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To respond to travel demand in theMaaS system, improve transport efciency, and optimize the framework ofMaaS, we propose a
travel demand response model based on a spatiotemporal preference clustering algorithm that considers the impact of travel
preferences and features of the MaaS system to improve travel demand response and achieve full coverage of travel demands.
Specifcally, in the MaaS system, the time preference hierarchical clustering algorithm is optimized with travel preference as the
perception factor and preference priority order as the iteration index. Ten, we cluster the departure and arrival times of
reservation demand points and iteratively analyze the discrete points to obtain the set of reservation demand points with
convergent time dimensions under similar preferences. Ten, the spatial preference DBSCAN clustering algorithm is improved
with travel preference and preference priority order as the iteration indices, and spatial clustering of the time-dense points are
updated by the silhouette coefcient to obtain reservation demand points with similar spatiotemporal preference and respond to
the demands. Meanwhile, trafc resources are coordinated by the MaaS system and the fexible means of transport are deployed to
spatiotemporal discrete points to achieve full coverage of travel demand. Simulation shows that when the neighborhood range is
0.5 km and the least number of reservation demand sites is 3, our spatiotemporal model achieves a response rate of reservation
demand points at 95%, and a demand coverage rate of 100%, which is 15% and 6.7% higher than the hierarchical clustering model
and the DBSCAN clustering model, respectively. Te demand response rate is also improved compared to the spatiotemporal
clustering model in the customized bus model. Te model and algorithm have some applicability and can be applied to areas with
fxed, semifxed and fexible route transport, thereby considerably improving the travel demand response efciency and transport
service quality.

1. Introduction

Mobility as a service (MaaS), a type of integrated service to
meet mobility demands, can solve the problem of demand-
supply imbalance in traditional trafc services and has thus
become a hot research topic in the domain of travel demand
response (TDR). It constructs a trafc and travel mechanism
based on travel preferences, which is of great importance to
build a demand-specifc trafc service mode.

Te notion of MaaS was frst proposed at the 2014 In-
telligent Transport System World Congress [1]: MaaS is a
type of service that meets users’ travel needs through a
transportation provider and integrates diferent means of

transport to provide customized travel packages to pas-
sengers. Based on the travel demand of passengers, MaaS
integrates diferent means of transport into a service system
and builds an information service platform that allows the
users to book, plan, pay, and comment on the services to
optimize the allocation of resources and meets users’ needs
for mobility to the greatest extent [2]. Te MaaS system
provides integrated services [3], achieves sharing of travel
information [4], provides a user-friendly experience, and
follows the principle of low-carbon development [5], which
enables a shift from personally owned modes of trans-
portation to the mobility provided as a service for con-
sumption [6]. Research on MaaS is still in its infancy.
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Jitrapirom et al. [7] found through surveys that trans-
portation services customized by MaaS can improve trav-
eling efciency and respond timely to travel demand, which
draws more research attention to improve the MaaS system
and apply it to urban transportation. First, Streeting et al. [8]
explored the key attributes of MaaS and described it in terms
of user experience and technical workfow. Djavadian et al.
[9] specifed the key technical challenges facing the MaaS
system: transportation sharing, integrated payment, and
customized services, which provides constructive sugges-
tions for improving the MaaS system. Tis literature pro-
vides ideas for the construction of MaaS systems within this
study. Kamargianni et al. [10] summarized the four nec-
essary aspects of the MaaS system: policy, business, tech-
nology, and user. Konig et al. [11] focused on the business
aspect of MaaS and indicated that the operators engage the
government, private enterprise, transportation service
provider, and technical service provider. Audouin et al. [12]
pointed out that long-term and comprehensive system de-
sign and mature policy support are key contributors to the
wellbeing of the MaaS industry. Tis literature shows that
MaaS systems need to focus on the coordination of multiple
transportation modes and the needs of travelers. Te MaaS
system built in this study takes the needs of travelers as an
important object of study. To sum up, existing works on
MaaS focus on framework design and structural analysis, but
studies on dynamic response to travel demands are rare and
short of quantitative analysis. Terefore, a travel demand
response model in the MaaS system is studied here to solve
the problems of response to reservation points and mobility
demand coverage, which provides theoretical and technical
support for the development of the MaaS system.

Te quantitative study of demand-responsive trans-
portation is currently one of the hot issues of interest to
experts and scholars. First, Brake et al. [13] analyzed the
contributing factors to travel demand response under the
demand-responsive transport (DRT) mode and corre-
sponding optimization strategies. However, it is also pointed
out that there are problems to be solved in building a rea-
sonable reservation system and an appropriate service system.
Errico et al. [14] constructed a travel demand response (TDR)
framework based on the fexible transit service (FTS) and
pointed out that it has limitations of the service. All these
literature suggest that demand-responsive transportation
systems should enhance serviceability and that the MaaS
systemmodel constructed in this paper should improve single
service applications and enhance travel demand response
rates. Qiu et al. [15] put forward a dynamic site strategy that
optimizes the quality of FTS systems. It also points to in-
formation such as demand distribution and external envi-
ronment as key factors infuencing the strategy. Xue et al. [16]
studied the response mechanism of customized bus systems
based on the spatiotemporal dimensions and achieved
strategies for parameter optimization. All these studies by
experts and scholars show that the spatiotemporal distribu-
tion characteristics are the basis and focus of research for
intracity trafc demand. Te demand response algorithm
proposed in this study should be constructed in conjunction
with the spatiotemporal distribution of travel demand. Case

studies on Gothenburg [17], London [18], and Sydney [19]
show that travel preference is a key factor in theMaaS system.
Travel preference, if analyzed in depth and is fully utilized, can
improve the system’s appeal to travelers and increase the
efciency of trafc resources. Terefore, the algorithm
designed for this study should also analyze the traveler’s
preference choice as an important factor.

