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By installing on-board diagnostics (OBD) on tested vehicles, the after-treatment exhaust emissions can be monitored in real time
to construct driving cycle-based emission models, which can provide data support for the construction of dynamic emission
inventories of mobile source emission. However, in actual vehicle emission detection systems, due to the equipment installation
costs and differences in vehicle driving conditions, engine operating conditions, and driving behavior patterns, it is impossible to
ensure that the emission monitoring data of different vehicles always follow the same distribution. *e traditional machine
learning emission model usually assumes that the training set and test set of emission test data are derived from the same data
distribution, and a unified emission model is used for estimation of different types of vehicles, ignoring the difference in
monitoring data distribution. In this study, we attempt to build a diesel vehicle NOx emission prediction model based on the deep
transfer learning framework with a few emission monitoring data. *e proposed model firstly uses Spearman correlation analysis
and Lasso feature selection to accomplish the selection of factors with high correlation with NOx emission from multiple sources
of external factors. *en, the stacked sparse AutoEncoder is used to map different vehicle working condition emission data into
the same feature space, and then, the distribution alignment of different vehicle working condition emission data features is
achieved by minimizing maximum mean discrepancy (MMD) in the feature space. Finally, we validated the proposed method
with the diesel vehicle OBD data that were collected by the Hefei Environmental Protection Bureau. *e comprehensive ex-
periment results show that our method can achieve the feature distribution alignment of emission data under different vehicle
working conditions and improve the prediction performance of the NOx inversion model given a little amount of NOx emission
monitoring data.

1. Introduction

With the rapid development of China’s urbanization and
social economy, China’s motor vehicle fleet is growing rapidly
and has become the world’s largest production andmarketing

of motor vehicles for eleven consecutive years. At the same
time, the air pollution problem caused by motor vehicle
emissions is becoming increasingly serious, and it has become
an important source of air pollution in large and medium-
sized cities in China, as well as the important cause of fine
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particulate matter and photochemical smoke pollution. As an
important tool for quantitative accounting of mobile source
pollution, emission inventory can be used for air pollution
control measures and traceability analysis. Because the cur-
rentmobile source pollution emission regulationmainly relies
on the annual vehicle inspection, the single vehicle emission
testing takes a long time, and the test results cannot fully
reflect the actual emissions of vehicles on the road, making it
difficult to realize dynamic regulation of mobile source
emissions. By installing on-board diagnostics (OBD) on
tested vehicles [1], the after-treatment exhaust emissions can
be monitored in real time to provide data support for the
construction of dynamic emission inventories of mobile
source emission. However, due to security of data privacy and
equipment installation costs, it is not possible to install
monitoring equipment on all road-running vehicles for
emission detection, while a series of problems such as human
data tampering and equipment failure often leads to missing
monitoring values, which greatly limits the application of
OBD monitoring data in mobile source emission manage-
ment. *erefore, it is significant to improve the application
efficiency of OBDmonitoring data through reliable analysis of
features affecting emission detection and accurate prediction
of missing monitoring data for mobile source emission
precise regulation.

Existing emission estimation methods for mobile sources
are mainly divided into average-speed based models and
actual driving cycle based models.*e former method usually
builds a statistical regression model of pollution emissions
based on the average speed of a fleet of vehicles and is usually
used to estimate the macrolevel traffic pollution emissions
within a specific region (administrative district or city) for a
specific time period (usually a quarter or a year). *e typical
models are the MOBILE model developed by the US Envi-
ronmental Protection Agency (US EPA) [2], the EMFAC
model developed by the California Air Resources Board
(CARB) [3], and the COPERT model developed by the Eu-
ropean Commission (EC) [4]. *ese models obtain emission
features from standard bench test cycles and characterize
vehicle emission characteristics in terms of mean values such
as average speed and average emission features, while ig-
noring the effects of actual road operating conditions, driving
behavior, and vehicle dynamics on vehicle emissions. *e
driving cycle based emission models analyze the emissions of
vehicles under different driving cycles through the complete
driving process based on the multidimensional working
condition characteristics data such as instantaneous speed
and acceleration obtained when the vehicle is driving, which
are suitable for the tasks of analyzing single-vehicle emissions
or emissions calculations for a specific number of roads. *e
main models in this category are the IVE model [5] and the
CMEM model [6] developed by the University of California,
Riverside (UCR), the MOVES model [7] developed by the
EPA (which can estimate emissions based on both average
speed and driving cycles), and the EMITmodel [8] developed
by the Massachusetts Institute of Technology (MIT). Due to
the lack of basic vehicle testing data, domestic research on
emission factor models started late, and default foreign model
values were used directly in assessing local vehicle pollution

