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Short-term prediction of traffic variables aims at providing information for travelers before commencing their trips. In this paper,
machine learning methods consisting of long short-term memory (LSTM), random forest (RF), support vector machine (SVM),
and K-nearest neighbors (KNN) are employed to predict traffic state, categorized into A to C for segments of a rural road network.
Since the temporal variation of rural road traffic is irregular, the performance of applied algorithms varies among different time
intervals. To find the most precise prediction for each time interval for segments, several ensemble methods, including voting
methods and ordinal logit (OL) model, are utilized to ensemble predictions of four machine learning algorithms. 'e Karaj-
Chalus rural road traffic data was used as a case study to show how to implement it. As there are many influential features on traffic
state, the genetic algorithm (GA) has been used to identify 25 of 32 features, which are the most influential on models’ fitness.
Results show that the OLmodel as an ensemble learning model outperforms machine learning models, and its accuracy is equal to
80.03 percent. 'e highest balanced accuracy achieved by OL for predicting traffic states A, B, and C is 89, 73.4, and 58.5
percent, respectively.

1. Introduction

Sustainable transportation networks need to use data ob-
tained from intelligent transportation systems (ITS) to relieve
traffic congestion and its consequences, such as air and noise
pollution and wasting energy and time. Intelligent traffic
congestion alleviation is a vital element of smart mobility and
smart transportation systems [1]. One of the intelligent
transportation systems is the advanced traveler information
system (AITS). AITSs provide useful information about the
current or future traffic conditions to travelers and trans-
portation agencies [2]. 'ese systems’ effectiveness is more
when predicting the future state of the transportation network
and letting users have better plans for their next trips [3]. A
group of travelers who plan to travel during traffic peak hours
will more likely postpone or cancel their trips. 'ese changes
lead to more balanced distributed trips over time and a more
sustainable transportation network. Traffic volume and

average speed are well-known continuous traffic variables that
can be predicted [4, 5]. Many users are unable to understand
the performance condition of the transportation network by
knowing these variables. 'e traffic volume to capacity ratio
and average speed to free-flow speed ratio are more infor-
mative and meaningful for users [6]. Instead of predicting
traffic volume and speed, we can predict the traffic state as a
nominal traffic variable.'is variable is determined regarding
the volume to capacity ratio and the speed to free-flow speed
ratio.

Another critical point is employing appropriate models
that are compatible with the nominal nature of the traffic
state. Predictive methods are diverse, and there is no su-
perior model for every prediction problem [7]. Generally,
predictive techniques are divided into naı̈ve, time series, and
machine learning [8].

Näıve methods are simple with short computational
time. 'ese methods do not react to dynamic changes and

Hindawi
Journal of Advanced Transportation
Volume 2021, Article ID 3334810, 14 pages
https://doi.org/10.1155/2021/3334810

mailto:seyedabrishami@modares.ac.ir
https://orcid.org/0000-0003-1653-9265
https://orcid.org/0000-0002-9301-5417
https://orcid.org/0000-0002-7100-2295
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3334810


usually are used as a benchmark [8]. Time-series methods
(also known as parametric or statistical methods) have a
well-established theoretical background and show the im-
portance and effect of independent variables on the de-
pendent variable by estimating coefficients and t states [9].
However, one of these models’ deficiencies is the inability to
depict nonlinear relationships because of the assumption’s
limitations [10]. By increasing the volume of the dataset,
these methods need more computational processing power.
Also, these methods concentrate on means and miss the
extremes [11]. 'e family of time-series methods includes
autoregression (AR), moving average (MA), autoregressive
moving average (ARMA), autoregressive integrated moving
average (ARIMA), and seasonal autoregressive integrated
moving average (SARIMA) [12]. Alghamdi et al. [13] le-
verage ARIMA-based modeling to forecast traffic conges-
tion. Analyzing nonstationary and nonnormally distributed
traffic data by ARIMA achieves appropriate performance
with a confidence level of 95%. Ding et al. [14] forecast
subway ridership by ARIMA-GHARCH. 'e proposed
model has a more accurate prediction compared to the
ARIMA-only model.