To sum up, based on the spatiotemporal distribution of
travel demand and features of travel preferences, a spatio-
temporal preference clustering algorithm is designed and a
travel demand response model in the MaaS is proposed to
coordinate trafc resources. Te proposed method is ex-
pected to improve the MaaS framework in China and
quantitative analysis of travel demand response. Solving the
problem of trafc demand response under the MaaS system
increases the efciency of travel demand response and
improves transport service quality and the system’s appeal to
passengers. It is an important study to help the practical
application of MaaS and its promotion in various places.

2. Model Construction

2.1. Travel Demand Response (TDR) Model in the MaaS
System. In the MaaS system, three modes of transport are
defned: fxed route transport, semifxed route transport, and
fexible route transport, and a travel demand response (TDR)
model is constructed accordingly, as shown in Figure 1.

As Figure 1 shows, reservation demand points represent
the spatiotemporal data points of travelers’ transportation
demand. Travel preference indicates the traveler’s preference
or order of preference for various modes of transportation.
Fixed route transport means public transportation with fxed
routes, semifxed route transport means trafc with partially
variable operating routes, and fexible route transport means
that the operation route and service area can be changed
according to the demand [20].

Based on the trafc situation in our country and the
description of each parameter mentioned above, the pa-
rameters of the MaaS model in this study are determined as
given below:

(1) In this model, the fxed route transport is a bus, the
semifxed route transport is a customized bus, and
the fexible route transport refers to service provided
by cars hailed online

(2) Te bus and customized bus in the model have a
carrying capacity of eight, and the car hailed online
has a carrying capacity of three

(3) To ensure the service quality, route-changeable
transport services are not provided by any transport
means in the model

(4) Travelers upload travel needs to the online platform,
which generates reservation demand points.

2.2. Spatiotemporal Preference Clustering Algorithm.
Considering the impact of travel preference, a spatiotem-
poral preference clustering algorithm is constructed to
achieve clustering and coverage of reservation demand
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points in the MaaS system. Te proposed model clusters the
transient spatiotemporal distribution of travel demands and
allocates trafc resources. According to the concepts related
to general travel costs [21], travel time and accessibility can
provide potential benefts to the traveler compared to spatial
distance (within walking distance). Spatiotemporal dimen-
sions are simultaneously calibrated to meet the temporal,
and spatial data of the reservation demand points are
clustered at the same time. Te order of “temporal di-
mension frst and then spatial dimension” can reduce the
clustering difculty and improve the clustering response rate
compared with the spatiotemporal calibration simulta-
neously. Terefore, this model frst collects the demand
point data of the web platform at a certain moment. Ten,
the demand points are clustered for time preference to
obtain dense and discrete points. Second, it performs lo-
cation preference clustering on the time-preference dense
points to obtain spatiotemporal dense points and discrete
points. Last, according to the MaaS-coordinated trafc
means, the discrete points are re-clustered to meet more
travel demands, as shown in Figure 2 and Figure 3.

2.3. Spatiotemporal Preference Clustering Steps. Te spatio-
temporal preference clustering algorithm is constructed on
the basis of MaaS combined with travel preferences, which is
shown in the following steps:

(1) Building a database of reservation demand points:
collecting reservation demand point data (travel time
and space data and travel preference priority order)
on the web platform and building a database as the
basis for demand response;

(2) Hierarchical clustering of departure time preference:
frst, the reservation demand points are divided
according to travel preferences, and the departure
times are clustered hierarchically within each sample
set. Second, the discrete points that appear after

clustering each sample set is divided again according
to the order of travel preference priority and the
sample set is updated. Ten, the abovementioned
operation is repeated for the updated sample set until
the travel preference order of the discrete points is the
lowest. Finally, these discrete points are divided into
fexible trafc and clustered again to output dense and
discrete sets of the same preference. Te MaaS model
proposed in this study contains fxed, semifxed, and
fexible route transport modes, and the discrete points
generated by hierarchical clustering are iterated and
clustered again according to the order of travel mode
preferences, so as to enhance the clustering efect.Te
reservation demand points that are still discrete after
iterative analysis can be served by fexible route
transport to meet their travel needs.

(3) Hierarchical clustering of arrival time preferences: frst,
refer to step 2 to perform hierarchical clustering of
arrival time data of reservation demand points and
output the dense set and discrete set of the same
preferences. Second, the reservation demand points
with intersection within the departure time-intensive
set and arrival time-intensive set are reserved. It is used
as the database for spatial preference clustering, while
the rest of the reservation demand points is classifed to
fexible transportation. Te MaaS system’s fexible
route transportmode (net car) has a freer service radius
and service routes and therefore can take on the de-
mand for travel from discrete points.

