communities. Younis and
Yang [11] introduced a hybrid scheduling algorithm for task
arrangement in grid computing environment.

Some other researchers have also studied the new ex-
tension problems of the Constrained Project Scheduling
Problem and applied them in many fields of science and
finance. Polo-Mejia et al. [19] developed a scheduling al-
gorithm to manage nuclear laboratory operations. To solve
the problem of the dense sensors in wireless sensor net-
works, Wan et al. [20] proposed an energy-saving scheduling
algorithm, which arranges some redundant sensors into the
sleep mode to reduce the data transmission collision and
energy dissipation. Guo et al. [21] developed a PSO-based
algorithm that acquired better performance than previous
approaches in power efficiency. Cheng et al. [22] have
formulated another PSO-based algorithm named DPSO-
CA, which is based on the discrete PSO that aims at min-
imizing the cochannel interference in the network.

Previous studies have also been performed to address
other subissues of the Constrained Project Scheduling
Problem. Barrios et al. [23] and Javanmard et al. [24] studied
the Multiskill Stochastic and Preemptive Scheduling Prob-
lem to minimize the execution time and proposed the
mathematical models for the project’s resource investment.

Cuckoo Search (CS) algorithm is a metaheuristic in-
troduced by Yang [25] based on the cuckoo bird behavior.
Previous algorithms such as Difference Evolution (DE) [26]
and Particle Swarm Optimization (PSO) [21] have been
proven to be special cases of the Cuckoo Search algorithm.
The efficiency of CS has also been shown to be better than
those of DE and PSO in some cases [27]. For the above
reasons, in this paper, we have built an algorithm inspired by
CS.

3. Problem Statement

The Real-RCPSP can be described as follows.
A project represented by a graph G(V,E) has to be
realized. Each node of graph G represents a task, while G’s
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arc represents the relationship between 2 tasks (Figure 1).
Specifically, the arc (7, j) means that task i has to be finished
by the time when task j is started. Each task has an execution
time (or duration) that is calculated by subtracting the start
time from the end time. The task must be performed
continuously from start to finish and must not be stopped at
all.

The execution of each task requires some specific re-
sources. Each resource can perform only one task at a time.
The task’s execution requires several skills, while each re-
source possesses its own skills; thus not every resource can
perform a given task.

The objective of the Real-RCPSP is to shorten the project
implementation time to the smallest value while not
breaking any constraints. A schedule must be found in which
execution will minimize execution time while still meeting
the task and resource constraints. As mentioned above, the
MS-RCPSP is proved to be NP-hard [5-7], and no poly-
nomial-time algorithm exists, assuming that P # NP.

Real-RCPSP could be stated by using the following
notations:

(i) C;: the set of the parents of task i

(ii) r;: the set of skills required by task i. A certain
resource must have an equal or higher skill level of
r; to perform task j

(iii) S: the set of all skills; S;: the set of skills belonging to
resource i; S;CS

(iv) t: the time it takes the resource that possesses
subset of skill S; to complete task j

(v) L: the set of resources; L¥: the set of resources that
could handle task k; L¥cL

(vi) L;: resource i

(vii) W: the set of tasks; W*: the set of tasks that could
be performed by resource k, WkcW

(viii) W: task i
(ix) By, Ej: starting time and ending time of task k

(x) Afw: a Boolean variable; when it equals 1 it means
that task u will be executed by resource v at time I;
it equals 0 in other cases

(xi) h;: the level of skill i g;: type of skill i

(xii) r4: a resource must possess skill 7, to perform task

k

(xiii) m: the period time of the schedule

(xiv) P: a candidate schedule; P,: the set of candidate
schedules

(xv) f(P): makespan (execution time) of schedule P

(xvi) y: number of tasks; z: number of resources

Real-RCPSP could be defined as follows:

minimize f (P), (1)
where
£ (P) = max{E] - min{B,}, @

3
FiGure 1: The relationship between tasks.
subject to

T;>20, VjeW, (4)
E;>0, VYjeW, (5)
E,<E;-t; VYjeW,j#1,ieC,, (6)
VieW,3reS g, =g,.h2h, (7)

n
VkeLVtem: Y A<l (8)

i=1
VieW3ltemlkelL: Ajp=1, 9)
Ifhy<hjthenty >tV (r, r;) € {S; x S,}. (10)

Note the following:

(i) Formulation (6) forced the parent task to must be
finished before the start time of the children task

(ii) Formulation (7) means that, for every task, there is
always at least one resource that has enough skill
level to handle that task

(iii) Formulation (8) ensures that each resource (k) can
only perform at most one task (j) at any time (¢)

(iv) Constraint (9) aims to restrict each task to only be
executed at most one time. Every task must be
performed continuously from start to finish and
must not be stopped at all.

