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With the fifth generation (5G) communication technology, the mobile multiuser networks have developed rapidly. In this paper,
the performance analysis of mobile multiuser networks which utilize decode-and-forward (DF) relaying is considered. We derive
novel outage probability (OP) expressions. To improve the OP performance, we study the power allocation optimization problem.
To solve the optimization problem, we propose an intelligent power allocation optimization algorithm based on grey wolf
optimization (GWO). We compare the proposed GWO approach with three existing algorithms. .e experimental results reveal
that the proposed GWO algorithm can achieve a smaller OP, thus improving system efficiency. Also, compared with other channel
models, the OP values of the 2-Rayleigh model are increased by 81.2% and 66.6%, respectively.

1. Introduction

Recently, the increasing provision of multiuser services, the
ever-increasing number of devices, and the continuous
growth of data pose significant challenges to massive mobile
multiuser connectivity. Fifth generation (5G) mobile com-
munication networks are very important in achieving
massive mobile multiuser connectivity [1, 2]. To meet this
requirement, the boom of 5G mobile communications has
resulted in the emergence of many new technologies [3–5].
Nonorthogonal multiple access and millimeter-wave com-
munications are key aspects of 5G technology [6]. However,
the complex multiuser communication environment makes
the 5G mobile communication challenging.

As an alternative way to ensure reliable multiuser
communication, cooperative communication has sparked a
great deal of research [7]. Secrecy performance of multiple-
relay cooperative communication was investigated in [8]. In
[9], cooperative cognitive relaying was employed to provide
secure communications. Xu et al. [10] studied the incre-
mental decode-and-forward (DF) cooperative relay
network.

To improve the multiuser cooperative communication,
power allocation plays a key role [11]. Xu et al. employed the

passive beamforming to improve energy efficiency optimi-
zation in [12]. In [13], with multicarrier division, Li et al.
investigated resource allocation problem. Filomeno et al.
proposed two power allocation algorithms in [14].

To further improve the power allocation performance,
various swarm intelligence optimization methods have been
used to optimize the parameters [15]. To solve the multi-
UAV task allocation problem, an improved genetic algo-
rithm (GA) was proposed in [16]. An adaptive firefly al-
gorithm (FA) algorithm was proposed to enhance data
security in [17]. By using the golden section (GS) algorithm,
Cuevas et al. optimized the evolutionary computation in
[18].

However, research on power allocation optimization of
mobile multiuser communications is very rare. .erefore,
we investigate power allocation optimization over the
2-Rayleigh model. .e main contributions are as follows:

(1) With transmit antenna selection (TAS), we analyze
the OP performance of mobile multiuser networks.
New OP expressions are derived. .ese results are
more complex than those in the Rayleigh model.

(2) To improve the OP performance, we propose an
intelligent power allocation optimization method
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based on grey wolf optimization (GWO), which
reduces computational complexity.

(3) Compared with Nakagami and Rayleigh channel
models, the 2-Rayleigh model has an increase of
81.2% and 66.6% in OP values, respectively. We also
test the firefly algorithm (FA), the genetic algorithm
(GA), and the golden section (GS) algorithm.
Compared with these algorithms, our proposed
GWO method achieves a smaller OP.

Table 1 shows the notations in our paper.

2. System Model

In Figure 1,Nt andNr antennas are installed at mobile source
(MS) and mobile relay (MR), respectively. .ere are L
mobile users (MUs). .e channel coefficient h follows
2-Rayleigh distribution [19]. .e energy E is allocated by K.
W{SUil,RUjl} are the position gains of MSi⟶MUl and
MRj⟶MUl, respectively.

Firstly, MUl and MRj receive the signals as

rSUil �
��������
WSUilKE

􏽰
hSUilx + NSUil, (1)

rSRij �
���
KE

√
hSRijx + NSRij, (2)

where NSRij and NSUil are Gaussian noises.
.en, MRj employs DF scheme and transmits signal to

MUl as

rRUjl � β
�������������
WRUjl(1 − K)E

􏽱
hRUjlx + NRUjl. (3)

.e SNR cSRij at MRj is given as

cSRij �
K hSRij
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(4)

If cSri< cth, MUl cannot receive the signal from MR. cSri
is given as

cSRi � max
1≤j≤Nr

cSRij􏼐 􏼑. (5)

MUl receives the SNR cil aswhere

cSUil � KWSUil hSUil

􏼌􏼌􏼌􏼌
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(6)

where c is the average SNR.
.e best user is chosen from L mobile users:

ci � max
1≤ l≤L

cil( 􏼁. (7)

.e TAS is employed to select w as

w � max
1≤ i≤Nt

ci( 􏼁

�

max
1≤ i≤Nt,1≤ l≤ L

cSUil( 􏼁, if |C| � 0,

max
1≤ i≤Nt,1≤ l≤L,j∈C

cSUil, cRUjl􏼐 􏼑, if |C|≠ 0,

⎧⎪⎪⎨

⎪⎪⎩

(8)

where C is given as

C � 1≤ i≤Nt|cSRi ≥ cth􏼈 􏼉. (9)