(4) Departure location preference DBSCAN clustering:
frst, based on the time-dimensional data set derived
from step 3, the DBSCAN clustering algorithm is
used to determine the dense and discrete points
within the same preference set. Second, since the
DBSCAN algorithm is less efective in clustering
unevenly distributed data, the clustering parameters
are optimized by calculating the contour coefcients

MaaS trafc demand response model
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Figure 1: MaaS travel demand response model.
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of the clustering results and using them as indicators.
Finally, the clustering algorithm is executed again
after updating the parameters and obtaining the
dense and discrete sets of departure locations under
the same preference.

(5) Arrival location preference DBSCAN clustering:
frst, DBSCAN clustering is performed on the arrival
locations of the reservation demand points with
reference to step 4, and the dense set and discrete set
of arrival locations with the same preference are
output. Second, reservation demand points with
intersections within the dense set of departure lo-
cations and the dense set of arrival locations are
retained, and the discrete points are classifed into
fexible route transport and clustered again to obtain
the updated dense set and discrete set. Finally, the
reservation demand points that are still discrete are
assigned to fexible route transport for separate
services.

Te details and formulas for each step are shown in
Sections 3 and 4.

3. Time Preference Hierarchical Clustering of
Reservation Demand Points

3.1. Construction of a Reservation Demand Points Database.
MaaS transport service providers need to collect data on res-
ervation demand points from the online platform and construct
a database: Q � P, T, T′, O, D,Δ􏼈 􏼉, where Q is the demand
points data, P is the set of reservation demand points, T is the
set of departure time, T′ is the set of arrival time, O is the set of
departure locations, D is the set of arrival locations, andΔ is the
travel preference priority level. Table 1 shows the database of
reservation demand points.

In Table 1, P � p1, p2 . . . pn􏼈 􏼉, where pi is the i-th reser-
vation demand point, T � t1, t2 . . . tn􏼈 􏼉, and ti is the departure
time of pi, T′ � t1′, t2′ . . . tn

′􏼈 􏼉, and ti
′ is the arrival time of pi,

O � (x1, y1), (x2, y2)...(xn, yn)􏼈 􏼉, where xi and yi are the
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Figure 3: Spatiotemporal preference clustering of reservation demand points.
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abscissa and ordinate of the departure site of pi,
D � (x1′, y1′), (x2′, y2′) . . . (xn

′, yn
′)􏼈 􏼉, where xi

′ and yi
′ are the

abscissa and ordinate of the arrival point of pi, respectively;
Δ � δ1(a, b, c)...δn(a, b, c)􏼈 􏼉, where δi(a, b, c) are the priority
order of travel preferences of pi, and a, b, c represent the
preferences for fxed route transport, semifxed route transport,
and fexible route transport, respectively. Te meaning of each
symbol in Table 1 is detailed in the Table 2.

3.2. Hierarchical Clustering of Departure Time Preference.
A temporal preference hierarchical clustering algorithm that
considers the MaaS system features and passengers’ pref-
erence priority order is constructed, as shown in Figure 4.

Follow the process shown in Figure 4 for time preference
hierarchical clustering. Te sample set is divided according
to the priority order of reservation demand points, which is
marked as Nij. Nij represents the reservation points set
obtained through the set of reservation demand points with
the i-th travel preference after the j-th iteration of departure
time, where i ∈ (a, b, c), and j ∈ (1, 2, 3, 4). Trough hier-
archical clustering of the departure time T of each reser-
vation demand point within Nij. Tis hierarchical clustering
algorithm uses Average Linkage to calculate the class cluster
distance [22] and obtains the more time-concentrated class
clusters. Specifcally, as shown in equations (1) and (2):

SRij
�

���������

Ri − Rj􏼐 􏼑
2

nRi
+ nRj

􏽶
􏽴

�

�����������

􏽐 tRi
− tRj

􏼒 􏼓
2

nRi
+ nRj

􏽶
􏽴

,

(1)

Ri, Rj ∈M SRij
≤ τ, nRi
≥φ,

Ri, Rj ∈ G SRij
≤ τ, nRi
<φ,

Ri, Rj ∈ G SRij
≥ τ,

⎧⎪⎪⎨

⎪⎪⎩
(2)

where SRij
is the distance between the i-th cluster and the j-th

cluster calculated by the average linkage method, Ri and Rj

represent the i-th and the j -th cluster that contain at least
one reservation demand point; nRi

and nRj
are the number of

points within the i-th and the j-th clusters, respectively; tRi

and tRj
are the departure time of reservation demand points

within Ri and Rj; τ is the time span (min); M is the set of
dense points with the same time preference; G is the set of
discrete points of the same time preference; and φ is the
minimum number of passengers. Its value is related to the
authorized passenger capacity and full load ratio of the

vehicle. While there are multiple transportation modes in
MaaS, the average value is taken here as the minimum
number of passengers, which is calculated as follows:

φ � 􏽘
i

zi · δi, (3)

where zi is the passenger capacity of the i-th means of
transport. δi is the expected full load rate of the i-th means of
transport, since there are peak and fat peaks in travel time,
the average value of 50% is taken to simplify the calculation.
M and G of the same time preference are the alternative sets
of arrival time preference hierarchical clusters. Te mean-
ings of the symbols within the algorithm and formulas are
detailed in the Table 2.

