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Tis research introduces a new variant of the two-echelon vehicle routing problem (2EVRP) called the two-echelon vehicle
routing problem with transshipment nodes and occasional drivers (2EVRP-TN-OD). In addition to city freighters in the second-
echelon network, a set of occasional drivers (ODs) is available to serve customers. ODs are the basis of a crowd-shipping system in
which crowds with planned trips are willing to take detours to deliver packages in exchange for some compensation. To serve
customers, ODs collect the assigned packages at either satellite served by frst-echelon trucks or transshipment nodes served by
city freighters. We formulate this problem as a mixed-integer nonlinear programming model and develop an adaptive large
neighborhood search (ALNS) to solve it. New problem-specifc destroy and repair operators and a tailored local search procedure
are embedded into ALNS to deal with the problem’s unique characteristics. Te experiments show that the proposed ALNS
efectively solves 2EVRP-TN-OD by outperforming Gurobi in terms of both solution quality and computational time. Moreover,
the experiments confrm that employing occasional drivers leads to lower operational costs. Sensitivity analyses on the char-
acteristics of occasional drivers and the impact of transshipment nodes are presented as interesting managerial insights
from 2EVRP-TN-OD.

1. Introduction

City logistics has recently become an emerging branch of
supply chainmanagement due to rapid population growth in
urban areas around the world. Consequently, rising con-
sumer demand to fulfll the needs of this population has
become unavoidable, leading to an increasing number of
e-commerce industries. In 2019, e-commerce sales globally
reached a value of US$3.53 trillion and were projected to
grow to US$6.54 trillion in 2022 [1]. Tis market’s sales have
led to new challenges in delivery operations. While raising
the number of operational vehicles is one direct solution, it
results in many freight transportation issues, such as trafc

congestion, higher emissions and air pollution, and noise, to
mention a few.

Recent technological advancements called crowd-ship-
ping have resulted in a sharing economy-based delivery
concept for increasing delivery efectiveness and reducing
operational costs [2]. Crowd-shipping makes use of idle
resources to perform the delivery task that would otherwise
be performed by delivery companies. Several large retailers,
such as Walmart and Amazon, have started to develop and
implement crowd-shipping platforms [3]. Tese recent
business practices performed by well-known enterprises
show that crowd-shipping is growing in popularity as a new
and promising delivery system.

Hindawi
Journal of Advanced Transportation
Volume 2022, Article ID 5603956, 23 pages
https://doi.org/10.1155/2022/5603956

mailto:d10901807@gapps.ntust.edu.tw
https://orcid.org/0000-0001-8975-0606
https://orcid.org/0000-0002-9724-2270
https://orcid.org/0000-0003-0697-8619
https://orcid.org/0000-0002-0002-4729
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5603956


In order to improve the living quality in a city, a two-
echelon distribution strategy is commonly implemented to
reduce the volume of vehicles travelling around the urban
area by setting up intermediate facilities called satellites [4].
A satellite represents a secondary facility located nearby the
city center, where the freights delivered by municipal trucks
from the central depots are transferred and consolidated to
smaller vehicles, commonly called city freighters [5, 6]. Tis
strategy leads to an interesting topic in vehicle routing
problem variants called the two-echelon vehicle routing
problem (2EVRP).

Due to the rise of 2EVRP implementations and the
crowd-shipping concept, one of the main aims of this re-
search is to introduce a new variant of 2EVRP called 2EVRP
with transshipment nodes and occasional drivers (2EVRP-
TN-OD). Te frst-echelon network connects the central
depot with satellites, and the second-echelon network
connects satellites with customers and transshipment nodes
(TNs). In this research, every occasional driver (OD) has his/
her origin and destination nodes, available capacity, and
fexibility. ODs are able to utilize their available capacity and
collect the assigned packages from either a satellite or a TN.
Moreover, every employed OD receives a particular amount
of compensation, depending on the total distances travelled.
Te contributions of this research work are summarized as
follows:

(1) Introduce a new variant of 2EVRP called the two-
echelon vehicle routing problem with transshipment
nodes and occasional drivers (2EVRP-TN-OD).

(2) Formulate a mixed-integer nonlinear programming
(MINLP) for 2EVRP-TN-OD.

(3) Develop an adaptive large neighborhood search al-
gorithm and show the efectiveness of the proposed
algorithm.

(4) Perform sensitivity analyses on important charac-
teristics related to the crowd-shipping concept to
better understand the impact of the integration into
the two-echelon distribution network.

Te remaining parts of this article are described as
follows: Section 2 provides a description of previous related
works. Section 3 explains the problem defnition and for-
mulation. Section 4 describes the detailed procedure of our
developed ALNS. Section 5 shows the generation of
benchmark instances, the computational results of ALNS,
and the sensitivity analyses related to 2EVRP-TN-OD.
Lastly, Section 6 concludes the fndings of this work and
possible future direction.

2. Literature Review

2.1. Two Echelon Vehicle Routing Problem. Crainic et al. [7]
frst introduced 2EVRP by considering the setting up of a
two-tier distribution network. Te model aims to mainly
address the day-before-planning problem with several key
decisions related to freight assignment to the satellites as well
as the routing and scheduling of vehicles that operate in both
frst- and second-echelon networks. Perboli et al. [8]

pioneered themethod’s development by addressing the basic
problem of 2EVRP, where time windows and satellite
synchronizations are not considered.Tis problem is called a
two-echelon capacitated vehicle routing problem (2E-
CVRP). Recent work has focused on integrating trends and
realistic scenarios into the 2EVRP structure. Wang et al. [9]
considered the environmental impact of 2EVRP. In addi-
tion, Belgin et al. [10] developed an extension of 2EVRP by
incorporating not only delivery but also pickup demand.