emissions, resulting in large estimation errors. In recent years,
with the development and application of vehicle emission
monitoring system, it can obtain the actual road emission
features used to make corrections to foreign emission models
[9]. Quirama et al. [10] used PEMS to construct an energy-
based microtrip operating model and estimate the actual
energy consumption and exhaust emissions of a fleet in a
given region. Tsinghua University developed an emission
factor model for the Beijing Vehicle fleet (EMBEV) based on
mature foreign emission models, which integrates the average
speed and driving cycle to achieve macro- and microemission
factor acquisition [11]. Wang et al. [12] used a sequential
decision strategy based on vehicle low-frequency GPS tra-
jectories to achieve roadway speed estimation and combined
with a microscopic emission model to estimate vehicle CO2
emissions. Wang et al. [13] considered the influence of vehicle
historical operating state and constructed a microscopic
emission model based on BP neural network using short-time
driving cycle. *e traditional driving cycle-based emission
model uses artificially designed parameters such as vehicle
speed and acceleration to characterize the relationship be-
tween vehicle driving cycle and pollution emissions, but it
ignores the vehicle engine operating state information and
inadequate representation of vehicle driving cycle charac-
teristics, which makes it difficult to effectively estimate the
exhaust emissions of monitoring missing vehicles under
different driving conditions.

With the boom in machine learning and deep learning
research, some scholars began to introduce artificial intel-
ligence techniques into the research of mobile source
emission estimation. Chen et al. [14] used quantile regres-
sion forest on vehicle remote sensing data for NO prediction.
Xu et al. [15] established a spatiotemporal map convolu-
tional multifusion network for effective prediction of re-
gional vehicle emissions in Hefei city. Xu et al. [16]
combined deep moment residual early-late fusion network
with semisupervised geographical weighted regression to
predict regional emissions as a spatiotemporal series data.
Altug and Kucuk [17] trained XGBoost with engine speed,
engine torque, pedal position, and vehicle speed data as
inputs to predict NOx emissions and compared it with
elastic network and LSTM, showing its high accuracy. Fei
et al. [18] proposed a multicomponent fusion time network
to predict the emissions of CO consideringmultiple complex
features. Xu et al. [19] constructed a mobile source emission
prediction model based on deep neural network to realize
the relationship mapping between vehicle transient oper-
ating conditions and pollution emissions and further pro-
posed a deep correction model for remote emission sensing
data based on COPERT emission features by constructing a
three-layer AutoEncoder network to realize the feature
extraction of multisource heterogeneous data, such as me-
teorological data, road network data, traffic flow data, and
urban functional areas [20].

In actual vehicle emission detection systems, due to
differences in vehicle driving conditions, engine operating
conditions, and driving behavior patterns, it is impossible to
ensure that the emission monitoring data of different vehicles
always follow the same distribution. However, in a traditional
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machine learning emission model, it is usually assumed that
the training set and testing set of emission testing data are
derived from the same data distribution, and a unified
emission model is used for estimation of different types of
vehicles, ignoring the difference in monitoring data distri-
bution. As shown in Figure 1, Label_S represents the NOx

emission values of diesel vehicle used for training to obtain
the NOx prediction model on one kind of diesel vehicle,
which is the label of the training set in the regression model.
Label_T represents the NOx emission values of diesel vehicle
that are expected to make use of the knowledge of the pre-
diction model obtained on the Label_S dataset, which is the
label of the data set on another kind of diesel vehicle in the
regression model. *e NOx emission distribution of source
domain and target domain is different, which will cause the
performance degradation in the supervised model based on
independent identical distribution assumption. *e transfer
learning technique [21] can provide a solution for the con-
struction of exhaust emission prediction models under dif-
ferent driving conditions by transferring the data-complete
source domain knowledge to the data-sparse target domain.

Inspired by the insight of transfer learning, a novel NOx

emission inversion prediction method for diesel vehicles is
proposed in this paper. Specifically, it is a deep transfer
learning (DTL)-based model which firstly uses Spearman
correlation analysis and Lasso feature selection to accom-
plish the selection of factors with high correlation with NOx
emission from multiple influence factors (e.g., throttle state
and engine-related states). *en, the stacked sparse
AutoEncoder is used to map different vehicle working
condition emission data into the same feature space, and
then the distribution alignment of different vehicle working
condition emission data features is achieved by minimizing
maximum mean discrepancy (MMD) in the feature space.
Finally, we validated the proposed method on the real-world
diesel vehicle OBD data, and the comprehensive results
show that the proposed DTL model outperforms several
deep learning (DL) methods, indicating that DTL based on
multiple sources of external influences has great potential for
diesel vehicle NOx emission prediction in the case of in-
sufficient monitoring data.