3.3. Hierarchical Clustering of Arrival Time Preference.
Hierarchical clustering is performed on arrival time pref-
erence and the obtained set is compared with the alternative
sets. If there are intersections, the sample is incorporated
into the set of dense points of diferent time preferences; if
there are no intersections, the sample is incorporated into
the set of discrete points on the temporal dimension.

(1) As per the descriptions in Section 3.2, hierarchical
clustering of arrival time preference of reservation
demand points is performed to obtain the sets N

ij′,
M′, and G′. N

ij′ is the set of reservation points
obtained through the j-th iteration of the arrival time
of points with the i-th travel preference, where
i ∈ (a, b, c), and j ∈ (1, 2, 3, 4); M′ is the set of dense
points of the same arrival time preference; G′ is the set
of discrete points of the same arrival time preference.

(2) Te sets M′ andG′ are compared with the alternative
sets M and G specifed in Section 3.2. If there is an
intersection, it is kept to the set of dense points, and if
there is no intersection, it is divided into the set of
discrete points, so as to obtain the result of time
preference clustering. Te specifc discriminant
method was obtained with reference to the literature
[16] and is as shown in the following equations:

p
m
i ∉ S M∩M′ ≠∅,

p
m
i ∈ S M∩M′ � ∅,

p
g
i ∈ S,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where S is the set of discrete points of time preference, pm
i

represents a reservation demand point that belongs to both
M and M′, and p

g
i represents a reservation demand point

that belongs to both G and G′.

Table 1: Reservation demand points database.

P T T′ O D Δ
p1 t1 t1′ (x1, y1) (x1′, y1′) δ1(a, b, c)

p2 t2 t2′ (x2, y2) (x2′, y2′) δ2(a, b, c)

. . . . . . . . . . . . . . . . . .

pn tn tn
′ (xn, yn) (xn

′, yn
′) δn(a, b, c)
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All reservation demand points in S are assigned to the
fexible route transport mode to achieve full coverage of
demand. Other dense points are classifed by preference into
Ma, Mb, and Mc, which are sets of dense points with a
temporal preference for fxed route transport, semifxed
route transport, and fexible route transport, respectively.
Te meanings of the symbols within the algorithm and
formulas are detailed in the Table 2.

4. Spatial Preference DBSCAN Clustering of
Reservation Demand Points

4.1. Departure Location Preference DBSCAN Clustering.
Spatial preference DBSCAN clustering is performed on
the departure location data based on the dense points of
time preference [23]. Te DBSCAN algorithm is a density-

based algorithm, and according to the trafc demand
response theory, the improved parameters are defned as
follows:

Defnition 1. ε neighborhood of the reservation demand
point pi. Te ε neighborhood of the reservation demand
point ∀pi ∈ P is termed ε(pi), which is defned as follows: a
set of all reservation points within a circle with pi as the
center and ε as the radius, it is summarized by defnition as
follows:

ε pi( 􏼁 � pj ∈ P|dist pi, pj􏼐 􏼑≤ ε􏽮 􏽯, (5)

where P is the set of reservation demand points within the
samples, and dist(pi, pj) is the distance between two points
pi and pj.
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Figure 4: Workfow of the time preference hierarchical clustering algorithm.
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Defnition 2. Core reservation demand point. |ε(pi)| is the
number of reservation points ε neighborhood of pi, and
min(Num) is the minimum number of passengers that are
responded to. If |ε(pi)|≥min(Num), pi is defned as the
core reservation demand point.

Defnition 3. Directly density reachability of the reservation
demand point. If pi ∈ ε(pj) and |ε(pj)|≥min(Num) hold
between pi and pj, then pi is considered directly density
reachable from pj.

Te defnitions of density reachability and density
connection are the same as in the DBSCAN algorithm. Based
on travel preference and the defnitions, a DBSCAN clus-
tering algorithm of reservation demand points with the
silhouette coefcient as the evaluation indicator is con-
structed. Figure 5 shows the fow of the algorithm.

To sum up, the time preference sets Ma, Mb, and Mc are
introduced into the algorithm to generate the departure lo-
cation preference cluster sets Pa

m, Pb
m, and Pc

m as the alternative
departure location preference clusters. Pa

m, Pb
m, and Pc

m are the

sets of departure location clusters with a preference for fxed
route transport, semifxed route transport, and fexible route
transport, respectively.Temeanings of the symbols within the
algorithm and formula are detailed in the Table 2.

4.2. Arrival Location Preference DBSCAN Clustering. Te
arrival location preference is clustered, and the result is
compared with the alternative sets. If there are intersections,
the sample is classifed into the set of dense points of spa-
tiotemporal preference; if there are no intersections, it is
classifed into the set of discrete points of spatiotemporal
preference for iteration and updating.

(1) According to descriptions in Section 4.1, Ma, Mb,
and Mc are introduced to the algorithm to generate
arrival location preference cluster sets Pa

m
′, Pb′

m, and
Pc′

m, which are the arrival location cluster sets with
preferences for fxed route transport, semifxed
route transport, and fexible route transport,
respectively;
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Figure 5: Workfow of the improved DBSCAN clustering algorithm.
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Table 2: Defnitions of variables.