(v) Constraint (10) means that the execution time of the
higher-skill resources is smaller than the execution
time of the lower-skill resources

4. Proposed Algorithm

4.1. Schedule Representation. We represent a schedule as a
row that consists of several elements, and the number of
elements denotes the number of tasks. Each element of the
row represents the resource that will perform the respective
task.



4.1.1. Example 1. Suppose that we have 10 tasks
W ={1,2,3,4,5,6,7,8,9,10} and 3 resources L ={l1,2,3}.
Assume the following:

(i) Sx = S,Vk € L; every resource has an equal skill set
(ii) L¥ = L, Vk € W; any resource can perform any task

(iii) The execution times of the tasks are presented in
Table 1

We also assume that the constraint to prioritize the
performance of the tasks is shown in Figure 1, specifically:

(i) Task 1 has to be performed firstly
(ii) Task 6 has to be performed after task 2
(iii) Tasks 7 and 9 have to be performed after task 3
(iv) Task 5 has to be performed after task 4
(v) Task 8 has to be performed after task 5
(vi) Task 10 has to be performed after tasks 6, 7, and 9

With the above assumptions and constraints, a possible
schedule is shown in Figure 2. Table 2 shows how that
schedule assigns 3 resources to perform 10 tasks in detail.

As described in Table 2, resource 1 executes task 2 and
task 6; resource 2 handles tasks 1, 3, 5, and 8; resource 3
executes tasks 4, 7, 9, and 10.

4.2. Measurement Model. Cuckoo Search algorithm is an
optimization scheme dealing with real functions such as the
Gaussian probability distribution function, whereas Real-
RCPSP is the optimization problem of discrete functions.
Therefore, in order to apply the Cuckoo Search algorithm to
the Real-RCPSP, it is necessary to build a model for
schedules measuring. The following will present our pro-
posed measurement model in detail:

(i) V= (v}, vy,...,v,) is called “unit vector,” where
v; = 100/ (z; — 1): z; is the number of resources that
possess set of skills g;.

(ii) Vector K = {k,k,,...,k,} is the distance between

schedule P={p,,p,,....p,} and schedule

Q=1{91>9» - -->q,}- This leads to K =P - Q.
Meanwhile, if schedule Q={g;,9,,...,q,} is
added with a difference K ={k,k,,...,k,},

schedule P = {p,,p,,...,p,} is obtained, where

we have the following:

(iii) p; = position (round(q; + k;)) and position (i)
presents the respective resource

(iv) k; = v; x (order (p;) — order (g;))
order (p;): the place ofp; in the L;

4.2.1. Example 2. Suppose that L' = {L,, Ly, Ly, Ly, Ly}. We
have z, = 5; v, = 100/ (5 — 1) = 25.
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TaBLE 1: Execution times of the tasks.

Task W, W, Wy, W, W, W, W, Wy, Wy W,,
Eﬁfg“ti"n 3 2 3 4 3 4 3 6 2 6
L1 2 6

L2 1 3 5 8

L3 4 7 9 10

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18
Time

FIGURE 2: A possible schedule.

TaBLE 2: The assignment of a possible schedule.

Task W, W, W, W, W, W, W, Wy Wy W,

Resource L, L, L, Ly L, L, Ly L, L; L;

TaBLE 3: The order of resources.

Order 0 1 2 3 4
Resource L, L, L, Ly L,
Resource L L, Lg Ly,

Similarly, suppose that L' = {Lg,L,,Lg, L,,}. We have
Z, =4 v, = 100/ (4 — 1) = 33.33,

Table 3 depicts the order of resources.

Schedule P = (1, 8) and schedule Q = (4, 7) are shown in
Table 4.

Consider the distance K=P-Q = (k,,k,) where
k, = v, x abs(order(p,) — order(q,)) = 25abs (0 — 2) = 25.

k, = v, x abs (order (p,) — order(q,)) =33.33 x abs
(2-1) =33.33.

This leads to K = (50, 33.33).

Given K, = (0,66.66), we have

Z=P+K— Kp+K — (4,10) (Table 5).