*e rest of the article is organized as follows. Section 2
discusses the related works. Section 3 describes the con-
struction of the DTL model. In Section 4, several experi-
ments are conducted. *e conclusions and future research
are drawn in Section 5.

2. Related Works

2.1. Lasso. Using features unrelated to the prediction as
input variables will increase the complexity and reduce the
explanatory power of the regression model, so it is necessary
to select the relevant initial features. Least absolute shrinkage
and selection operator (Lasso) proposed by Tibshiran [22] is
a commonly used variable selection method in terms of the
machine learning field. It achieves variable selection by
adding the L1 norm so that some of the variable coefficients
in the input variables are trained to be set to 0. *e loss
function is as follows:

βLasso �
1
m

􏽘

m

i�1
yi − wxi( 􏼁 + λ‖w‖1, (1)

where λ is the penalty coefficient and the larger its value, the
fewer variables are retained. *e cross-validation method is
usually used to determine its optimal value.

2.2. SAE. AutoEncoder (AE) is a symmetric single hidden
layer neural network [23]. It consists of an encoding module
and a decoding module, where the encoding module is
represented by the input layer to the hidden layer, and the
decoding module is represented by the hidden layer to the
output layer. After training, it is able to copy the input to the
output to the maximum extent possible, and the features of
the hidden layer represent an abstract representation of the
input features in the feature space. *e AE structure is
shown in Figure 2, where the input ith sample Xi � [xi,1, xi,2,
xi,3, xi,m] contains m features, where the features h of the
hidden layer is specifically expressed as

h � f w1 · x + b1( 􏼁. (2)

*e formula w1 is the weight from the input layer to the
hidden layer, b1 is the bias from the input layer to the hidden
layer, and f is an activation function, and in this paper, we
choose sigmoid. *e reconstructed feature 􏽢x can be
expressed as

􏽢x � f w2 · h + b2( 􏼁, (3)

where w2 is the weight of the hidden layer to the output layer
and b2 is the bias of the hidden layer to the input layer. In
order to ensure that 􏽢x can be restored to the maximum
extent, the loss function is used as follows:

J(w, b) � 􏽘
m

i�1

1
2

xi − 􏽢xi

����
����
2

􏼒 􏼓. (4)

When the number of hidden layer neurons is smaller
than the number of inputs, the AutoEncoder can achieve
data compression.
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Figure 1: Emission distribution of different driving conditions.
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*e AutoEncoder simply copies the input to the output
in training, which makes it difficult to obtain meaningful
feature representations. Nowadays, research compensates
for this drawback by adding constraints to traditional
AutoEncoder, resulting in various novel AutoEncoder, such
as Denoising AutoEncoder (DAE) [24], Sparse AutoEncoder
(SAE) [25], and Variational AutoEncoder (VAE) [26].

In SAE, KL divergence is added as a sparse penalty term
to force only some of the neurons in the hidden layer to be
activated. *e KL divergence is expressed as follows:

DKL � ρ log
ρ
ρj

+(1 − ρ)log
1 − ρ
1 − ρj

, (5)

where ρ represents the probability of the hidden layer
neuron being activated, which is generally taken as a value
close to 0. ρj is the actual activation probability of the jth
neuron in the hidden layer, which is expressed as follows:

ρj �
1
m

􏽘

m

i�1
fj xi( 􏼁, (6)

where fj(xi) represents the activation probability of the
hidden layer neuron j when the input data is the ith sample.

In addition, to prevent the network from overfitting, the
L2 norm is added to the loss function and α and β are the
penalty coefficients of the sparse and weight terms. In
summary, the loss function of SAE is as follows:

JSAE(w, b) �
1
2

􏽘

m

i�1
xi − 􏽢xi

����
����
2

􏼒 􏼓 + α􏽘

j�s

j�1
DKL ρ‖ρj􏼐 􏼑

+
β
2

w1
����

����
2

+ w2
����

����
2

􏼒 􏼓.

(7)

2.3. Stacked AutoEncoder. Compared to a normal
AutoEncoder, a stacked AutoEncoder can obtain hidden
features that are more suitable for complex regression tasks.
*e stacked sparse AutoEncoder uses layer-wise unsuper-
vised pretraining [27]; specifically, after the simple sparse

AutoEncoder is trained, the features of the hidden layer are
used as a new input to train a new sparse AutoEncoder,
which can be described as n⟶ m⟶ n⟹
m⟶ k⟶ m⟹ · · ·⟹ s⟶ t⟶ s, and when the
required number of layers is reached, all hidden layers are
combined in order to form a stacked sparse self-encoder.