Symbol Meaning and format Meaning of superscript/subscript and format Location of appearance
in the text

Q Data of demand points Table 1 in Section 3.1 of
the text

P Set of reservation demand points
T Set of departure time
T′ Set of arrival time
O Set of departure location
D Set of arrival location
Δ Traveling preference priority

pi, pj Reservation demand point; italic and lower case i and j are the serial number of the reservation
demand points, italic and lower case

ti

Departure time of reservation demand point;
italic and lowercase, unit: min

i is the serial number of the reservation demand
point; italic and lowercase

ti
′ Arrival time of reservation demand point; italic

and lowercase, unit: min
i is the serial number of the reservation demand

point; italic and lowercase

(xi, yi)
Departure location of reservation demand point;

italic and lowercase, unit: km
i is the serial number of the reservation demand

point; italic and lowercase

(xi
′, yi
′) Arrival location of reservation demand point;

italic and lowercase, unit: km
i is the serial number of the reservation demand

point; italic and lowercase

δi(a, b, c)
Priority order of traveling preference of

reservation demand point; italic and lowercase

i is the serial number of the reservation demand
point; a, b, c represent the traveling preference of
the fxed mode, the semifxed mode, and the

fexible mode; italic and lowercase

Nij

Set of reservation point with the i-th traveling
preference and j-th iteration of departure time;

italic and uppercase

i is the serial number of traveling preference, j is
the number of iterations, where i ∈ (a, b, c) and

j ∈ (1, 2, 3, 4); italic and lowercase

Contents of Section 3.2
in the text

SRij

Distance between clusters of reservation demand
points calculated by the average linkage method;

italic and uppercase, unit: min

i and j are the serial number of clusters of
reservation demand points; italic, lowercase Equation 1 in the text

Ri, Rj

Clusters of reservation demand points, and each
cluster contains at least one reservation demand

point; italic and uppercase

i and j are the serial number of reservation
demand points; italic and lowercase

nRi
, nRj

Te number of points in the reservation demand
point cluster; italic and lower case

i and j are the serial number of reservation
demand point clusters; italic and lowercase

tRi
, tRj

Te departure time of a point in the reservation
demand point cluster italic and lowercase, unit:

min

i and j are the serial number of reservation
demand point cluster; italic and lowercase

τ Time span; unit: min Equation 2 in the text

M
Te set of dense points with the same departure

time preference; italic and uppercase

G
Te set of discrete points with the same departure

time preference; italic and uppercase
φ Minimum number of passengers Equation 3 in the text

zi

Te passenger capacity of the i -th means of
transport; italic and lowercase

i is the serial number of traveling preference,
where i ∈ (a, b, c)

δi

Te expected full load rate of the i -th means of
transport; italic and lowercase

i is the serial number of traveling preference,
where i ∈ (a, b, c)

N
ij′

Te set of reservation points with the i-th
traveling preference and the j-th iteration of

arrival time; italic and uppercase

i is the serial number of traveling preference, and
j is the times of iterations, where i ∈ (a, b, c),

j ∈ (1, 2, 3, 4); italic and lowercase

Contents of Section 3.3
in the text

G′ Te set of discrete points with the same arrival
time preference; italic and uppercase

M′ Te set of dense points with the same arrival time
preference; italic and uppercase Equation 4 in the text

S
Te set of discrete points on the temporal

dimension; italic and uppercase

pm
i

Reservation demand points in the dense point
sets M and M′; italic and lowercase

i is the serial number of the reservation demand
point; italic and lowercase

p
g
i

Reservation demand points in the set of isolated
points G and G′; italic and lowercase

i is the serial number of the reservation demand
point; italic and lowercase
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(2) Pa
m
′, Pb′

m, and Pc′
m are compared with the alternative

sets Pa
m, Pb

m, and Pc
m. If there is an intersection, it

is kept to the set of dense points, and if there is no
intersection, it is divided into the set of discrete
points, so as to obtain the result of time pref-
erence clustering Te specifc discriminant
method was obtained with reference to the lit-
erature [16] and is as shown in the following
expressions:

pj ∈M
i′ P

i
m ∩P

i′
m ≠∅, i � a, b, c,

pj ∈ L P
i
m ∩P

i′
m � ∅, i � a, b, c,

S ∈ L,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

where pj is the j-th reservation demand point; M
a′, M

b′,
and M

c′ are the dense points sets with a spatiotemporal

Table 2: Continued.