Due to the rise in the utilization of electric vehicles,
several works tackled similar networks by considering
electric vehicles [11, 12]. Anderluh et al. [13] explicitly in-
tegrated emission minimization by formulating 2EVRP into
a multiobjective problem in which both operational and
emission costs are considered. In light of rapid technological
development, several helpful innovative alternatives have
become available, such as parcel lockers, crowd-shipping,
delivery robots, and drones. Tese technology-enabled op-
tions led to the fruitful developments of 2EVRP [14–18].
Mühlbauer and Fontaine [19] adopted swap containers for
solving 2E-CVRP, where the frst echelon’s requests are
fulflled by a set of vans and the second echelon’s requests are
serviced by a set of cargo bicycles or city freighters provided
by the logistic companies. Various studies were collected and
summarized in the review of 2EVRP variants by Sluijk et al.
[20]. It can be seen that the existing literature has rarely
considered heterogeneous vehicles, and so far, only Yu et al.
[17] have introduced occasional drivers to 2EVRP with
covering locations.

2.2. Location-Routing Problem. Te location-routing
problem (LRP) is an extension of VRP that involves two
key decisions: the selection of depots and the routing of
vehicles originating from a particular depot [21]. Te
network setting of LRP is similar to the second-echelon
network of 2EVRP.Temain diferences between LRP and
2EVRP can be found in their objective functions and
network structures. Various works have proposed solu-
tion methods such as heuristics and exact algorithms
[22–26]. Schneider and Löfer [27] constructed a three-
phase tree-based search algorithm for solving CLRP.Teir
numerical analysis showed the efectiveness of the algo-
rithm in solving LRPs. New variants of LRP were also
proposed to cope with emerging challenges and trends.
Karaoglan et al. [28] set up a model and a heuristic to deal
with LRP under simultaneous pickup and delivery to
handle the existence of returned products from cus-
tomers. Yu and Lin [29] tackled LRP under the condition
that all operational feets are supplied by a third-party
logistics company. Nowadays, due to the eforts to reduce
the number of operating vehicles within cities, LRP has
been extended to two-tier distribution networks, namely,
2ELRP [4]. Several recent works have addressed the case
of 2ELRP under specifc real-world characteristics
[30, 31]. Arnold and Sörensen [32] proposed a progressive
fltering heuristic adopting the regret Clarke-Wright and
knowledge-guided local search heuristic for solving
2ELRP and its special case, the single truck and trailer
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routing problem with satellite depots (STTRPSD), which
have a confguration similar to the settings of 2EVRP.

2.3. Crowdshipping. Te trend of providing crowd-shipping
models and analyzing the positive impacts of considering
this concept gives rise to a new VRP variant. Archetti et al.
[33] pioneered this strand of research by introducing the
vehicle routing problem with occasional drivers (VRPOD),
where deliveries are conducted by two types of feets:
company vehicles and ODs. Macrina et al. [34] introduced
three diferent characteristics to the VRPOD problem: time
window constraints, multiple deliveries, and split delivery
that can be performed by ODs. Chen et al. [35] proposed a
multihop problem where parcels can be delivered using
multiple consecutive tours to reach their destination within a
designed time window and a maximum rate of detour
compared to the drivers’ shortest paths.

Based on the defnition of crowdsourcing, Sampaio et al.
[36] presented a system with a large number of drivers, a
uniquely owned depot, and short working shifts when
performing the pickup and delivery activities. Tese drivers
do not have a desired destination, and they will return to the
depot after delivering the requests. Moreover, they limit the
number of transfers to once per request only, which dis-
tinguishes their work from the proposed study of Chen et al.
[35]. Tese confgurations have turned their problem into
the classic pickup and delivery problem with time windows
and transfer (PDPTW-T). Voigt and Kuhn [37] constructed
their model based on the work of Sampaio et al. [36] with a
modifcation in the shipping feet team by categorizing them
into occasional drivers and regular drivers. In their settings,
the latter team will be the main force handling the delivery
operation, and the former ones will accept the tasks based on
their convenience. To sum up, recent works on the crowd-
shipping system consider the existence of transshipment
nodes so that ODs have more options for picking up the
assigned demand [38–40]. Te main advantage of a crowd-
shipping system, as mentioned in all the aforementioned
works, is savings on operational costs.

2.4. Transshipment Nodes. Transshipment nodes (TNs) are
considered important factors when handling the vehicle
routing problem with crowd shipping and are usually re-
ferred to as intermediate depots [37, 40]. Te benefts TNs
bring to the context of ODs have been proposed by various
scholars. Macrina et al. [40] believed the adoption of these
intermediate transfer points would gain interest and relax
the barriers for more ODs to performing delivery tasks due
to the advantages in the geography context, with a total
savings cost of up to 31% compared to the nontransshipment
nodes model in VRPOD. Tis rate will signifcantly increase
in proportion to the number of available TNs and their
capacities. In addition, by allowing the ODs to visit the
depot, a saving of 6% in the consumed operation costs has
been found in their study. Voigt and Kuhn [37] proposed a
similar model to our work with the involvement of both
regular drivers and ODs in their study and performed some
experiments with several scenarios: VRPOD without TNs

(T0), VRPOD with random TNs (TR), and VRPOD with
fxed assigned TNs (T4). Tough there is no signifcant
diference in the outcomes when comparing T0 and TR in
scenarios with 100 requests and 100 occasional drivers, other
computational results show that the adoption of TNs usually
has huge advantages in the consumed cost when compared
with the reverse scenarios in their study. Yu et al. [41] also
confrmed the beneft to total operation cost with the setup
of TNs in the crowd shipping delivery system with four
designed scenarios: alternative delivery options are applied/
not applied, and TNs are applied/not applied. Te men-
tioned works have proven the efectiveness of TNs in ad-
vancing savings in VRP in the crowd-shipping context and
are worth considering when working with the crowd-
shipping system.