2.4. Domain Adaptation. Domain adaptation (DA) [28] is a
more popular transfer learning method, which aims to map
source features with different distributions and target fea-
tures into the same space and draw the distributions of the
two close in the feature space, thus achieving distribution
alignment, and then the objective function obtained by
training using the source data in the feature space can be
transferred to the target domain.

*ere are three main types of DA methods in deep
learning, which are discrepancy-based domain adaptation,
adversarial-based domain adaptation, and reconstruction-
based domain adaptation.

Discrepancy-based domain adaptation focuses on mea-
suring the difference between the source and target domains
by adding a certain metric and achieving alignment between
the source and target domains by minimizing this metric. In
deep domain adaptation, Tzeng et al. [29] proposed a new
CNN structure that performs domain adaptation by adding
an adaptive layer and an MMD-based loss function and has
excellent performance on vision domain tasks; Werner et al.
[30] proposed central moment difference (CMD), which
performs domain adaptation by aligning the central moments
of each order between domains; Li et al. [31] proposed a DTN
based on MMD for adaptation of edge distribution and
conditional distribution, which has superiority in image
classification and recognition as well as text classification.

Adversarial-based domain adaptation is mainly achieved
through adversarial with discriminators, where the gener-
ator aligns source and target data on the feature space. Eric
et al. [32] combined discriminative model, weight sharing,
and GAN loss to propose Adversarial Discriminative Do-
main Adaptation (ADDA); Judy et al. [33] proposed Cyclic
Consistent Adversarial Domain Adaptation (CyCADA) to
perform cross-domain adaptation at both pixel level and
feature level while ensuring semantic consistency. Shen et al.
[34] proposed WGDRL metric and optimized feature ex-
traction network to reduce Wasserstein distance in an
adversarial manner.

Reconstruction-based domain adaptation mainly fo-
cuses on domain adaptation by reconstructing the data to
ensure that the learned features remain unchanged. Glorot
et al. [35] proposed domain adaptation based on stacked
AutoEncoder SDAs to extract higher-order semantic in-
formation; Bousmalis et al. [36] proposed a DSN framework
to decode the source and target domains with a common
decoder for each of the three encoder outputs that extract the
common features between different domains and use the
shared features for transferring.

2.5. MMD. Maximum mean discrepancy (MMD) is used
more frequently in transfer learning as a common means of
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Figure 2: *e structure of AutoEncoder.
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measuring the difference between two domains. It maps the
original data into Hilbert space and then measures the
distribution between the two domains, which is a kernel
learning method [37]. *e specific metric formula is as
follows:

MMD[F, X, Y] � 􏽘

n1

i�1
k xi( 􏼁 − 􏽘

n2

j�1
k yj􏼐 􏼑

����������

����������

2

, (8)

where k(·) is the mapping for mapping the original data into
the Reproducing Kernel Hilbert Space (RKHS), X, Y denote
the samples of two distributions, and F is the set of mapping
functions.

3. Methodology

In this section, we mainly introduce the details of the model
in this paper. As shown in Figure 3, we propose a deep
transfer learning (DTL) model for NOx emissions from
diesel vehicles based on multisource external influences,
using Spearman for correlation analysis and Lasso-based
feature selection to find out the features with strong cor-
relation with diesel vehicle NOx emission. After that, the
stacked sparse AutoEncoder is designed to extract the
common hidden features in the source and target domains.
*e data alignment of different vehicle models is achieved by
minimizing the MMD distance between the source and
target domains. Finally, the transfer of NOx emissionmodels
between vehicles with different data distribution is obtained.

3.1. Data Description. *e OBD data of diesel vehicles
collected in Hefei in 2020 includes license plate, terminal
number, data date, engine speed, actual output torque
percentage, water temperature of engine, oil temperature of
engine, after-treatment downstream NOx value, after-
treatment downstream oxygen percentage, atmospheric
pressure, environmental temperature, after-treatment waste
mass flow rate, urea tank level percentage, temperature of
urea tank, vehicle speed, gas pedal opening, word trip
mileage, total mileage, engine instantaneous fuel injection,
engine instantaneous fuel consumption rate, average engine
fuel consumption, engine fuel consumption for a single trip,
cumulative engine fuel consumption, battery voltage mail-
box level, cumulative engine running time, longitude, lati-
tude, SCR upstream temperature, and SCR downstream
temperature.

Table 1 shows the comparison of the detailed parameters
of the source domain diesel vehicle and the target domain
diesel vehicle. In order to improve the data quality, we
preprocessed the data, including data deduplication, outlier
removal, and removal of irrelevant features. After pre-
processing, the data statistics of source domain diesel vehicle
and target domain diesel vehicle are shown in Tables 2 and 3.