Machine learning methods (also known as nonpara-
metric methods) are capable of mapping nonlinear rela-
tionships.'ese methods are more suitable for analyzing big
data and having no or fewer assumptions [15]. 'e main
disadvantages of machine learning methods are lack of
interpretability, needing many observations to train, and
working like a black box [16]. Learning models based on
neural networks such as long short-term memory (LSTM)
[17], SVM [18], K-nearest neighbor (KNN) [19], and ran-
dom forest (RF) [20] are some machine learning methods to
predict traffic variables. Du et al. [21] predict traffic pas-
senger flow for urban areas and propose a deep irregular
convolutional residual LSTM network (DST-ICRL). By
using both short-term and long-term historical data, the
proposed method outperforms traditional machine learning
methods. To predict traffic flow, Kang et al. [22] use LSTM
recurrent neural network. 'ey conclude that occupancy,
speed, and downstream and upstream traffic information as
predictor variables can enhance prediction accuracy. A
spatiotemporal correlative K-nearest neighbor is proposed
by Cai et al. [23]. Gaussian weighted Euclidean finds the
nearest neighbors. Also, considering the relationship be-
tween road segments improves model performance. Using
the RF model, Liu and Wu [24] predict traffic congestion.
'e weather conditions, time, special road conditions, road
quality, and holiday are used in the predictive RF model. Li
et al. [25] propose a combined WT-FCBF-LSTM (wavelet
transform, fast correlation-based filter, and long short-term
memory) model to predict passenger demand by hybrid
ridesharing service models. 'e proposed model has better
performance in terms of accuracy compared to single LSTM
and single WT-LSTM models.

Diverse prediction methods have different advantages
and disadvantages. Ensemble learning is a process that re-
ceives model predictions as input and makes a unique final
prediction. Moretti et al. [26] predict traffic flow by using a
statistical and neural network bagging ensemble hybrid

model, which outperforms the prediction of input methods.
Also, Yang et al. [27] show that the gradient boosting de-
cision trees (GBDT) bring more prediction accuracy than
the SVM and backpropagation neural networks for their case
study.

In the current study, the hourly traffic state consisting of
light, semiheavy, and heavy traffic is predicted for one
section of Karaj-Chalus, a rural road in Iran. Many features
related to traffic state variation are extracted and used as
predictor features. One of the essential parts of modeling is
feature selection. Features could be selected by try and error,
but there are some systematic methods. In this study, by
using the genetic algorithm (GA), influential features are
selected systematically. 'e next step is to employ machine
learning methods. Several machine learning methods, in-
cluding LSTM as a deep learning approach for time-series
prediction, KNN, SVM, and RF, are trained to predict traffic
states. Finally, ensemble methods, including OL and four
voting methods, convert LSTM, KNN, SVM, and RF pre-
dictions to one final prediction. It is expected that ensemble
methods provide more accurate predictions compared to the
initial predictive methods.

Compared to traffic volume and speed, nominal traffic
state is more informative for travelers. It can be shown in
traffic maps by the easily understandable colors. Travelers
decide about departure time and trip route by information
obtained from advanced traveler information systems. Also,
transportation agencies can benefit from accurate traffic
state predictions. It is vital to provide accurate predictions at
any time. It motivates us to propose an ensemble learning
process that is expected to have more stable performance in
terms of prediction accuracy than single models.

'e first contribution of this paper is related to the data.
We add new features related to date, solar and lunar cal-
endars, weather conditions, and road blockage. Also, we
predict traffic state as a nominal variable, investigate rural
traffic data with nonroutine trips, and use Iran’s traffic data
as a developing country. Second, the feature selection is
made by GA and two datasets train models; the first one
includes selected features by GA, and the second one
contains all features. 'e accuracy of the models for each
dataset is calculated and compared. 'e ensemble learning
process by OL and voting methods is another contribution
of the current study. 'e performance of single machine
learning and ensemble learning algorithms for hourly traffic
state prediction is evaluated in different evaluation metrics.