2.5. Main Contributions. Our work contributes to the
2EVRP literature with the adoption of crowdsourcing and
heterogeneous vehicles, which cover occasional drivers, in
picking up and delivering customers’ requests. For a prior
contribution, the problem settings of our work and those of
Mühlbauer and Fontaine [19] are quite similar; however, we
support the delivery activities of the second echelon by
integrating a group of ODs. Although 2EVRPTW-OD was
introduced by Yu et al. [17], they dealt with the covering
locations while we handled the issue of transshipment nodes.
Our latter contribution is addressed through the involve-
ment of occasional drivers and city freighters for delivery
purposes in our work’s second echelon.

To our knowledge, existing studies on the crowd-ship-
ping problem have also not yet dealt with 2EVRP. Both
Huang and Ardiansyah [38] and Macrina et al. [40] handled
VRP-CS with transfer locations, where regular drivers
mainly serve both transshipment nodes and customers, and
customers are serviced by both types of drivers: regular and
occasional. Tose works match our second-echelon work;
however, the frst-echelon activities are not analyzed in their
works. Moreover, our work distinguishes between the depot-
satellite delivery trucks and the satellite-transshipment node
city freighters, which also have not been analyzed in previous
studies. Tis is our addition to existing studies related to
crowd-shipping problems. For more details, our paper refers
to regular drivers as city freighters and frst-echelon trucks
for better discrimination in description and modelling. A
table is given in the appendix to summarize and analyze the
diference between our work and existing studies.

3. Problem Description

Similar to the classical 2EVRP addressed by Hemmelmayr
et al. [24] and Breunig et al. [42], we model 2EVRP-TN-OD
where the frst-echelon network connects the central depot
with satellites and the second-echelon network connects the
satellites with customers. In 2EVRP-TN-OD, a set of TNs
exists in the second-echelon network, serving as places for
transferring goods from second-echelon vehicles (city
freighters) to ODs. Figure 1 illustrates a possible solution for
2EVRP-TN-OD.
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In the frst echelon of the distribution network in
2EVRP-TN-OD, there exists a set of homogeneous frst-
echelon trucks serving satellites. Te demands of a satellite
are the total demands of the customers assigned to the
satellite. In the second echelon, there are two types of feets
for serving customers: a set of homogeneous city freighters
and a set of heterogeneous ODs. Each OD has the will-
ingness to serve one or more customers depending on his/
her available capacity. Te willingness is defned as a
maximum extra distance that an OD willingly travels.

Each customer has an amount of demand that must be
fulflled by one visit by a vehicle, either a city freighter or an
OD.While no split delivery is allowed in the second echelon,
2EVRP-TN-OD adopts the split delivery of the frst echelon
of 2EVRP, allowing a particular satellite to be visited bymore
than one frst-echelon truck. Te frst-echelon trucks start
and fnish at the depot, while city freighters start to visit
customers or TNs from a particular satellite and end at the
same satellite. Each OD starts at his/her origin, ends at his/
her destination, and is able to collect demands either at a
satellite or a TN before serving the assigned customers. In
this work, our main objective is to minimize the total op-
eration cost for delivery activities, including: (1) the travel
costs of the frst-echelon trucks, second-echelon city
freighters, and ODs; and (2) the employment costs
accounted for by ODs.

An overview of our proposed work is illustrated in
Figure 1. Tere are 2 transshipment nodes, 3 satellites, 5
customer nodes, 1 vehicle serving the frst echelon, 2 ODs
and 3 city freighters fulflling requests at the second echelon,

and one depot. From the main depot, a large capacity vehicle
serves two satellites (1 and 3), and then there are two city
freighters that will come to the frst satellite to pickup the
requests, namely, freighters 1 and 2. At the same time, at the
third satellite, an OD departs from origin node 1 and collects
the request to deliver to the customer at node 7 before
ending at destination node 1. In addition, another freighter 3
visits this satellite to pick up the requests and then deliver
them to customers at Nodes 6, 10, 11, 15, and 18. Back at the
frst satellite, while city freighter 1 will normally deliver
requests to customers at nodes 5, 9, 12, and 17, city freighter
2 is assigned to fulfll customers’ requests at nodes 8, 13, and
14 in addition to delivering the remaining requests to
transshipment node 19 (green square) for later pickup and
delivery activities performed by OD 2.Tis OD, who departs
from original location 2, visits transshipment node 19 to
collect requests and then continues delivering them to
customers at nodes 4 and 16 on his travel route to the
respected destination node 2. Te other delivery activities
performed by other ODs or freighters are similar to those
performed by OD2 and freighter 1 in this illustrated ex-
ample. To sum up, in this illustrated example, not all sat-
ellites and transshipment nodes are used for delivering
requests to customers; one vehicle is used for servicing
requests at satellites in the frst echelon, while 2 occasional
drivers and 3 city freighters perform the requests’ delivery to
end-customers at the second echelon through the utilization
of one transshipment node out of the two existing ones.