Symbol Meaning and format Meaning of superscript/subscript and format Location of appearance
in the text

Ma Te set of dense points of the fxed transport
mode in the time dimension italic and uppercase

a represents the traveling preference for the fxed
mode of transport; italic and lowercase

Contents of Section 3.3
in the text

Mb Te set of dense points of the semifxed transport
mode in the time dimension; italic and uppercase

b represents the traveling preference for the
semifxed mode of transport; italic and lowercase

Mc Te set of dense points of the fexible transport
mode in the time dimension; italic and uppercase

c represents the traveling preference for the
fexible mode of transport; italic and lowercase

ε(pi)

Te set of all reservation demand points within a
circle with pi as the center and ε as the radius;

italic and lowercase

i is the serial number of the reservation demand
point; italic and lowercase

Contents of Section 4.1
and Equation 5 in the

text

P
Te set of reservation demand points within the

sample; italic and uppercase

dist(pi, pj)
Te distance between two reservation demand
points pi and pj; italic and lowercase, unit: km

i and j are the serial number of reservation
demand points; italic and lowercase

|ε(pi)|
Te number of reservation points within the ε

neighborhood of pi; italic and lowercase
i is the serial number of the reservation demand

point; italic and lowercase

min(Num)
Te minimum number of passengers that are

responded to

Pa
m

Te set of departure location clusters with a
preference for the fxed transport mode; italic

and uppercase

a represents the traveling preference for the fxed
mode of transport; italic and lowercase

Pb
m

Te set of departure location clusters with a
preference for the semifxed transport mode;

italics and uppercase

b represents the traveling preference for the
semifxed mode of transport; italic and lowercase

Pc
m

Te set of departure location clusters with a
preference for the fexible transport mode; italics

and uppercase

c represents the traveling preference for the
fexible mode of transport; italic and lowercase

Pa
m
′

Te set of arrival location clusters with a
preference for the fxed transport mode; italics

and uppercase

a represents the traveling preference for the fxed
mode of transport; italics and lowercase

Contents of Section 4.2
and Equation 6 in the

text

Pb′
m

Te set of arrival location clusters with a
preference for the semifxed transport mode;

italics and uppercase

b represents the traveling preference for the
semifxed mode of transport; italics and

lowercase

Pc′
m

Te set of arrival location clusters with a
preference for the fexible transport mode; italics

and uppercase

c represents the traveling preference for the
fexible mode of transport; italics and lowercase

M
a′

Te set of dense points of fxed transport mode in
the spatiotemporal dimension; italics and

uppercase

a represents the traveling preference for the fxed
mode of transport; italics and lowercase

M
b′ Te set of dense points of semifxed mode in the

spatiotemporal dimension; italics and uppercase

b represents the traveling preference for the
semifxed mode of transport; italics and

lowercase

M
c′

Te set of dense points of spatiotemporal
preference for the fexible transport mode; italics

and uppercase

c represents the traveling preference for the
fexible mode of transport; italics and lowercase

M
i′ Te set of dense points of diferent

spatiotemporal preferences; italics and uppercase
i is the serial number of traveling preference, and

i ∈ (a, b, c); italics and lowercase

L
Te set of discrete points of spatiotemporal

preference italics and uppercase
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preference for fxed route transport, semifxed route
transport, and fexible route transport, respectively; S is the
set of time preference discrete points; and L is the set of
spatiotemporal preference discrete points. In the MaaS
system, the reservation points in L are assigned to fexible
route transport, and M

i′ and L are updated through iter-
ation.Temeanings of the symbols within the algorithm and
formula are detailed in the Table 2.

To conclude, spatial preference DBSCAN clustering is
performed to obtain the spatiotemporal preference dense
points set M

i′, and allocation of trafc resources according
to diferent preferences can respond to the trafc needs of
passengers.

4.3. Analysis of Spatiotemporal Preference Clustering
Algorithm. Reservation demand points are afected by travel
time and location, which makes their distribution uneven
within space and time, and the efect of hierarchical clus-
tering and the DBSCAN algorithm will be afected. Te
spatiotemporal preference class algorithm proposed in this
study can improve the clustering efect and meet more travel
demands by combining traveler preferences and trans-
portation resource allocation methods on the basis of the
MaaS system, which is analyzed as follows:

(1) Time preference hierarchical clustering: frst, the
uneven distribution of travel time has less impact on
MaaS. MaaS can set diferent resource allocation
schemes to meet diferent demands during peak and
fat periods. Second, the time dimension hierarchical
clustering proposed in this study determines the
parameters and improves the clustering efect
through various types of transportation character-
istics within MaaS. Finally, those discrete points due
to uneven distribution are assigned to reasonable
transportationmodes according to travel preferences
to cluster again or meet their travel demands through
online vehicles.

(2) Spatial preference DBSCAN clustering: frst, the
DBSCAN clustering parameters are limited by the
service radius of trafc modes and the nuclear load
and cannot change adaptively according to the
distribution density of reservation demand points.
Second, this algorithm uses the contour coefcient as
an improvement index to enhance the clustering
efect. Finally, the clustered discrete points with
uneven spatial distribution are assigned reasonable
transportation modes and clustered again according
to the order of travel preference or their travel de-
mand is satisfed by online appointment.

5. Example Analysis

5.1. Simulation Data. A simulation data set of reservation
demand points is constructed: 60 reservation demand points
are generated randomly; both the departure and arrival time
is set within 30min; the departure and arrival locations are
within a 2 km ∗ 2 km rectangular area, respectively. Table 3
shows data of reservation demand points.