2. Data

Karaj-Chalus is a rural road in the north of Iran, a part of a
route from Tehran, the capital of Iran, to the seaside. 'e
length of this road is 170 kilometers. In addition, there are
three parallel roads with this road but with different lengths.
Many trips to Chalus are recreational and nonmandatory.
'ese nonroutine trips make the prediction more difficult
because finding traffic patterns is not simply compared to
routine trips. Figure 1 shows the map of Karaj-Chalus road.

'e purpose of this paper is to predict the hourly traffic
state. Traffic state is a more informative variable for travelers
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who do not know other characteristics of the road. Loop
detectors in one section of this road collect hourly traffic
volume and hourly average speed. By calculating the hourly
traffic volume over the hourly capacity ratio and hourly
average speed over the free-flow speed ratio, the hourly
traffic state is determined based on Table 1. A, B, and C
represent light, semiheavy, and heavy traffic, respectively.
'is type of traffic state definition is provided by Iran Road
Maintenance and Transportation Organization (RMTO,
http://www.rmto.ir/).

'e raw data only has hourly traffic state, hourly traffic
volume, hourly average speed, and date. One of the essential
steps before training models is extracting effective features.
Traffic patterns of nonroutine trips are affected by holidays and
different types of holidays have different effects. Holidays in
Iran are based on solar and lunar calendars. Since solar and
lunar calendars are not fixed together, both of them are
considered simultaneously. So, several features related to
holidays and their types are defined based on lunar and solar
calendars. Police often blocked this road in each direction or
parallel roads for traffic management at peak hours. 'erefore,

blockage of the road, blockage of opposite direction, and
blockage of parallel roads are added to the dataset as features.
Table 2 shows all the features, which are extracted in this study.

'is data is collected for 17 months, fromMarch 2017 to
August 2018. 'e first 12 months of the dataset are used for
training single models (train dataset 1), the OL model is
calibrated by the next three months (train dataset 2), and the
last two months (test dataset) is used to test the predictions
of single and ensemble methods. Also, two months of train
dataset 1 is used for cross-validation to tune the models’
parameters and evaluate the performance of models in a
robust manner. For this purpose, another method is using
Monte-Carlo simulation [28]. 'e total number of obser-
vations is 11353. Table 3 shows the frequency of traffic states
for each part of the dataset. Pie charts in Figure 2 show the
characteristics of candidate features.

All features are used to train the models, but some of
these features may have less effect on the models’ prediction
power or even have a negative effect on prediction. In this
study, to select effective predictors systematically and in-
clude them in models, GA is used. 'e following procedure
is employed for feature selection [29]:

Step 1: define population size (P) for each generation,
mutation probability (pm), and stopping criteria.
Step 2: randomly generate an initial population of
chromosomes.
Step 3: repeat until the stopping criterion is met:

- For each chromosome, do
Tune and train the classifier model and compute

each chromosome’s fitness
End.
For each reproduction 1 to P/2, do
Select two chromosomes based on fitness.
Crossover: randomly select a locus and exchange
genes (a mechanism to form new genes) on either side
of the locus to produce two-child chromosomes with
mixed genes.
Mutate the child chromosomes with probability pm.
End.

Table 1: Determining hourly traffic state.

S/Sf∗
V/C∗

Under
0.1 0.1–0.3 0.3–0.5 0.5–0.7 0.7–0.9 Over

0.9
Over 0.95 A A A B B C
0.8–0.95 A A B B B C
0.6–0.8 A B B B C C
0.45–0.6 B B B C C C
Under
0.45 C C C C C C

∗V and C are hourly traffic volume and the hourly capacity and V/C is their
ratio. S and Sf are hourly average speed and the free-flow speed and S/Sf is
their ratio. More V/C equals fewer S/Sf and more heavy traffic. Less V/C
equals more S/Sf and less congested traffic. 'resholds are defined based on
observed traffic patterns and RMTO experts’ judgment. For example, S/Sf
under 0.3 is rarely observed, so it is not necessary to consider it as a
threshold.