4. A Mixed-Integer Nonlinear
Program Formulation

Te problem is formally defned on a directed graph G �

(N, A), where N represents a set of vertices and A denotes a
set of arcs. Here, N consists of a depot {0}, the set of satellites
Ns, the set of customers Nc, the set of TNs Nr, and the set of
origin and destination nodes of available ODs, NO and ND.
Tere are two sets of arcs in A–that is,
A1 :� (i, j)|i, j ∈ N Nc ∪Nr ∪ ∪NO ∪ND􏼈 􏼉, i≠ j􏼈 􏼉 and A2 :�
A\A1, consecutively representing the arcs in the frst- and
second-echelons. For all arcs (i, j) in A, dij is defned as the
distance from vertex i to vertex j, where tij � dij. In addition,
several additional sets are defned; i.e., N1 � 0∪Ns, N2 �

Nc ∪Nr ∪NO ∪ND, Np � Ns ∪Nr, and Nv � Nc ∪Nr, for
the sake of simplicity of the formulation.

Each customer i ∈ Nc has a nonnegative demand δi. A
set of K1 homogeneous frst-echelon trucks is available at the
depot, each having a maximum capacity of Q1. In the
second-echelon network, there exists a set of K2 homoge-
neous city freighters that can be positioned at any existing
satellite and a set of KOD ODs. Each OD k ∈ KOD has his/her
own origin no

k stored in NO and his/her own destination nD
k

stored in ND. Each city freighter k ∈ K2 has a maximum
capacity of Q2, while each OD k ∈ KOD has a maximum
capacity of QOD

k .
Let Δk be the original distance between the origin and

destination nodes of an OD k ∈ KOD.OD k is willing to serve
the customers as long as the maximum extra-travelled
distance is not greater than μΔk. Te cost of employing an
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Figure 1: An illustration of 2EVRP-TN-OD.
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OD consists of two components: (1) a fxed cost H and (2) a
distance-related variable cost ρOD. In addition, both frst-
echelon trucks and city freighters have distance-related
variable costs cd. Finally, the following MINLP describes
2EVRP-TN-OD.

4.1. Sets

Ns Set of satellites.
Nr Set of available TNs.
Nc Set of customers.
NO Set of origin nodes of ODs.
ND Set of destination nodes of ODs.
K1 Set of frst-echelon trucks.
K2 Set of city freighters.
KOD Set of ODs.

4.2. Additional Sets

N1 Set of all frst-echelon nodes, N1 � 0{ }∪Ns

N2 Set of all second-echelon nodes,
N2 � Ns ∪NC ∪Nr

Np Set of all ODs’ pickup point nodes, Np � Ns ∪Nr

Nv Set of all nodes that are able to be visited by city
freighters excluding the satellites, Nv � Nr ∪ Nc

4.3. Parameters

dij Travel distance from node i to node j, where
(i, j) ∈ A

δi Demand of customer i, where i ∈Nc

QOD
i Maximum available capacity of OD i, where

i ∈ KOD

Δi Distance between origin and destination nodes of
OD i, where i ∈ KOD

Q1 Capacity of a frst-echelon truck.
Qs Capacity of a satellite.
Q2 Capacity of a city freighter.
Qr Capacity of a TN.
H Fixed cost of employing an OD.
ρOD Compensation per distance unit travelled by an
OD.
cd Variable cost per distance unit for either a frst-
echelon truck or a city freighter.
μ A multiplier for calculating the extra-travelled dis-
tance of an OD.

4.4. Decision Variables

xijk Binary variables representing the selection of arc
(i, j) to be traversed by frst-echelon truck k ∈ K1; 1 if

frst-echelon truck k traverses through arc (i, j) and 0
otherwise.
yijk Binary variables representing the selection of
arc (i, j) to be traversed by city freighter k ∈ K2; 1 if
city freighter k traverses through arc (i, j) and 0
otherwise.
zijk Binary variables representing the selection of arc
(i, j) to be traversed by OD k ∈ KOD; 1 if OD k traverses
through arc (i, j) and 0 otherwise.
αpk Binary variable indicating the assignment of OD k
to pickup point p ∈ Np; 1 if OD k visits pickup point i
and 0 otherwise.
βik Binary variable representing whether customer
i ∈ Nc is the last node visited by OD k ∈ KOD; 1 if OD k
goes to the destination after visiting customer i and 0
otherwise.
σODk Total demands assigned to OD k ∈ KOD, σODk ≥ 0
σ2k Total demands assigned to city freighter k ∈ K2,
σ2k ≥ 0
σ1k Total demands assigned to frst-echelon truck k ∈ K1,
σ1k ≥ 0
lMi Total demands assigned to TN i ∈ Nr, lMi ≥ 0
lSi Total demands assigned to satellite i ∈ NS, lSi ≥ 0
q1ik Remaining loads carried by frst-echelon truck
k ∈ K1 when visiting node i ∈ NS, q1ik ≥ 0
q2ik Remaining loads carried by city freighter k ∈ K2
when visiting node i ∈ Nv, q2ik ≥ 0
qODik Remaining loads carried by OD k ∈ KOD when
visiting node i ∈ Nc, qODik ≥ 0

4.5. Objective Function

Min Z � 􏽘
k∈K1

􏽘
i,j∈N1

cddijxijk + 􏽘
k∈K2

􏽘
i,j∈N2

cddijyijk

+ 􏽘
k∈KOD

􏽘

i∈ no
k
∪N2{ }

j∈ N2∪nD
k{ }

ρODdijzijk + 􏽘
k∈KOD

􏽘
p∈Np

Hαpk.