5.2. Example Clustering Analysis

(1) First of all, the dense points and discrete points of
time preference are obtained through time prefer-
ence hierarchical clustering. Te minimum number
of passengers φ based on the data for each type of
vehicle in theMaaSmodel in Section 2.1 of this paper
and equation (3) calculated according to diferent
types of vehicles in the MaaS model is calculated as
follows:

φ � 􏽘
i

zi · δi⌉ �
3 · 0.5 + 14 · 0.5

2
􏼘 􏼙 � 5.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

(7)

Te clustering results at diferent values of time span
τ is analyzed, as shown in Table 4.
As Table 4 shows, as τ increases, the number of dense
points and its percentage among all points rise as
well.Tere is a sharp increase in the number of dense
points when τ � 3min and τ � 5min, and after τ
reaches 10, the clustering result stabilizes. With both
the passenger waiting time and the clustering result
considered, we set φ � 5 persons and τ � 10min to
obtain the clustering perception result, as shown in
Table 5.

(2) Ten, the silhouette coefcient is used to evaluate
and analyze the parameters ε and min(Num) in the
spatial preference DBSCAN clustering algorithm, as
shown in Figure 6.

Table 4: Clustering results in diferent values of τ.

τ (min)
Preference dense points

Number of dense points Percentage (%)
1 0 0
2 5 8.3
3 26 43.3
4 35 58.3
5 47 78.3
6 48 80
7 50 83.3
8 50 83.3
9 51 85
10 52 86.7
11 52 86.7
12 52 86.7
13 52 86.7
14 53 88.3
15 53 88.3
16 56 93.3

Table 3: Simulation of reservation demand points.

P T T′ O D Δ
p1 21.02 15.49 (0.2, 0.33) (3.17, 3.49) (b, a, c)

p2 13.25 22.67 (1.47, 1.94) (3.71, 3.33) (c, b, a)

. . . . . . . . . . . . . . . . . .

p60 5.73 28.56 (1.07, 1.72) (2.36, 2.71) (c, b, a)
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As Figure 6 shows, when min(Num) remains constant,
the silhouette coefcient frst grows and then decreases as ε
increases. When the value of ε is unchanged, the silhouette
coefcient is negatively correlated to min(Num). When ε �

0.5km and min(Num) � 3, the silhouette coefcient is
0.2836, which reaches the best clustering efect.

When ε � 0.5km and min(Num) � 3, we perform
spatial preference DBSCAN clustering of Ma, Mb, and Mc,
as well as all reservation demand points in S, as shown in
Figure 7.

As Figure 7 shows, temporal dense points of diferent
travel preferences are clustered and responded on the de-
parture and arrival points to obtain M

i′ and L. According to
the features of MaaS, the reservation points within S and L

are assigned to fexible route transport for re-clustering to
obtain the spatiotemporal clustering response result. Te
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Figure 6: Spatial preference clustering parameters and silhouette coefcients.
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Figure 7: Spatiotemporal clustering results of diferent travel preferences.

Table 5: Time preference clustering result (φ � 5 and τ � 10min).

Time preference sets Reservation demand points included
Ma p5, p36, p39, p47, p53
Mb p1, p3, p4, p12, p32, p37, p40, p41
Mc p6, p7, . . ., p59, p60
S p2, p10, p16, p29, p35, p43, p44, p50
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ratio of dense reservation points to all reservation points is
defned as the demand response rate for evaluation. Te
spatiotemporal demand response rate of fxed route trans-
port, semifxed route transport, and fexible route transport
is 40%, 25%, and 100%, respectively. Coordination by the
MaaS system can respond to 83% of all discrete points, which
considerably improves the overall response rate of the
model. Table 6 shows the spatiotemporal preference clus-
tering result in the MaaS system.

As Table 6 shows, there are 57 reservation demand points
in the MaaS TDRmodel based on spatiotemporal preference
clustering, and diferent means of transport are allocated as
per the preferences and the response rate is 95%. Meanwhile,
fexible route transport is allocated to meet the travel de-
mand of three spatiotemporal discrete points based on the

the MaaS system features, thereby achieving full demand
coverage.

5.3. Model Evaluation

(1) Based on the example data, hierarchical clustering
and DBSCAN clustering are performed to respond to
travel demand, and the clustering efect is compared
with our model, as shown in Figure 8 and Figure 9.
As Figures 8 and 9 show, hierarchical clustering and
DBSCAN clustering achieve a maximum response
rate of 80% and 88.3%, respectively. Our model,
however, achieves a response rate of 95%, which is
15% and 6.7% higher than the other two.
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Table 6: Spatiotemporal preference clustering result in the MaaS system.

Spatiotemporal preference sets Reservation demand points included
M

a′ p5, p39
M

b′ p4, p40
M

c′ p1, p2. . .. . . p59, p60
L p37, p47, p50
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(2) A new appointment demand point simulation da-
tabase is constructed, and 10 sets of data are ran-
domly generated, each containing 60 reservation
demand points. Te results of spatiotemporal pref-
erence clustering for the 10 data sets are shown in
Table 7.
As shown in Table 7, the spatiotemporal preference
clustering algorithm proposed in this study can re-
spond to most of the travel demands.Temean value
of the simulation results for the 10 sets of data was
obtained and the mean value of the response rate was
91.3%. Combining the MaaS to assign discrete points
to fexible route transport can achieve full coverage
of travel demand.
A database containing 100 reservation demand
points is constructed, and each of the 30 to 100
demand points is selected to form 8 sets of data. Te
results of spatiotemporal preference clustering for
diferent numbers of appointment demand points
are shown in Table 8.