Figure 1: Map of Karaj-Chalus road in Iran.
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Chromosomes, which consist of genes, are binary vectors
with 1 representing a feature’s presence and 0 its absence.
'e population is a set of chromosomes (solutions). In the
reproduction algorithm, the two-parent chromosomes are
split at a random position, and the head of one chromosome
is combined with the tail of the other chromosome [29]. 'e
prediction accuracy (fitness) of an internal decision tree is
the objective function.

'is procedure is implemented in the R software.
Among all features, seven features are not qualified by GA.
'ese features are as follows:

(1) Type of holidays in a day later.
(2) Holiday in a day later.
(3) Holiday in a day ago.
(4) Holiday in three days later.
(5) Blockage.
(6) Blockage of the opposite direction.
(7) Blockage of parallel paths.

Models are trained by selected features by GA and all of
the features.

3. Methodology

3.1. Long Short-Term Memory. Recurrent neural networks
(RNNs) are deep artificial neural network (ANN) models
that keep information in memory. 'ese models consider
the dependency between sequential observations. 'e chief
defect of these models is that they only consider short-term
dependencies because the gradient of loss function declines
exponentially over time. LSTM is a kind of RNN that can
handle the long-term dependencies alongside short-term
dependencies [30, 31].

'e LSTM structure consists of four gates (neural net-
work layers), forget, remember, learn, and output gates. 'e
LSTM model’s inputs are long-term memory, short-term
memory, and training example (new data). 'e long-term
input goes into the forget gate (1), which decides to forget
irrelevant parts. 'e short-term and training example inputs

Table 2: Description of extracted candidate features to predict traffic state.

Feature name Description
Season Including spring, summer, fall, and winter
Solar month Including 12 solar months
Lunar month Including 12 lunar months
Day of a solar month Including 29–31 days of a solar month
Day of a lunar month Including 29–30 days of a lunar month
Time of day Including 24 hours a day
Six hours before holidays Equal to 1 if it is 1 to 6 hours before holidays
Six hours after holidays Equal to 1 if it is 1 to 6 hours after holidays
Day or night Including day and night
Number of holidays 'e number of sequential holidays
Holidays Including 1 for holidays and 0 for other days
Holiday type Type of holidays
Holiday in three days later Equal to 1 if three days later is a holiday
Type of holidays in three days later Including the holiday type of three days later if it is a holiday; otherwise, it equals 0
Holiday in three days ago Equal to 1 if three days ago is a holiday
Type of holidays in three days ago Including the holiday type of three days ago if it is a holiday; otherwise, it equals 0
Holiday in two days later Equal to 1 if two days later is a holiday
Type of holidays in two days later Including the holiday type of two days later if it is a holiday; otherwise, it equals 0
Holiday in two days ago Equal to 1 if two days ago is a holiday
Type of holidays in two days ago Including the holiday type of two days ago if it is a holiday; otherwise, it equals 0
Holiday in a day later Equal to 1 if a day later is a holiday
Type of holidays in a day later Including the holiday type of a day later if it is a holiday; otherwise, it equals 0
Holiday in a day ago Equal to 1 if a day ago is a holiday
Type of holidays in a day ago Including the holiday type of a day ago if it is a holiday; otherwise, it equals 0
Weather condition Including sunny, rainy, and snowy
Blockage Blockage of the road by police
Blockage of the opposite direction Blockage of the opposite direction by police
Blockage of parallel paths Blockage of parallel paths by police

Table 3: Frequency of traffic states in observations.

Traffic state
Train dataset 1 Train dataset 2 Test dataset

Frequency Frequency percentage Frequency Frequency percentage Frequency Frequency percentage
Light (A) 3708 46.38 741 31.55 170 16.88
Semiheavy (B) 3822 47.80 1365 58.11 693 68.82
Heavy (C) 465 5.82 243 10.34 144 14.30
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go into the learn gate (2), which determines what inputs are
to be learned. Passed information (consisting of short- and
long-term memories) from forget and learn gates goes into
the remember gate (3), producing new long-term memories
for the output gate. Finally, the output gate (4) updates
short-term memories and the model’s final output [31]. 'e
equations of gates in LSTM are

ft � σ wf ht−1, xt􏼂 􏼃 + bf􏼐 􏼑, (1)

lt � tanh wn ht−1, xt􏼂 􏼃 + bn( 􏼁, (2)

rt � lt + ft, (3)

ot � σ wo ht−1, xt􏼂 􏼃 + bo( 􏼁, (4)