3.2. Relevant Features Selection. *ere are many features
affecting NOx monitoring downstream of diesel vehicle
after-treatment, and for the source data after pretreatment,
we calculate Spearman correlation coefficients between NOx

and many features downstream of after-treatment, such as
oxygen percentage, engine speed, and temperature of en-
gine water, and subject these coefficients to hypothesis
testing at p � 0.05(t � 1.645) and remove the uncorrelated
NOx emission external features as new characteristics. *e
specific values of Spearman coefficient and T value are
shown in Table 4, from which it is easy to know that the
temperature of engine oil, the temperature of ambient,
temperature of urea tank, and percentage of urea tank level
are not related to NOx emission under the condition of
t � 1.645.

After finding out the new features, the Lasso algo-
rithm was used to calculate the correlation coefficients
of each feature with NOx, and then the features whose
coefficients were not 0 were taken as the final features.
Among them, the Lasso coefficients of each feature with
NOx after Spearman correlation analysis are shown in
Table 5, where the Lasso coefficients of vehicle speed
and NOx are 0, and they are removed from the final
features.

*e new source data consisting of Spearman and Lasso
processed features are denoted as n XS, and their features
featuren XS

are subdivided by source into vehicle engine-
related, vehicle throttle-related, and vehicle after-treatment
system-related, and their specific classification is shown in
Table 6.

In order to ensure that the source features and the target
features are the same, we take the feature featuren XS

of n XS

as the benchmark and make the feature featureXT
in the

target domain intersect with it, and the obtained feature
featuren XT

forms the new target domain data n XT for
which the visualization is expressed as

featuren XT
� featuren XS

∩ featureXT
,

featuren XS
∈ featureXT

.
(9)

Since the monitoring elements for diesel vehicle emis-
sions are consistent, featuren XS

is a subset of featureXT
.

3.3. DTL. After screening the external correlates of diesel
vehicle NOx emissions, we obtained homotypic source and
target data highly correlated with vehicle NOx emissions,
whose characteristics contain engine speed, actual output
torque percentage, temperature of engine water, gas pedal
opening, after-treatment downstream oxygen percentage,
and after-treatment exhaust gas mass flow rate. Domain
adaptation is achieved by minimizing the MMD distance
representing the difference in distribution between the
source and target data through a deep transfer of network
projection to the common space and a high-dimensional
sparse representation.

3.3.1. Stacked Sparse AutoEncoder. We take n XS as the
input of the first layer of the stacked sparse AutoEncoder, the
number of hidden layer neurons is set to 5 times the number
of input features, α � 2, β � 0.01, and the probability of the
hidden layer neurons being activated ρ is 0.05, and we
optimize the loss function JSAE by backpropagation and save
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the hidden layer weights after the network converge. *en,
we use the hidden layer feature data as input and train the
new sparse AutoEncoder according to the above steps, and
when the required number of stacked layers k is reached, the
saved hidden layers are stacked, and Table 7 shows the
hidden feature dimensions of different stacked layers.

3.3.2. Weight Sharing. In order to learn the common hidden
features of the source and target domains more quickly

and efficiently, we use weight sharing as a means to
transfer the weights of each layer of the stacked sparse
AutoEncoder trained with the source data to the final deep
transfer network.

Weight sharing is commonmeans in deep transfer learning
[38–40]. After pretraining a stacked sparse AutoEncoder with
source data, the weights Wi and bias bi of each layer need to be
shared to the new stacked sparse AutoEncoder to complete the
weight transferring, described as

Table 2: Descriptive statistics of the source domain.

Count Mean Std Min Max
Engine speed 5229 1194.87 297.60 0 2095.0
Actual output torque percentage 5229 23.64 21.16 0 99.0
Water temperature of engine 5229 78.10 3.59 67.0 88.0
Oil temperature of engine 5229 86.69 4.17 69.0 97.0
After-treatment downstream NOx value 5229 997.92 820.01 0 3076.0
After-treatment downstream oxygen percentage 5229 13.69 4.76 0 21.0
Environmental temperature 5229 29.90 1.37 26.0 32.0
After-treatment waste mass flow rate 5229 443.13 149.48 0 1008
Urea tank level percentage 5229 90.99 1.98 82.0 100.0
Temperature of urea tank 5229 30.31 0.52 29.0 32.0
Vehicle speed 5229 35.41 18.42 0 59.0
Gas pedal opening 5229 19.19 19.36 0 100.0
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Figure 3: *e architecture of the proposed method.

Table 1: *e detailed vehicle and engine parameters.