3. OP Performance with TAS

We obtains the OP as

F � Q1 + Q2, (10)

where

Q1 � G
2,1
1,3

cth

Kc
|
1

1,1,0
􏼢 􏼣􏼠 􏼡

Nt×Nr

× G
2,1
1,3

Rth

KWSUc
|
1

1,1,0
􏼢 􏼣􏼠 􏼡

Nt×L

,

Q2 � 􏽘

Nt

n�1

Nt

n

⎛⎝ ⎞⎠ G
2,1
1,3

cth

Kc
|
1

1,1,0
􏼢 􏼣􏼠 􏼡

Nt− n( )×Nr

1 − G
2,1
1,3

cth

Kc
|
1

1,1,0
􏼢 􏼣􏼠 􏼡

Nr

⎛⎝ ⎞⎠

n

× G
2,1
1,3

Rth

KWSUc
|1, 1, 01􏼢 􏼣􏼠 􏼡

Nt×L

G
2,1
1,3

Rth

(1 − K)WRUc
|1, 1, 01􏼢 􏼣􏼠 􏼡

n×L

,

(11)

where Rth is a given threshold.

Table 1: Notations.

Notations Designation
K Power allocation coefficient
W .e position gain
SNR Signal-to-noise ratio
Nt .e transmit antennas
Nr .e receive antennas
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Figure 1: .e system model.
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Figure 2: GWO algorithm.
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4. Power Allocation Intelligent Optimization

According to [20–22], the GWO algorithm is divided into
the following parts.

4.1. Encircling. .e encircling process is expressed as

D D � C · XXp(t) − XX(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

XX(t + 1) � XXp(t) − A · DD,

A � 2a · r1 − r2,

C � 2 · r2,

(12)

where r1, r2 ∈ [0, 1] and a ∈ [0, 2].

4.2. Hunting. .e wolves renew their positions as

XX(t + 1) �
XX1 + XX2 + XX3

3
, (13)

where

XX1 � XXα(t) − Aα · DDα,

XX2 � XXβ(t) − Aβ · DDβ,

XX3 � XXδ(t) − Aδ · DDδ,

DDα � Cα · XXα(t) − XX(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

DDβ � Cβ · XXβ(t) − XX(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

DDδ � Cδ · XXδ(t) − XX(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(14)

4.3. Attacking. .e wolves attack the prey. .e maximum
iteration is ter. a is given as

a � 2 −
2t

ter
. (15)

Figure 2 shows the GWO algorithm.

5. Performance Results

Figure 3 illustrates the comparison of amplify-and-forward
(AF), DF, and direct communication schemes. Table 2 shows
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Figure 3: OP comparison with different schemes.
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the corresponding parameters. .e DF scheme is superior to
AF and direct communication schemes. .is means that
with the increase of SNR, the cooperative communication
condition becomes good, which reduces the OP. Compared
with direct transmission, it also shows that cooperative
transmission always reduces the OP.

Figure 4 presents the OP performance comparison under
Nakagami, Rayleigh, and 2-Rayleighmodels..e parameters
are given in Table 3. We can see that the OP performance of
the Nakagami model is better than that of Rayleigh and
2-Rayleigh models. When SNR� 4 dB, the OP values are
0.0280, 0.0499, and 0.1492, respectively. Compared with
Nakagami and Rayleigh channel models, the 2-Rayleigh
model has an increase of 81.2% and 66.6% in OP values,
respectively.

In Figures 5–8, we obtain the optimum K for the GWO,
GS, GA, and FA methods. .e parameters are given in
Table 4. Compared with GS, GA, and FA, GWO achieves a
smaller OP (0.0005). .is is due to the fact that GWO has a
simple structure and a strong convergence performance,
which is easy to implement.

Table 2: Parameters of Figure 3.

μ 0 dB
K 0.5
cth 5 dB
Rth 5 dB
Nt 2
Nr 2
L 2
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Figure 4: OP comparison with different channel models.

Table 3: Parameters of Figure 4.

μ 0 dB
K 0.6
cth 5 dB
Rth 5 dB
Nt 2
Nr 2
L 2
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6. Conclusions

In this paper, the power allocation optimization of mobile
multiuser networks was investigated. Based on the GWO
method, we proposed a power allocation optimization
algorithm. .e simulation results showed that compared
with GS, GA, and FA algorithms, GWO algorithm can
obtain better OP performance results. Compared with
Nakagami and Rayleigh channel models, the 2-Rayleigh
model has an increase of 81.2% and 66.6% in OP values,
respectively.

In future studies, we will consider using artificial in-
telligence to obtain the optimal K value.
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Figure 5: Optimum K of GWO.
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Figure 7: Optimum K of FA.
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Figure 8: Optimum K of GS.

Table 4: Simulation parameters for the 4 methods.

Algorithm Simulation parameters
GWO psize� 50, ter� 1000
GS a� 0, b� 1, ε� 0.2
GA psize� 50, ter� 1000
FA psize� 50, α� 0.5, β� 0.2, c � 1, ter� 1000
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