σ(t) �
1

1 + e
t. (5)

ft, lt, rt, and ot are factors of forget, learn, remember,
and output gates, respectively. σ is the sigmoid function (5).
wx is the weight for the gate(x) neurons. ht−1 is the output of
the previous LSTM block. xt is the input at the current
timestamp and bx is the bias for the gate(x). Figure 3 shows
the architecture of the LSTM network.

3.2. Support Vector Machine. SVM is a supervised machine
learning classifier used for classification and regression
(SVR) problems. 'is model finds a hyperplane in an
N-dimensional space to classify the data points distinctly.
'e model finds a hyperplane with the maximum distance
between data points of classes (support vectors). 'e loss
function of SVM to maximize the margin is hinge loss.
Future data can be classified based on their position relative
to that hyperplane [33].

In many real situations, the data is not linearly sep-
arable. Applying a transformation by the kernel function
is essential before classification. 'is study uses the radial
basis function (RBF) kernel function among different
kernel functions.'e formulation of RBF function is as (6)
[34]:

K Xi,X( 􏼁 � exp
Xi − Xj

2

2σ2
⎛⎝ ⎞⎠, (6)

where σ is a free parameter to be calibrated. Xi − Xj
2 is the

squared Euclidean distance between the two feature vectors
Xi and Xj.

3.3. K-Nearest Neighbor. 'e KNN model is a supervised
machine learning algorithm for both classification and re-
gression problems. 'e main idea of KNN is to find a
predefined number of training samples (K) closest in the
distance to the new point and predicts the class by voting.
'is algorithm can be summarized in 4 steps [23].

Step 1: store the training samples in an array of data
points.

Step 2: calculate the distance of training samples and
new data point p.
Step 3: find the K smallest distance obtained.
Step 4: return the majority class of K smallest distance.

Euclidean, Manhattan, and Minkowski are well-known
distance functions. 'is paper used Euclidean distance to
calculate the distance between data points, Xi and Xj:

d Xi, Xj􏼐 􏼑 �

��������������������������������������

Xi1 − Xj1􏼐 􏼑
2

+ Xi2 − Xj2􏼐 􏼑
2

+ · · · + Xin − Xjn􏼐 􏼑
2

􏽲

,

�

���

􏽘

n

i�1

􏽶
􏽴

Xin − Xjn􏼐 􏼑
2
.

(7)

3.4. Random Forest. RF is a supervised learning algorithm
that can be used for both classification and regression. It
consists of many individual decision trees that spit out a class
prediction, and the class with the most votes becomes our
model’s prediction. 'e following steps show how this al-
gorithm works [35]:

Step 1: start with the select random samples from the
training dataset.
Step 2: construct a decision tree for every sample.
Step 3: get the prediction result from every decision
tree.
Step 4: perform voting for every predicted result.
Step 5: the most voted prediction result is the final
prediction result.

Decision trees start with a node and branch to another
node. 'is paper uses the entropy formula to determine how
the dataset branches from each node. Equation (8) presents
the entropy formula [36].

Entropy � 􏽘
c

i�1
− pi ∗ log2(pi), (8)

where pi is the relative frequency of class i, i is the index of
classes, and c is the total number of classes.

X

X

X

+

1-

tanhσ σ
rt ft lt

ht

ht-1

xt

Figure 3: Architecture of an LSTM network [32].
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3.5. Ensemble Learning. At this step, ensemble learning
methods put predictions of introduced methods together to
provide one unique final prediction. 'e final prediction is
expected to have higher accuracy than the accuracy of
LSTM, SVM, KNN, and RF.