Source Target
Vehicle brand HIGER SHACMAN
Vehicle type KLQ6115K SX3315DR366
Engine type WP10.336E40 WP12.375E50
Number of cylinders 6 6
Displacement 9.726 L 11.596 L
Rated rotation speed 1900 rpm 1900 rpm
Maximum output power 247 kW 276 kW
Maximum horsepower 336 375
Maximum torque 1500Nm 1800Nm
Maximum torque speed 1300–1600 rpm 1000–1400 rpm
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w
n
i � wi,

b
n
i � bi,

(10)

where wn
i is the ith hidden layer weight of the new stacked

sparse AutoEncoder and bn
i is the ith hidden layer bias of the

new stacked sparse AutoEncoder; wi and bi are the ith
hidden layer weight and bias of the trained stacked sparse
AutoEncoder, respectively.

3.3.3. Feature Transfer Learning. In order to mix the source
domain and the target domain into the same domain in the
feature space, we put n XS, n XT into the new sparse
AutoEncoder together as inputs and use MMD as the loss
function. *erefore, the loss function of the stacked sparse
AutoEncoder based deep transfer network is as follows:

J(w, b) � Di f. n XS, n XT( 􏼁

� MM D , n XS, n XT􏼂 􏼃

�
1

m2 􏽘

m

i,j�1
k n xS,i, n xS,j􏼐 􏼑 −

2
mn

􏽘

m,n

i,j�1
k n xS,i, n xT,j􏼐 􏼑 +

1
n2 􏽘

n

i,j�1
k n xT,i, n xT,j􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦

1
2

.

(11)

By continuously minimizing the MMD, the distribution
of target and source domain can be effectively brought closer
together in new feature space. By continuously minimizing

the MMD, the distributions of the target domain and source
domain can be effectively approximated in the new feature
space. With the help of back propagation, the gradient

Table 3: Descriptive statistics of the target domain.

Count Mean Std Min Max
Engine speed 5229 1182.85 269.88 534.0 1997.0
Actual output torque percentage 5229 26.47 24.89 0 99.0
Water temperature of engine 5229 75.01 0.79 73.0 78.0
Oil temperature of engine 5229 72.41 3.49 35.0 77.0
After-treatment downstream NOx value 5229 387.85 288.98 0 1769.0
After-treatment downstream oxygen percentage 5229 13.27 3.37 2.0 21.0
Environmental temperature 5229 29.64 1.48 26.0 32.0
After-treatment waste mass flow rate 5229 464.85 177.72 171.0 1142.0
Urea tank level percentage 5229 56.89 2.25 35.0 82.0
Temperature of urea tank 5229 30.01 0.88 29.0 31.0
Vehicle speed 5229 37.56 19.45 0 80.0
Gas pedal opening 5229 24.38 23.67 0 100.0

Table 4: Spearman coefficients and corresponding T values.

Feature ρ T
Engine speed 0.3035 21.95
Actual output torque percentage 0.4749 34.34
Temperature of engine water 0.0281 2.03
Temperature of engine oil 0.0178 1.29
After-treatment downstream oxygen percentage −0.4292 −31.04
Urea tank level percentage 0.0169 1.22
Environmental temperature 0.0093 0.67
After-treatment exhaust gas mass flow rate 0.4868 35.20
Temperature of urea tank −0.0008 −0.055
Vehicle speed 0.1482 10.72
Gas pedal opening 0.4847 35.05

Table 5: Lasso coefficients of relevant features.

Engine speed 0.5630
Actual output torque percentage 12.5938
Temperature of engine water −5.6142
After-treatment downstream oxygen percentage −9.4329
After-treatment exhaust gas mass flow rate 1.8042
Vehicle speed 0
Gas pedal opening 13.9244
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descent updates the weights and biases until convergence,
and the output is used as new features. *e new features in
the source and target domains are denoted as
Rec XS,Rec XT, respectively.

3.4. Target Domain. NOx prediction. *e source data and
the target data are projected onto the feature space by the
deep transfer network, and the domain adaptation is
completed. *e transformation of the original features
through the deep transfer network can be described in detail
by the following equation:

xi⟶ x1,i, x2,i, . . . , xs,i􏽨 􏽩, (12)

where xi is the original feature in column
i, [x1,i, x2,i, . . . , xs,i] is the feature representing xi on the
feature space, where s is an artificially set parameter.

Since the NOx values downstream of the after-treatment
are affected by nonlinear features, such as engine speed,
oxygen percentage downstream of the after-treatment, and
engine water temperature, we chose to use a BP neural
network to build a regression prediction model.

After feature transferred, we divide [Rec XS, YS] into
training and validation sets by 8 : 2, and [Rec XT, YT] is
used as the test set to construct a double hidden layer BP
neural network model. *e mean square error (MSE) is
chosen for the loss function of the whole regression net-
work, and the mean absolute error (MAE) is chosen for the
evaluation index, and Adam is used as the optimization
function, and after the whole network converges, it is tested
on the test set.