As shown in Table 8, the clustering parameters ε are
negatively correlated with the number of reservation
demand points. Moreover, the min(Num) show a
positive correlation with the reservation demand
point.Te response rate of travel demand grows with
the density of reservation demand points, which
means that the more users of MaaS, the more its
clustering response efect and transportation service
are improved.

(3) Based on the example data, the spatiotemporal
clustering model under the customized bus mode [16]
is used to respond to travel demand, and the result is
compared with our model, as shown in Table 9.

Calculation shows that the spatiotemporal clustering
model under the customized bus mode achieves the optimal
response rate at 86.7%. Te demand response rate of this
model is improved by 8.3% compared to that for the same
data. Compared with customized buses, the MaaS system
attends to travel preferences and coordinates diferent
means of transport, which better meets the travel demand of

Table 7: Results of spatiotemporal preference clustering for 10 groups of data.

Data serial number Demand response rate (%)
Data 1 90
Data 2 90
Data 3 88.3
Data 4 93.3
Data 5 91.7
Data 6 95
Data 7 93.3
Data 8 86.7
Data 9 96.7
Data 10 88.3

Table 8: Results of spatiotemporal preference clustering for diferent numbers of reservation demand points.

Number of points ε (km) min(Num) /person Demand response rate (%)
30 0.8 2 66.6
40 0.6 2 72.5
50 0.6 3 80
60 0.5 3 93.3
70 0.5 3 94.3
80 0.5 4 95
90 0.4 4 95.5
100 0.4 5 96

Table 9: Comparison of demand response rates of customized bus model.

Parameter Indicator Optimization by our model (%)
ε (km) min(Num)/person Te demand response rate of the customized bus model (%)
0.4 4 75 20
0.4 3 78.3 16.7
0.5 4 80 15
0.5 3 83.3 11.7
0.5 2 86.7 8.3
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reservation demand points and improves the response rate
and comfortability.

5.4. Model Applicability Analysis. MaaS is a system for co-
ordinating multiple modes of transportation to address the
travel needs of travelers and the imbalance between the
supply and demand of transportation resources. Due to the
inconsistent level of economic development in each country
and region, factors such as the proportion of various types of
transportation, road conditions, and the level of public
transportation services vary. Developed countries or eco-
nomically developed regions have better road conditions,
better public transportation, and higher per capita motor
vehicle ownership. Te MaaS model proposed in this study
includes public transportation, customized public trans-
portation, and online transportation, which correspond to
fxed, semifxed, and fexible route transport modes, re-
spectively. Te proposed spatiotemporal preference clus-
tering algorithm also relies on the fexible transportation
mode to solve the discrete state reservation demand points.
Terefore, the MaaS model and clustering algorithm pro-
posed in this study are suitable for areas where the above
three types of transportation modes exist and the companies
providing transportation services can integrate and
coordinate.

As the example shown in Section 5 of this paper, its
simulation data are only related to spatiotemporal infor-
mation and travel preference priorities, and there is no
infuence of external factors (road network conditions and
environment.). Te application of the spatiotemporal
preference clustering algorithm proposed in this study in the
algorithm case can satisfy the travel demand of travelers.
Terefore, this algorithm has some applicability in regions or
countries that have the ability to build the above MaaS
model.

6. Conclusions

MaaS is an emerging transportation system that coordinates
various transportation modes and provides high-quality
transportation services. Quantitative analysis of MaaS has
become one of the current research hotspots. To solve the
problem of trafc demand response under MaaS mode, this
paper designs a spatiotemporal preference clustering algo-
rithm and constructs a trafc demand response model under
the MaaS model based on the spatiotemporal distribution of
trafc demand and travel preference.

Tis study constructs a MaaS model based on fxed,
semifxed, and fexible route transport. It collects travel
demand data through a web platform and coordinates the
allocation of transportation resources with reference to
the spatial and temporal distribution of data points and
travel preferences of travelers. It can improve the utili-
zation of transportation resources and alleviate the im-
balance between the supply and demand of urban
transportation resources. Based on the discussion of the
simulation example, it is clear that the MaaS model
constructed in this study has a high demand response rate

and applies to many areas with the above three trans-
portation modes.

Te spatiotemporal preference clustering algorithm
designed in this study combines the travel preferences of
travelers to cluster the demand point response for reser-
vations in both temporal and spatial dimensions. Te al-
gorithm has a large improvement in the clustering response
of demand points compared with hierarchical clustering and
DBSCAN clustering algorithms. Te introduction of travel
preference factors not only improves the clustering response
but also improves the service quality. According to the
discussion of the simulation example, the MaaS model using
a spatiotemporal preference clustering algorithm can ef-
fectively cluster and reasonably allocate transportation re-
sources compared with customized public transportation. In
summary, this study provides the corresponding support
and theoretical research basis for the construction and
application of the MaaS model.

Current models and algorithms still have shortcomings;
the spatiotemporal dynamic distribution of demand points
can be considered to improve the algorithm, and the generic
cost function is employed to optimize such parameters as
travel preference and walking distance to obtain a travel
demand model of higher efciency and comfortability under
the MaaS system.
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