Four different voting methods are defined as follows:

Voting to a better state: predictions are the majority
vote of contributing models. If majorities are equal,
priority is A, B, and C, respectively.
Voting to a worse state: predictions are the majority
vote of contributing models. If majorities are equal,
priority is C, B, and A, respectively.
Best state: it selects A if at least one model predicts A,
else it selects B if at least one predicts B; otherwise, it
selects C.
Worst state: it selects C if at least one model predicts C,
else it selects B if at least one predicts B; otherwise, it
selects A.

Another method is OL, which is a statistical method. In
this method, input models’ importance for predicting each
traffic state is determined by estimating coefficients and
t-state. Let us define s∗qi is a linear function consisting of a
vector of input variables xqi, corresponding coefficients c,
and random term ηqi. q is the index of hour, i is the index of
traffic state, and δAB and δBC are thresholds [37].

s
∗
qi � cxqi + ηqi. (9)

'e final output is A if s∗qi ≤ δAB, is B if δAB < s∗qi ≤ δBC,
and is C if δBC < s∗qi.

Model parameters are estimated by maximizing the
likelihood function.

log L � 􏽘
3

i�1
Mqilog Prqi􏽨 􏽩, (10)

where Mqi is equal to 1 if state i occurred in hour q, else
zero, and Prqi is occurrence probability of state i in hour q
[37].

Figure 4 shows the proposed ensemble learning
process.

All of the models are implemented in the R software.

4. Results and Discussion

LSTM, SVM, KNN, and RF models are trained by train
dataset 1. To tune the parameters of models, different values
are set for them.'e final parameters are selected in terms of
the accuracy of predictions on the rest of the dataset. 'ese
parameters include K in KNN, the number of trees to grow
(NT), and the number of variables randomly sampled as
candidates at each split (NV) in the RFmodel and cost (C) in
the SVMmodel. A summary of parameters tuning of models
is presented in Table 4.

After training models by optimum parameters, the ac-
curacy of predictions on train dataset 1 and train dataset
2+test datasets are calculated and presented in Table 5.

According to Table 5, RF, SVM, KNN, and LSTMmodels
can be sorted in terms of accuracy. Results indicated that the
RF model trained by the GA features outperforms other
models with 78.66% accuracy. Also, SVM and KNN have
similar performances, and LSTM predictions have less ac-
curacy than the other models. Using GA features increases
the efficiency of LSTM, KNN, and RFmodels. Reducing data
dimension and shortening computational time without
eliminating any useful information are other advantages of
feature selection by GA.

Figure 5 shows the accuracy changes during the time.
'e horizontal axis represents weeks in the train 2+test
dataset, and the vertical axis represents accuracies in percent.
Also, Figure 6 shows the prediction accuracy of models for
three random days. Based on Figures 5 and 6, there is no
most accurate model for all the times due to the temporal
variation of accuracies. 'is finding emphasizes using en-
semble methods to provide unique predictions with the
highest possible accuracy.

At the next step, OL is calibrated by using predictions of
contributing models for train dataset 2. 'e performance of
ensemble methods, including voting algorithms and OL and
single models, is evaluated for the test dataset.'e results are
presented in Table 6.

Table 6 shows that the OL model outperforms its input
with 81.03% prediction accuracy. For every period, the OL
model can detect the more accurate single model and put
more value on that model’s prediction. After OL, the worst
state voting algorithm provides 78.35% of accuracy. It means
that single models havemore tendencies to predict light state
and sometimes miss heavy state.

It is essential to evaluate models for predicting each
traffic state. For this purpose, among diverse evaluation
metrics, F-measure (F1) and balanced accuracy (because of
an unbalanced distribution of observations) are calculated
by using confusion matrices (Table 7) and equations 11 and
12 (see Akosa, 2017, Labatut and Cherifi, 2012, and'arwat,
2018, about calculating recall, precision, and specificity).

Balanced accuracy �
(Re call + Specificity)

2
, (11)

F1 �
2(Precision ∗ Recall)
Precision + Recall

. (12)

'ese metrics are calculated for single and ensemble
methods and presented in Table 8.