4.3. Proposed Algorithm R-CSM. The proposed Algorithm 1
R-CSM is represented as follows.

f is objective function.

Note that, in line number 16, function Reallocate()
improves the quality of b_plan, as analyzed in the next
subsection.

4.4. Function Reallocate. c_plan is the most appropriate
feasible schedule until now. L, is the last resource to finish.
Function Late() will find out the value of R;,.Size() is the size
of a set or an array.N_makespan is execution time of the new
resource-task arrangement
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TaBLE 4: The assignment of schedules P and Q.
Schedule Task
1 2
P L, Ly
Q L, L,
TABLE 5: Measurement value.
Task 1 2
P L Ly
Kp 0 66.66
K 50 33.33
Ky, +K 50 99.99
Z=Kp+K L, Ly,
input: maxGeneration
iMOPSE datasets
output: makespan of project
(1) Begin
2) t<—0
(3)  Size «— number of individuals (i.e. possible schedules)
(4)  p(t) < the first population
(5)  f(t) <« the fitness, b_plan(bestnest), makespan
(6) pa=0.25
(7)  While (t < max_gen)
(8) n_plan «— create new nest by Lévy Flight
9) r_plan «— Select random nest from P (t)
(10) If (fin_plan) < (r_plan))
(1) r_plan=n_plan
(12) End if
(13) P(t) < Remove pa worst nest and replace by new nests, new nests created by Lévy Flight
(14) F(t) «— the fitness, b_plan, makespan
(15) b_plan «— Reallocate(b_plan)//schedule b_plan is improved by the//function Reallocate(), which is described in the next
subsection in details.
(16) te—t+1
(17)  End while
(18)  return makespan
(19) End

ALGORITHM 1: R-CSM algorithm.

Line 12 and line 13 show that the new schedule (n_plan)
is always equal to or better than the old schedule (c_plan) in
terms of the makespan.

The function Reallocate() (Figure 3) generates the new
schedule from the best schedule, so it inherits and promotes
the advantages of the current population (Algorithm 2).

4.4.1. Example 3. Suppose that W ={1,2,3,4,5,6,7,8,
9,10}; L = {1,2,3}.

We also assume that resource 1 can handle tasks 1, 2, 3, 4,
6, 8,9, and 10; resource 2 can execute tasks 1, 3, 7, and 9;
resource 3 can perform tasks 1, 4, 5, 8, 9, and 10.

The constraint regarding the task order is illustrated in
Figure 1, and the task’s execution time is shown in Table 1.

Table 6 depicts the schedule P; its makespan is equal to
18 as shown in Figure 4 in detail.

The function Reallocate uses schedule P as the input and
arranges task 9 to resource 1 (see Table 7) instead of resource
3 as before.

The results point out that function Reallocate decreases
the makespan from 18 to 17, as described in Figure 4.

5. Simulation with iMOPSE Dataset

5.1. Simulation Settings. To verify the performance of the
R-CSM, the simulations are conducted by using iMOPSE
dataset [6], which has been used by previous studies to
examine algorithms such as GreedyDO and GA [28].
iMOPSE’s instances have the following fields:
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[

4

n_plan < b_plan;
makespan < f (b_plan)

!

L, < Late (n_plan); i < 0
WP ¢ {tasks are performed by
resource L}

False
—>

True

W;e WP, i=1.size (WP);j=0
L' ¢ {resource can perform task i} - L,

False

b_plan = n_plan
jH+s j < size (L)

&
<

—
Ll

W« W+{Wi}
Wb« Wb - {w}

f(b_plan) <
makespan

False

makespan < f (n_plan)

FiGure 3: Function Reallocate.

(i) Number of tasks and resources
(ii) The constraint regarding the task order
(iii) Set of resource’s skills

This paper arranges the simulations on iMOPSE’s
instances listed in Table 8. All of our simulations were run
on a machine with Intel® Core i7 CPU at 2.2 GHz, 6 GB
RAM, running Windows 10. Our R-CSM algorithm was
programmed in Matlab. Simulation results are described
in Table 9.