3.5. EvaluationMetrics. We use mean absolute error (MAE)
and root mean squared error (RMSE) to effectively evaluate
the prediction effectiveness of NOx emissions. *ey are
calculated as follows:

MAE �
1
m

􏽘

m

i�1
yi − 􏽢yi( 􏼁,

RMSE �

�������������

1
m

􏽘

m

i�1
yi − 􏽢yi( 􏼁

2

􏽶
􏽴

,

(13)

where m is the number of samples, yi is the true value of the
label, and 􏽢yi is the predicted value of the label.

4. Experiments

4.1.MMDSettings. *e arrangement of MMD is diverse.We
try to add MMD at different layers for domain adaptation
based on stacking sparse AutoEncoder layers and compare
the MAE and RMSE of their predicted values to select the
optimal position as the final model setup.

Table 8 shows the MAE, RMSE comparison of the
predicted values after selecting sparse AutoEncoders with
different layers and trying to add MMD at different layers,
where SAE (n), n represents the number of stacked sparse
AutoEncoder layers, and the number in the DTL term
represents the addition of MMD at that layer. Since the
number of features dimensions increases exponentially as
the layers are stacked, which also increases the training time,
we only compare the stacked sparse AutoEncoder up to 3
layers. From the results in Table 8, we choose the sparse
AutoEncoder with three stacked layers and add MMD in the
second layer for domain adaptation.

4.2.Model Performance. In order to verify the effectiveness of
the model proposed in this paper, we compare the traditional
deep learning model with the results of our model. *e tra-
ditional deep learning (DL) model defaults to the source do-
main and the target domain belonging to the same distribution
and uses the source data as the training set and the validation
set to train a BP neural network and the target data as the test
set. Figure 4 shows the prediction effect of 100 randomly se-
lected data points, in which the DTL model proposed in this
paper has a smaller prediction error and a better fit with the
true value compared with the traditional DL model.

To further validate the effectiveness of the model in this
paper, we conducted experiments using the DTL and DL on
the dataset without relevant feature screening (the effect is
shown in Figure 5), and the training set, validation set, and
test set were kept consistent with the previous experiments.
In the regression prediction section, Random Forest, Sup-
port Vector Regression (SVR), and AdaBoost were tried as
regressors, and Table 9 shows the comparison of the pre-
diction results of the models, where DL represents the
prediction model with deep learning without considering
the influence of external features on NOx emissions, nDTL
represents the prediction model with deep transfer learning
without considering the influence of external features on
NOx emissions, nDL represents the prediction model with
deep learning with considering the influence of external
features on NOx emissions, and nDTL represents the pre-
diction model with deep transfer learning with considering

Table 6: Final characteristic features.

Vehicle engine-related Vehicle throttle-related Vehicle after-treatment system-related
Engine speed Gas pedal opening After-treatment downstream oxygen percentage
Actual output torque percentage — After-treatment exhaust gas mass flow rate
Temperature of engine water — —

Table 7: Number of hidden features of SAE.

Number of stacked layers of SAE Number of hidden features
1 layer 6∗ 5
2 layers 6∗ 5∗ 5
3 layers 6∗ 5∗ 5
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the influence of external features on NOx emissions. *e
data comparison in Table 9 shows that the performance of
the DL without feature transfer is significantly higher than
that of the DTL model, which proves the effectiveness of

feature transfer in unsupervised prediction, and it can be
clearly concluded that the data after feature screening is
more favorable for the prediction of diesel vehicle NOx

concentration, and in this experiment, the model of the
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Figure 4: Comparison of DTL predictions and DL based on multiple sources of external features.
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Figure 5: DTL prediction and DL comparison without considering multiple sources of external features.

Table 8: Comparison of model predictions based on MMD settings.

DTL MAE RMSE
SAE(1) 1 449.40 584.62

SAE(2)
1 365.07 455.09
2 374.74 458.43

1 + 2 380.30 479.37

SAE(3)

1 345.68 453.65
2 314.65 403.04
3 387.59 481.68

1 + 2 364.42 476.69
1 + 3 372.75 482.47
2 + 3 399.71 510.59

1 + 2 + 3 368.28 489.83
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neural network is better than the models of traditional
machine learning.