Based on Table 8, the OL predicts all states more
accurately than voting and single machine learning
methods. 'is model predicts states A, B, and C with
balanced accuracy equal to 89, 73.4, and 58.5 percent,
respectively. Also, OL’s F1s equal 0.813 for state A, 0.872
for state B, and 0.292 for state C and all of them are the
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Table 4: Optimum values for parameters of models.

Parameter Model 'e optimum value by using all features 'e optimum value by using selected features by GA
K KNN 26 37
NT RF 162 109
NV RF 9 8
C SVM 5 3

Table 5: Accuracy of predictions of single models.

Model Train 1-all features Train 2+test-all features Train 1-GA features Train 2+test-GA features
LSTM 76.65 70.77 75.93 70.89
SVM 82.09 76.25 80.60 75.48
KNN 80.10 74.94 79.15 75.41
RF 97.94 78.31 98.09 78.66
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Figure 5: Accuracy changes of single models during the time.
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Table 7: Confusion matrices of predictions for the test dataset.

True prediction A B C
Model LSTM-all
A 151 151 3
B 19 542 140
C 0 0 1
Model SVM-all
A 136 81 0
B 34 610 131
C 0 2 13
Model KNN-all
A 144 97 1
B 26 585 125
C 0 11 18
Model RF-all
A 150 78 0
B 20 614 133
C 0 1 11
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Figure 6: 'e prediction accuracy of models for three random days.

Table 6: Accuracy of predictions of ensemble and single models for test datasets.

Model Test-all features Test-GA features
LSTM 68.92 70.71
SVM 75.37 74.38
KNN 74.18 73.58
RF 76.96 76.86
Voting to a better state 75.17
Voting to a worse state 75.67
Best state 67.63
Worst state 78.35
OL 81.03
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Table 8: Evaluation metrics for predicting each traffic state.

Model State Precision Recall Specificity Balanced accuracy F1

LSTM-all
A 0.495 0.888 0.779 0.834 0.636
B 0.773 0.782 0.489 0.635 0.778
C 1 0.007 1 0.503 0.014

LSTM-GA
A 0.533 0.806 0.827 0.817 0.642
B 0.766 0.828 0.441 0.635 0.796
C 1 0.007 1 0.503 0.014

SVM-all
A 0.627 0.8 0.885 0.842 0.703
B 0.787 0.88 0.475 0.677 0.831
C 0.867 0.09 0.997 0.544 0.164

Table 7: Continued.

True prediction A B C
Model Voting to a better state
A 149 86 1
B 21 607 142
C 0 0 1
Model Best state
A 162 175 3
B 8 518 140
C 0 0 1
Model OL
A 141 36 0
B 29 649 118
C 0 8 26
Model LSTM-GA
A 137 119 1
B 33 574 142
C 0 0 1
Model SVM-GA
A 143 88 1
B 27 605 142
C 0 0 1
Model KNN-GA
A 144 90 1
B 26 594 140
C 0 9 3
Model RF-GA
A 151 76 0
B 19 613 134
C 0 4 10
Model Voting to a worse state
A 142 76 1
B 28 617 140
C 0 0 3
Model Worst state
A 116 26 0
B 54 645 116
C 0 22 28
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highest achieved F1 for each traffic state. Table 7 shows
that using the OL increases the balanced accuracy of
predicting traffic states A, B, and C, about 0.1%, 3.5%, and
4.1%, respectively, compared to the highest accuracy
achieved by the models it puts together.

OL coefficients help to find the importance of predicting
each traffic state by each model. Table 9 shows the results of
the OL model. Predictions of models converted to binary
(dummy) variables to be used in the OL model. Values in
parentheses show t-state.

Negative coefficients decrease s∗qi. It means that they
increase the probability of states A and B compared to
state C, as a base traffic state. For example, predicting
traffic state A by KNN-all decreases s∗qi by 1.57 units. 'is
decrease leads to an increase in the occurrence proba-
bility of state A compared to the traffic state C. T-state
under 1.56 shows statistically insignificant variables at
the 90% level of significance. For example, LSTM pre-
dictions are statistically insignificant in predicting traffic
states.