Each simulation was set up with parameters as follows:

(i) Dataset: 30 iMOPSE’s instances that are described
above

(ii) Number of individuals in population N, = 100

(iii) The program execution process consists of 50,000
generations (N g =50, 000)

(iv) Each instance was repeatedly executed 30 times

5.2. Simulation Results. To show the efficiency of the pro-
posed algorithm, we compare R-CSM with two existing
algorithms, which are GreedyDO and GA [28]. Myszkowski
did not provide the tool for GreedyDO; thus Table 9 just lists
the best value of the algorithm GreedyDO that was published
in the author’s literature. Meanwhile algorithm GA is
reprogrammed using the GARunner, the tool provided by
the authors in [6, 28]; thus Table 9 lists the average value, the
best value, and the standard deviation value of the algorithm
GA’s makespan.
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Input: b_plan//the best feasible schedule that the algorithm has found until now
Output://the feasible schedule which is better than the input
(1) Begin
(2)  makespan = f(b_plan)
(3) n_plan="b_plan;//the best resource-task assignment plan so far
(4) L, < Late(n_plan)//the resource finish its execution latest
(5)  Wjeset of tasks is performed by resource L,
(6) Fori=1 to size(W,)//examine the set of tasks performed by resource L,
(7) Wi =W, li];
(8) L'—L-L,L'—L —Lb//set of resource can perform the task i except L,
9) For j=1 to size(L")
(10) W/ = Wi + {Wi}//task i will perform the resource L
1) WP = WP + {(Wi}//task i is eliminated from L,
(12) n_makespan = f(n_plan)
(13) If n_makespan < makespan
(14) Makespan = n_makespan
15) Return b_best;
16) End if
17) b_plan =n_plan;
(18) End for
(19)  End for
(20)  Return n_plan
(21) End Function
ArGoriTHM 2: Function Reallocate.
TABLE 6: Resource-task assignment of P.
Task W, W, W, w, W, W W, Wy Wy Wi
Resource L, L, L, L, L, L, L, L, L, L,
Resources
A
[ Resource L3 | | 4 7
Before
reallocation| Resource L2 1 3 I 5 8
| Resource L1 2 6 Time
I | | | b
[ Resource L3 | | 4
After I
reallocation Resource L2 1 3
__ Resource L1 2 6
Il Il Il -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Time
F1GURE 4: The schedule changes as a result of the function Reallocate.
TABLE 7: Resource-task assignment of new P.
Task W, W, w, W, W, W, w, Wy W, Wi,
Resource L, L, L, Ly Ly L, L, L, L, Ly
Table 9 and Figure 5 demonstrated that the makespan of (i) Compared with the original CS, the R-CSM algo-
the R-CSM’s schedules is smaller than the makespan of rithm is equipped with function Reallocate, which
GreedyDO and GA. The comparison between algorithms is makes R-CSM capable of fast convergence. This

discussed as follows in detail: ability is clearly demonstrated by the comparison of
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TaBLE 9: Makespan of algorithms (in hour).

Dataset instance Tasks Resources Precedence relations Skills

100_5_22_15 100 5 22 15
100_5_46_15 100 5 46 15
100_5_48_9 100 5 48 9
100_5_64_15 100 5 64 15
100_5_64_9 100 5 64 9
100_10_26_15 100 10 26 15
100_10_47_9 100 10 47 9
100_10_48_15 100 10 48 15
100_10_64_9 100 10 64 9
100_10_65_15 100 10 65 15
100_20_22_15 100 20 22 15
100_20_46_15 100 20 46 15
100_20_47_9 100 20 47 9
100_20_65_15 100 20 65 15
100_20_65_9 100 20 65 9
200_10_128_15 200 10 128 15
200_10_50_15 200 10 50 15
200_10_50_9 200 10 50 9
200_10_84_9 200 10 84 9
200_10_85_15 200 10 85 15
200_20_145_15 200 20 145 15
200_20_54_15 200 20 54 15
200_20_55_9 200 20 55 9
200_20_97_15 200 20 97 15
200_20_97_9 200 20 97 9
200_40_133_15 200 40 133 15
200_40_45_15 200 40 45 15
200_40_45_9 200 40 45 9
200_40_90_9 200 40 90 9
200_40_91_15 200 40 91 15

R-CSM with the previous most powerful algorithms.
R-CSM’s best value is smaller than GreedyDO from
21% to 85% and faster than GA from 6% to 33%. The
average value of the R-CSM’s makespan is better
than the GA from 6% to 33%.

(ii) Thanks to the function Reallocate and the pro-
posed measurement model, the process of finding
the optimal schedule of the R-CSM is not only fast
but also stable. This is demonstrated by the ex-
perimental results in Table 9. The total value of
R-CSM’s standard deviation is 92.52 only,
whereas the total value of GA’s standard devia-
tion is equal to 180. This result shows that the
R-CSM algorithm is more stable than the GA
algorithm.