(1)

Subject to
􏽘

j∈N1

x0jk ≤ 1∀k ∈ K1, (2)

􏽘
j∈N1

xj0k ≤ 1∀k ∈ K1, (3)

􏽘
i∈N1

xijk ≤ 1∀j ∈ NS, ∀k ∈ K1, (4)

􏽘
j∈N1

xijk − 􏽘
j∈N1

xjik � 0 i ∈ N1, ∀k ∈ K1, (5)
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􏽘
k∈K2

􏽘
j∈Nv

ypjkσ
2
k + 􏽘

k∈KOD

αpkσ
OD
k ≤ l

S
p p ∈ NS,

(6)

􏽘
i∈N1

􏽘
j∈NS

xijkl
S
j ≤ σ

1
k ∀k ∈ K1, (7)

σ1k ≤Q
1 ∀k ∈ K1, (8)

σ1k ≥ q
1
jk + M 1 − x0jk􏼐 􏼑∀j ∈ NS, ∀k ∈ K1, (9)

q
1
ik − l

S
i ≤ q

1
jk + M 1 − xijk􏼐 􏼑∀i ∈ NS, ∀j ∈ NS, ∀k ∈ K1,

(10)

􏽘
j∈Nv

yijk ≤ 􏽘
l∈K1

􏽘
j∈N1

xjil i ∈ NS, ∀k ∈ K2, (11)

􏽘
j∈NC

zijk ≤ 􏽘
l∈K1

􏽘
j∈N1

xjil i ∈ NS, ∀k ∈ KOD.
(12)

Te objective of 2EVRP-TN-OD in (1) is to minimize the
total cost of the delivery operation. Te frst, second, and
third terms consecutively address the travelling costs of frst-
echelon trucks, city freighters, and the employed ODs, while
the last one represents the payments for employing these
ODs. Constraints (2) to (12) focus on managing the char-
acteristics of the frst-echelon network. Constraints (2) to (4)
ensure that for each frst-echelon truck, every satellite can
only be visited at most once. Constraint (5) represents the
conservation-of-fow constraint of every frst-echelon truck.
Constraint (6) defnes the total demands assigned to each
satellite. Constraint (7) defnes the total demands carried by
each frst-echelon truck, while constraint (8) limits the
maximum number of demands that can be carried by each
frst-echelon truck. Constraints (9) and (10) track the
remaining demands carried by each frst-echelon truck while
visiting a node. Constraint (11) ensures that a city freighter
can originate from a satellite if and only if the satellite is
served by frst-echelon trucks. Similarly, constraint (12)
guarantees that each OD can collect demands at a satellite if
and only if the satellite is served by at least one frst-echelon
truck.

􏽘
k∈K2

􏽘
i∈N2

yijk + 􏽘
k∈KOD

􏽘
i∈N2

zijk � 1 j ∈ NC,
(13)

αpk ≤ 􏽘
l∈K2

􏽘
i∈N2

yipl p ∈ Nr, k ∈ KOD,
(14)

αpk ≤ 􏽘
l∈K2

􏽘
i∈N1

xipl p ∈ NS, k ∈ KOD,
(15)

􏽘
p∈Np

αpk ≤ 1 k ∈ KOD,
(16)

􏽘
i∈NC

βik � 􏽘
p∈Np

αpk k ∈ KOD,
(17)

􏽘
i∈NC

zpik � αpk p ∈ Np, k ∈ KOD, (18)

􏽘
i∈no

k

zipk � αpk p ∈ Np, k ∈ KOD,
(19)

􏽘

j∈nD
k

zijk � βik i ∈ NC, k ∈ KOD,
(20)

􏽘
j∈Np∪NC

zjik − 􏽘

j∈NC∪nD
k

zijk � 0π i ∈ NC, k ∈ KOD,
(21)

σODk ≤ q
OD
jk + M 1 − zpjk􏼐 􏼑 j ∈ NC, p ∈ Np, k ∈ KOD,

(22)

q
OD
ik − δi ≤ q

OD
jk + M 1 − zijk􏼐 􏼑 i, j ∈ NC, k ∈ KOD, (23)

􏽘
i∈N2

􏽘
j∈NC

zijkδj ≤ σ
OD
k k ∈ KOD, (24)

σODk ≤Q
OD
k k ∈ KOD, (25)

􏽘
p∈Np

dno
k
pαpk + 􏽘

i∈Np∪NC

􏽘
j∈NC

dijzijk

+ 􏽘
j∈NC

djnD
k
βjk ≤ (1 + μ)Δk k ∈ KOD.

(26)

Constraint (13) ensures that either an OD or a city
freighter must serve each customer. Constraints (14) to (26)
focus on managing the characteristics of ODs’ routes. In
particular, constraints (14) to (15) defne the assignment of
each OD to a pickup point, either a satellite or a TN.
Constraint (16) ensures that each OD can only visit one
pickup point to take the assigned demands. Constraint (17)
ensures that each OD needs to visit a customer before
reaching his/her destination if the OD is assigned a de-
mands. Constraints (18) to (21) ensure the fow-in and fow-
out of routes for an OD. Constraints (22) and (23) track the
remaining demands carried by an OD while visiting cus-
tomer nodes. Constraint (24) calculates the total demands
carried by an OD, and constraint (25) defnes the maximum
capacity of an OD. Lastly, constraint (26) ensures that the
total distance travelled by an OD is not greater than the
maximum willingness of the OD.