Figure 6 shows the visualization effect of the source
diesel vehicle and target diesel vehicle before and after
feature transferring by t-sne dimensionality reduction.
Figure 6(a) shows the distribution of engine speed, real-time
output torque percentage, temperature of engine water, gas
pedal opening, after-treatment downstream oxygen per-
centage, and after-treatment exhaust gas mass flow rate
features on the source diesel vehicle and the target diesel
vehicle after t-sne dimensionality reduction. Figure 6(b)
shows the distribution of the above features on the source
diesel vehicle and the target diesel vehicle after t-sne di-
mensionality reduction by the reconstructed features after
the deep transfer learning framework proposed in this paper.
It is obvious from the figure that the data distribution of the
source diesel vehicles and the target diesel vehicles after the
training of the DTL model can be basically mixed in one
domain, and domain adaptation is achieved.

4.3. Exploring the Influencing Features of NOx Emission.
*e above experiments selected relevant features that have
significant effect on NOx and predicted them effectively on
the DTLmodel. In order to further investigate which specific
aspect of features has more influence on NOx concentration,
we trained DTL with each type of attribute distribution

according to the source division of influencing features in
Table 6, predicted NOx, and obtained MAE of predicted
data, RMSE, as shown in Table 10.

From the indicators in Table 10, it is easy to know that the
throttle-related feature for DTL is better predicted; that is, the
degree of opening and closing of the throttle pedal has a great
influence on the NOx emissions of diesel vehicles during
driving. In the real world, the acceleration sensitivity of diesel
cars is poor. If the engine suddenly increases the fuel supply
when the gas pedal is stepped on sharply at low speed of the
diesel car, the circulating fuel supply will increase sharply, and
due to its poor sensitivity, the diesel engine speed will not
increase much, resulting in relatively weak air turbulence,
prolonging the combustion process and increasing incom-
plete combustion, which eventually leads to increased NOx

emission; when the throttle is released sharply, it will cause the
engine combustion conditions to deteriorate and work un-
stably due to the sudden closing of the throttle, and the NOx

emission will increase. *erefore, the driver should operate
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Figure 6: Vehicle driving condition distribution of source and target domains by T-SNE: (a) before feature alignment; (b) after feature
alignment.

Table 9: Comparison of NOx prediction values under different regressors.

Model MAE RMSE
SVR 389.45 430.59
RandomForest 430.24 489.56
AdaBoost 444.43 496.10
DL 573.95 823.85
DTL 372.60 566.20
nDL 570.08 635.35
nDTL (ours) 314.65 403.04

Table 10: Prediction under single-source external factors.

MAE RMSE
Engine-related 580.13 642.39
*rottle-related 419.19 474.71
Postprocessing system-related 618.96 665.192
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the throttle smoothly when driving, not emergency pedal or
emergency release of the throttle pedal.

Both engine-related and throttle-related features can be
controlled in real time by the driver during driving. Proper
driving behavior can greatly reduce pollutant emissions, that
is, when road conditions and environmental conditions
permit, a steady speed should be maintained and frequent
speed changes should not be made, and NOx emissions from
diesel vehicles can be effectively reduced through after-
treatment systems.

5. Conclusion

In this paper, we propose a deep AutoEncoder transferring
inversion model for NOx emission prediction of diesel
vehicles under the integration of multiple sources of external
influences to perform NOx emission pattern transferring
among different diesel vehicles and then effectively improve
the accuracy of diesel vehicle NOx emission prediction. For
the OBD data of diesel vehicles, the features related to NOx

emissions are selected by using Spearman correlation
analysis and Lasso feature selection, and the selected features
of engine speed, actual output torque percentage, temper-
ature of engine water, gas pedal opening, after-treatment
downstream oxygen percentage, and after-treatment exhaust
gas mass flow rate have strong correlation with NOx

emissions, and the designed DTL learning framework with
distribution alignment relies on diesel vehicles containing
the above strong correlation features with corresponding
NOx emission values and diesel vehicles with only the above
strong correlation features to jointly train the networkmodel
so that the diesel vehicle data of different categories converge
to the same distribution in the feature space and then train
the objective function in the feature space using the diesel
vehicle data containing NOx emission values, and transfer to
the diesel vehicles without NOx emission values to achieve
NOx prediction of diesel vehicles without NOx emission
values, which provides an effective predictionmethod for the
prediction of unlabeled diesel vehicle data. Based on the
analysis of diesel vehicle NOx based on external features
from different sources, vehicle throttle-related features
have large impact on diesel vehicle NOx emissions, and
reasonable control of throttle state during driving is
an important means to effectively control diesel NOx

emissions.
Future research can be extended in the following ways.

(1) In potential feature extraction, other methods can be
tried to find the abstract representation of the original
features in the feature space. (2) In feature transfer, the
MMD metric is used to measure the difference in distri-
bution between two domains, and amore appropriate metric
can be selected in later studies based on the dataset.
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