6. Experiment with TNG Dataset

6.1. Experimental Setting. In general, the major disadvan-
tage of verifying on simulation datasets, such as iMOPSE, is
that sometimes the results do not match what is actually
happening. In order to make the experiment more con-
vincing, we have collected and used the dataset of In-
vestment and Trading Joint Stock Company (TNG) [29]. At
TNG textile factory, the dataset construction is carried out
as follows:

. GA R-CSM

Dataset instance GreedyDO

Avg Best Std Avg Best Std
100_5_22_15 630 524 517 5 485 484 1.41
100_5_46_15 693 587 584 5 541 538 2.55
100_5_48_9 779 535 528 10 493 490 2.16
100_5_64_15 640 530 527 2 496 490 4.55
100_5_64_9 597 521 508 10 479 474 3.68
100_10_26_15 370 294 292 2 238 237 0.94
100_10_47_9 549 299 296 3 256 253 2.36
100_10_48_15 344 282 279 3 245 242 225
100_10_64_9 533 305 296 7 249 243 532
100_10_65_15 426 290 286 5 247 245 1.25
100_20_22_15 353 169 163 6 127 124 34
100_20_46_15 394 207 197 7 167 164 2.85
100_20_47_9 390 186 185 0 146 143 1.89
100_20_65_15 310 243 240 2 213 210 2.05
100_20_65_9 408 187 181 5 133 128 45
200_10_128_15 780 583 577 5 471 468 2.94
200_10_50_15 763 577 553 17 489 485 33
200_10_50_9 817 589 585 5 484 484 047
200_10_84_9 999 583 567 11 509 505 3.91
200_10_85_15 706 555 549 5 476 474 1.32
200_20_145_15 480 328 326 2 244 240 3.48
200_20_54_15 488 385 363 21 261 257 3.19
200_20_55_9 999 318 312 4 251 248 2.87
200_20_97_15 680 438 424 10 335 334 1.89
200_20_97_9 816 326 321 6 249 244 3.42
200_40_133_15 512 222 215 6 154 148 4.19
200_40_45_15 616 210 201 6 165 161 3.68
200_40_45_9 821 213 209 3 159 152 8.06
200_40_90_9 963 215 211 3 152 148 3.72
200_40_91_15 519 205 200 3 141 135 4.92

(i) The company TNG contracts with business part-
ners, whereby each order corresponds to a product
sample with a large quantity

(ii) A given order will be performed by a subset of
employees

(iii) A product consists of several components, and each
component takes an execution time

(iv) The skills of each worker are evaluated based on that
worker’s rank

Conducting experiments on a simulation dataset is al-
ways convenient because the parameters of the dataset are
set by the experimenter; therefore these parameters are
completely consistent with the problem formulation.

In contrast, the parameters of a real dataset are factory-
defined, so they are not compatible with the conventions in
the problem formulation. For this reason, before conducting
experiments with TNG’s dataset, the parameters of this
dataset need to be converted to a format that matches the
Real-RCPSP formulation.

This conversion is conducted as follows:

(i) Order is demonstrated by the project
(ii) Product’s stage is depicted by a task

(iii) An employee is depicted by a resource
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FIGUre 5: The comparison of performance between R-CSM and GA.
TasLE 10: TNG dataset.
Dataset instance Name Tasks Resources Precedence relations Skill levels Project time
71_37_1026_1 TNG1 71 37 1026 6 409
71_39_1026_1 TNG2 71 39 1026 6 325
71_41_1026_1 TNG3 71 41 1026 6 296
71_45_1026_1 TNG4 71 45 1026 6 392
137_37_1894_1 TNG5 137 37 1894 6 1174
137_39_1894_1 TNG6 137 39 1894 6 1052
137_41_1894_1 TNG7 137 41 1894 6 871
137_45_1894_1 TNG8 137 45 1894 6 996
TaBLE 11: Makespan of GreedyDO, GA, and R-CSM (in hour).
Dataset instance TNG GreedyDO GA R-CSM
TNG1 409 236 201 166
TNG2 325 243 198 165
TNG3 296 258 212 168
TNG4 392 248 176 175
TNG5 1174 972 751 710
TNG6 1052 963 791 715
TNG7 871 834 810 727
TNGS8 996 906 720 677