􏽘
i∈NS

􏽘
j∈Nv

yijk ≤ 1 k ∈ K2, (27)

􏽘
i∈NS∪Nv

yijk − 􏽘
i∈NS∪Nv

yjik � 0 j ∈ Nv, k ∈ K2, (28)

􏽘
k∈K2

􏽘
i∈N2

yijk ≤ 1 j ∈ Nr, (29)

􏽘
k∈KOD

αpkσ
OD
k ≤ l

M
p p ∈ Nr, (30)
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l
M
i ≤Q

r
i ∈ Nr, (31)

􏽘
i∈N2

􏽘
j∈NC

yijkδj + 􏽘
i∈N2

􏽘
j∈Nr

yijkl
M
j ≤ σ

2
k k ∈ K2, (32)

σ2k ≤Q
2

k ∈ K2, (33)

σ2k ≤ q
2
jk + M 1 − yijk􏼐 􏼑 i ∈ NS, j ∈ Nv, k ∈ K2,

(34)

q
2
ik − δi ≤ q

2
jk + M 1 − yijk􏼐 􏼑 i ∈ NC, j ∈ Nv, k ∈ K2,

(35)

q
2
ik − l

M
i ≤ q

2
jk + M 1 − yijk􏼐 􏼑 lim

x⟶∞
i ∈ Nr, j ∈ Nv, k ∈ K2.

(36)

Constraints (27) to (36) focus on the route characteristics
of the city freighters. Constraint (27) ensures that each city
freighter can only originate from one satellite. Constraint
(28) ensures the fow-in and fow-out of each city freighter.
Constraint (29) guarantees that each TN can only be visited
at most once. Constraint (30) defnes the number of de-
mands delivered to a TN by a city freighter. Constraint (31)
limits the maximum allowable demands delivered to a TN.
Constraint (32) defnes the total demand carried by a city
freighter from a satellite, while the maximum allowable
demands that can be carried by a city freighter are limited by
constraint (33). Moreover, constraints (34) to (36) track the
remaining demands carried by a city freighter while visiting
a node, either a customer node or a TN. Finally, the domains
of the decision variables are given by constraints (37)–(49).

xijk ∈ 0, 1{ }∀i ∈ N1, ∀j ∈ N1, ∀k ∈ K1, (37)

yijk ∈ 0, 1{ }∀i ∈ N2, ∀j ∈ N2, ∀k ∈ K2, (38)

zijk ∈ 0, 1{ }∀i ∈ n
o
k ∪N2, ∀j ∈ N2 ∪ n

D
k , ∀k ∈ KOD,

(39)

αpk ∈ 0, 1{ }∀p ∈ Np, ∀k ∈ KOD, (40)

βik ∈ 0, 1{ }∀i ∈ Nc, ∀k ∈ KOD, (41)

σ1k ≥ 0∀k ∈ K1, (42)

σ2k ≥ 0∀k ∈ K2, (43)

σODk ≥ 0∀k ∈ KOD, (44)

l
M
i ≥ 0∀i ∈ Nr, (45)

l
S
i ≥ 0∀i ∈ NS, (46)

q
1
ik ≥ 0∀i ∈ NS, ∀k ∈ K1, (47)

q
2
ik ≥ 0∀i ∈ Nv, ∀k ∈ K2, (48)

q
OD
ik ≥ 0∀i ∈ NC, ∀k ∈ KOD. (49)

Te formulation belongs to a mixed-integer nonlinear
program due to the multiplication of two types of decision
variables in several constraints, i.e., constraints (6), (7), (30),
and (32).

5. Proposed ALNS Algorithm for 2EVRP-
TN-OD

Tis section presents the ALNS algorithm for solving
2EVRP-TN-OD. Te following sections discuss the solution
representation, the procedure for generating an initial so-
lution, and the components of the proposed ALNS.

5.1. Adaptive Large Neighborhood Search. Due to the com-
plexity of VRP variants, most of the aforementioned works
opted for metaheuristics to solve the problems, which are
summarized in Table 1. Among them, a large neighborhood
search-based algorithm is one of the most efective methods
for solving VRPs [12, 14, 42]. ALNS was frst introduced by
Ropke and Pisinger [44] to deal with the pickup and delivery
problem with time windows (PDPTW). Tis approach
searches for a new solution using various removal as well as
insertion mechanisms and the computed costs for rein-
serting the removed nodes from the current solutions.
Originally, the removal operators included Shaw Removal,
Random Removal, and Worst Removal, while the insertion
ones were Greedy heuristic and Regret heuristic. Tey are
selected based on rewards using the roulette wheel principle.
A new solution will be accepted if it is better than the current
one.

Akpunar and Akpinar [45] proposed a hybrid adaptive
large neighborhood (H-ALNS) search algorithm, which
outperforms the existing ones in terms of computational
time and solution quality. Tis is confrmed by Voigt et al.
[43], who used H-ALNS to solve various instances of
2EVRP, LRP, and multidepot VRP (MDVRP). Despite the
superiority in solving 2EVRP of HALNS, our work adopts
ALNS to solve 2EVRP-TN-OD.