'eoretically, the proposed ensemble learning pro-
cess has no prediction time horizon limitation, but the
accuracy of prediction models decreases as time passes.
'e prediction horizon is different in previous studies.
Some previous studies suggest 6 months to have accurate
prediction [38], but it completely depends on the
employed model and data. Also, Figure 5 shows that the
prediction accuracy of single models decreases dramat-
ically after 17 weeks. Finally, 6-month prediction time
horizon seems to be suitable based on the literature and
Figure 5.

Finally, predicted traffic states could be informed to
travelers and transportation operators via advanced traveler
information systems. Travelers will have more insights for
choosing their departure times and routes to destinations.
Also, using these predictions, system operators are better
prepared to deal with unsuitable traffic conditions, and they
may implement policies such as access restrictions or in-
creasing the number of route lanes on the schedule to avoid
high congestion.

Table 8: Continued.

Model State Precision Recall Specificity Balanced accuracy F1

SVM-GA
A 0.616 0.841 0.872 0.857 0.711
B 0.782 0.873 0.46 0.667 0.825
C 1 0.007 1 0.503 0.014

KNN-all
A 0.616 0.841 0.872 0.857 0.711
B 0.782 0.873 0.46 0.667 0.825
C 1 0.007 1 0.503 0.014

KNN-GA
A 0.613 0.847 0.868 0.857 0.711
B 0.782 0.857 0.47 0.663 0.818
C 0.25 0.021 0.988 0.504 0.038

RF-all
A 0.658 0.882 0.889 0.886 0.754
B 0.801 0.886 0.513 0.699 0.841
C 0.917 0.076 0.999 0.538 0.141

RF-GA
A 0.665 0.888 0.891 0.889 0.761
B 0.8 0.885 0.513 0.699 0.84
C 0.714 0.069 0.995 0.532 0.127

Voting to a better state
A 0.631 0.876 0.875 0.876 0.734
B 0.788 0.876 0.479 0.678 0.83
C 1 0.007 1 0.503 0.014

Voting to a worse state
A 0.648 0.835 0.89 0.862 0.73
B 0.786 0.89 0.463 0.677 0.835
C 1 0.021 1 0.51 0.041

Best state
A 0.476 0.953 0.745 0.849 0.635
B 0.778 0.747 0.524 0.636 0.762
C 1 0.007 1 0.503 0.014

Worst state
A 0.817 0.682 0.963 0.823 0.744
B 0.791 0.931 0.459 0.695 0.855
C 0.56 0.164 0.972 0.583 0.289

OL
A 0.797 0.829 0.949 0.89 0.813
B 0.815 0.937 0.532 0.734 0.872
C 0.765 0.181 0.99 0.585 0.292
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5. Conclusion

Short-term traffic state prediction is a tool in the advanced
traveler information system that aims to bring a more sus-
tainable and more reliable transportation network. By pre-
dicting the near future of transportation network
performance, travelers and system operators are more ready
to face congested traffic or avoid getting stuck in traffic. 'is
paper predicts the nominal practical traffic state that is more
understandable for travelers. Many features are extracted in
the preprocessing step related to solar and lunar calendars,
weather conditions, and blockages. Feature selection is made
by GA systematically. 'en machine learning models con-
sisting of LSTM, KNN, SVM, and RFmodels are trained using
the GA selected features and all features. Ensemble methods,
including four voting methods and the OL model, use all
predictions and predict one final prediction to inform the
road passengers and transportation agencies. 'e final results
show that OL obtains the highest accuracy among machine
learning and ensemble learning algorithms, which equals
81.03%. 'e highest accuracy of single machine learning
methods is 76.96%, achieved by RF. 'e feature selection by
GA maintains the accuracy of predictions and increases the
accuracy of some models. Regarding F1 and balanced accu-
racy, traffic states A, B, and C are predictedmore accurately by
the OL model in the ensemble learning process. 'is model
provides interpretable coefficients, which can be used to show
the importance of models prediction.

For future studies, using and comparing other ensemble
learning methods such as gradient boosting decision trees
(GBDT) and neural network bagging ensemble hybrid
model is proposed.
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