(iv) Employee’s grade is depicted by the resource’s skill
level

(v) The manufacture sequence is denoted by the task’s
relationship

(vi) The execution time of the order is demonstrated by
the makespan

The TNG dataset is described in Table 10.
Experiment setting is as follows:

(i) Dataset: 8 TNG’s instances that are listed in Table 10
(ii) Number of individuals in population N, = 100

(iii) The program execution process consists of 50,000
generations (N g =50, 000)

(iv) Each instance was repeatedly executed 35 times

6.2. Experimental Results. The experiments in this section were
conducted on the TNG dataset to prove that the proposed al-
gorithm is more efficient than existing algorithms not only when
they are operating on the simulated dataset such as iMOPSE but
also when operating on the actual dataset.

Experimental results (listed in Table 11) demonstrated
that the proposed algorithm R-CSM is not only more effi-
cient than previous algorithms such as GreedyDO and GA
but also more efficient than the actual production plan at the
TNG factory, which is presented in column TNG.

As depicted in Table 11, compared to the execution time of
the actual production plan at the factory TNG,the GA and
GreedyDO algorithms reduce the makespan by 7%-55% and
4%-42%, respectively, while R-CSM has the best results of
17%-59%.
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TaBLE 12: Experimental results with Real-RCPSP.

. MS-RCPSP (1) Real-RCPSP (2) (2) vs. (1)
Dataset instance TNG (A)
Best vs. (A) (%) Best vs. (A) (%) Hours %
TNG1 409 166 59 131 68 35 21.1
TNG2 325 165 49 133 59 32 19.4
TNG3 296 168 43 132 55 36 21.4
TNG4 392 175 55 127 68 48 27.4
TNG5 1174 710 40 572 51 138 19.4
TNG6 1052 715 32 626 40 89 12.4
TNG7 871 727 17 569 35 158 21.7
TNG8 996 677 32 560 44 117 17.3
800 strategy, the proposed algorithm has been upgraded by using
200 function Reallocate; thus it achieved high performance.
600 The experimental results show that the proposed algo-
00 rithm R-CSM is better than the previous algorithms such as
100 GreedyDO and GA at 21%-85% and 6%-33%, respectively.
At the same time, the proposed algorithm converged to the
200 optimal solution faster than previous approaches.
200 In the near future, we are going to continue researching
100 on Real-RCPSP in order to improve the solution quality and
0 the speed of the convergence. Multifactorial optimization
TNGI TNG2 TNG3 TNG4 TNG5 TNG6 TNG7 TNG8

—e— Real-RCPSP
—o— MS-RCPSP

FiGURE 6: R-CSM to solve MS-RCPSP and Real-RCPSP.

As the best current evolutionary algorithms, GreedyDO
and GA are both better than the actual production plan at
the factory TNG. However, neither of these algorithms is as
good as the proposed algorithm R-CSM. In experiments on
the TNG datasets, R-CSM lessens the makespan from 17% to
59% compared to the current factory schedule. To sum up,
the proposed algorithm R-CSM has been proven to be
overall more effective compared to existing approaches such
as GreedyDO, GA, and the current factory schedule.

Applying the R-CSM algorithm on the data from table
Table 11 to solve the Real-RCPSP, we get the results shown in
Table 12.

Experimental results in Table 12 show that, thanks to the
application of the R-CSM algorithm to the actual problem
with data on the textile production of TNG, the production
time is reduced from 12.4% to 27%. These results also show
that the greater the difference between the skill levels of
workers, the more efficient the R-CSM algorithm.

Figure 6 shows the effectiveness of algorithm R-CSM
when it is applied to solve the MS-RCPSP and the Real-
RCPSP on the textile dataset of TNG textile company.

7. Conclusion

This article aims to announce and survey Real-RCPSP, a new
combinatorial optimization problem that appears in many
fields such as Edge Computing, industrial production, and IoT
systems. The new problem is stated, and then a new algorithm
named R-CSM is proposed. Inspired by the Cuckoo Search

seems to be one of the promising approaches to this
problem.

Data Availability

The paper uses the standard iMOPSE dataset to test the
efficiency of the algorithm. This dataset is publicly available
at http://imopse.ii.pwr.wroc.pl/and is free of charge. In
addition, the authors also tested the algorithm with TNG’s
garment manufacturing dataset. They have obtained per-
mission from TNG to use these data.
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