Although the proposed ALNS of our work is partly
similar to those of Hemmelmayr et al. [24] and Breunig et al.
[42], they did not consider the crowd-shipping scenario in
their works. Our work has a similar destroy mechanism to
the “satellite-related removal mechanism” of theirs, but the
destroyed nodes in our ALNS can be either satellites or
transshipment nodes. When a TN is removed, a set of
customers related to this node will also be removed from the
second echelon, which is the uniqueness of our study.
Moreover, our work’s Greedy insertion mechanism is
slightly diferent from theirs due to the extra costs for
servicing the TNs of the city freighters. Te related insertion
is also another diference between our work and that of the
mentioned authors. To sum up, ALNS with destroy and
repair mechanisms for solving the 2EVRP-TN-OD

Journal of Advanced Transportation 7



distinguishes our study from the works of Hemmelmayr
et al. [24] and Breunig et al. [42].

5.2. Solution Representation. Te solution representation of
the 2EVRP-TN-OD problem consists of three parts: (1)
routes of frst-echelon trucks, (2) routes of city freighters,
and (3) routes of ODs. First, let
R1

k � R1
k(0), R1

k(1), . . . , R1
k(|R1

k|)􏼈 􏼉 be the route of frst-ech-
elon truck k, consisting of depot positioned at R1

k(0) and
R1

k(|R1
k|), and the sequence of visited satellites. Second, let

R2
i � R2

i (0), R2
i (1), . . . , R2

i (|R2
i |)􏼈 􏼉 denote the route of city

freighter i. Herein, R2
i (0) represents the satellite from which

city freighter i originates. Note that R2
i (0) � R2

i (|R2
i |) be-

cause city freighter i returns to the same satellite after visiting
a sequence of nodes. Te visited vertices by a city freighter
can be customers and/or TNs. Tird, let Ωj �

Ωj(0),Ωj(1), . . . ,Ωj(|Ωj|)􏽮 􏽯 be the route of OD j consisting
of two parts: (1) a satellite or a TNwhere the OD picks up the

assigned demands Ωj(0), and (2) the visited customers
Ωj(1), . . . ,Ωj(|Ωj|)􏽮 􏽯.

Figure 2 illustrates the solution representation of Fig-
ure 1. For example, R1

1 represents the route of frst-echelon
truck 1, visiting satellites 1 and 3 before returning to the
depot. R2

1 represents the route of city freighter 1, which
originates from satellite 1, and performs a visit to a sequence
of customers. Ω1 represents the route of OD 1 that visits
transshipment node 19 and serves customers 4 and 16.

5.3. Construction Heuristic. Te construction heuristic
generates a feasible initial solution for ALNS. It frst assigns
customers to available ODs using the nearest neighborhood
insertion based on the capacity of ODs. Each OD is assigned
to the nearest collection point, either a satellite or a TN, to
collect demands. Afterward, unassigned customers are
assigned to their nearest satellite. From each utilized satellite,
city freighters’ routes are then built to serve these customers

Table 1: Summary of metaheuristics and heuristics used for solving various variants of 2EVRP, LRP, and crowd-shipping (CS) problems.

Reference Proposed
problem Solution approach

Archetti et al. [33] CS Iterated local search

Chen et al. [35](∗∗) CS Time compatibility-based heuristic and time-expanded graph-based heuristic (heuristic
approach)

Macrina et al. [40] CS Variable neighborhood search
Sampaio et al. [36](∗∗∗) CS Adaptive large neighborhood search
Voigt and Kuhn [37] CS Adaptive large neighborhood search
Yu et al. [26] LRP Simulated annealing
Karaoglan et al. [28] LRP Two-phase simulated annealing

Hemmelmayr et al. [24] LRP (2EVRP
based) Adaptive large neighborhood search

Ting and Chen [25](∗) LRP Multiple ant colony optimization
Yu and Lin [29] LRP Simulated annealing
Schneider and Löfer [27] LRP Tree-based search algorithm (heuristic approach)
Pichka et al. [30] 2ELRP Simulated annealing
Yu et al. [16] 2ELRP Simulated annealing
Huang and Ardiansyah
[38] 2ELRP and CS Tabu search

Arnold and Sörensen
[32](∗∗∗∗) 2ELRP Progressive fltering algorithm (heuristic approach)

Wang et al. [9] 2EVRP Variable neighborhood search and integer programming
Belgin et al. [10] 2EVRP Hybrid variable neighborhood Descent and local search
Zhou et al. [18] 2EVRP Hybrid Genetic algorithm
Breunig et al. [11] 2EVRP Large neighborhood search
Jie et al. [12] 2EVRP Column generation-adaptive large neighborhood search
Enthoven et al. [14] 2EVRP Adaptive large neighborhood search
Kitjacharoenchai et al. [15] 2EVRP Large neighborhood search and drone truck route construction
Yu et al. [31] 2EVRP Hybrid multistart metaheuristic

Anderluh et al. [13] 2EVRP Combined ∈-constraints and large neighborhood search, and combined large
neighborhood and the heuristic Rectangle Splitting method

Mühlbauer and Fontaine
[19] 2EVRP Parallelized large neighborhood search

Yu et al. [17] 2EVRP and CS Adaptive large neighborhood search
Voigt et al. [43](∗∗−∗∗) 2EVRP and LRP Hybrid adaptive large neighborhood search
Te works of the mentioned authors also involve the following problem: (∗): FLP and MDVRP (facility location problem and multidepot vehicle routing
problem). (∗∗): Te authors addressed CS through MDMPMP (Multidriver, multiparcel matching problem). (∗∗∗): Te authors addressed CS through the
vehicle settings of PDPTW-T (pickup and delivery problem with time windows and transfers). (∗∗∗∗): STTRPSD (single truck and trailer routing problem
with satellite depots). (∗∗−∗∗): MDVRP (multidepot vehicle routing problem).
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and utilize TNs. Finally, routes of frst-echelon trucks are
constructed to serve the demands assigned to each satellite.

5.4. Proposed Adaptive Large Neighborhood Search Heuristic.
Algorithm 1 describes the general structure of the ALNS
heuristic developed for solving 2EVRP-TN-OD. Te con-
struction algorithm described in Section 5.2 is executed to
build an initial solution.Te resulting solution is stored in Fc

and copied to the working solution, Fw, and the best so-
lution, F∗. ALNS begins with removing nodes from FW with
a destroy operator selected by a roulette wheel mechanism.
Te number of removed nodes from the solution is ran-
domly chosen between [1, θ]. To accommodate the recon-
fguration of both echelons, two conditions are expressed in
Lines 5–8. Te main purpose of the frst condition in Lines
5–6 is to remove nodes visited in the second-echelon net-
work, while the main purpose of the second condition in
Lines 7–8 is not only for dealing with nodes in the second-
echelon network but also for changing the confguration of
satellites.

After the removal phase is conducted,
ChangeODPickupPoint( ) is performed to change pickup
points visited by ODs. Te repair phase then starts by ap-
plying a selected repair operator to FW. Te repair phase
focuses on the second-echelon network. Tus, the frst-
echelon routes’ optimization procedure follows to recon-
struct a set of feasible routes for frst-echelon trucks, as
described in Section 5.3.4.

A local search procedure expressed in Lines 11–18 is
performed for intensifcation purpose and therefore increases
the possibility of obtaining a better solution. When FW is
better (in this case, has a lower objective value) than FC, we
replace FC with FW, as expressed in Lines 15–18. Further-
more, if FW successfully improves the best solution so far,
then F∗ will be updated, and the selection probability of
destroying and repairing operators is updated using
UpdateOperatorScore(λr, λi), which only considers the

performance of available operators after the previous score
updates. Initially, every operator has a score of λ. In par-
ticular, an amount of score τ is added to an operator’s score
whenever the operator can achieve a new best solution.

Te acceptance of FW with worse quality is based on
threshold acceptance; i.e., still accepting FW as long as the
gap between the objective value of FW and FC is within a
particular threshold value. Tis type of acceptance is
expressed using a function, i.e., accept(Fw, Fc), in Line 26.
Te algorithm performs a restart strategy when a certain
number of nonimproving iterations, β, is reached. Fi-
nally, ALNS runs until the maximum time limit, Tmax, is
reached.

5.4.1. Destroy Operators. Te developed destroy operators
are mainly adopted from Ropke and Pisinger [44] and
Hemmelmayr et al. [24]. In the solution, there exist two
types of nodes, i.e., customer nodes and TNs, in the second-
echelon network. In this section, we thus refer to a node as
either a customer node or a TN. Te removal operators are
specifcally designed to address the existence of the afore-
mentioned types of nodes.Whenever applicable, the number
of customers and/or TNs to remove, q, is randomly chosen
within the range of available customers and TNs [δ, θ]. Te
description of all destroy operators is provided as follows:

(1) Pickup Point Removal. A pickup point in the solution
space, either a TN or a satellite, is selected, and all customers
associated with the point are put on the removal list. Tis
operator only operates whenever nnoupdate reaches the
maximum number of nonimprovements’ iterations L. After
the implementation of this operator, nnoupdate is set to 0.

(2) Random Removal. Tis operator will choose q nodes
randomly and exclude them from the solution pool for
reinserting purposes. If the selected removed node is a TN,
then all associated customers with this TN are destroyed.

(3) Worst Removal. A number of q nodes with the highest
normalized removal gains, which are the absolute value of
the subtraction between the original solution’s cost and the
cost of the solution without the selected node, are removed
using this operator. Tis value is then divided by the arcs’
average cost where the respected node belongs for nor-
malization purposes. By doing this, candidates who have an
extreme distance from other customers can limit the rate at
which they are selected over iterations.

(4) Node Neighborhood Removal. Tis operator randomly
retrieves a node as a seed, and then (q − 1) nodes closest to
this node are removed. If a removed node is a TN, then all
related customers with the TN are removed.

(5) Random Route Removal. A route in the solution pool is
randomly selected and excluded from the pool along with its
candidates. It is strictly prohibited for destroyed nodes using
this operator to be reinserted back into their most recent
satellite.

0 1 3 0

1 5 9 12 17 1

1 19 8 13 14 1

3 15 10 11 18 6 3

19 4 16

3 7

R1
1

R2
1

R2
2

R2
3

Ω1

Ω2

Figure 2: Te solution representation example of 2EVRP-TN-OD.
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(6) Route Redistribution. For each satellite, we remove a
route containing one or more nodes that are actually located
nearer to another satellites . Te distances of nodes’ pairs are
multiplied with a perturbation value pϵ [0.8, 1.2] for ran-
domization purposes.

5.4.2. Repair Operators. Previously removed customer
nodes are stored in the removal list and are reinserted to
generate a new solution from the existing ones in this section
using the following operators:

(1) Greedy Insertion. Customer nodes from the removal list
are retrieved based on the ascending order of their insertion
costs at all available locations in the searching space frst.
Tose nodes are then ranked and reinserted at the location
with the lowest cost among the currently available routes. A
new route is also considered whenever applicable. An ad-
ditional inserting cost is also accounted for by the city
freighter to service unopened TNs that are launched for
inserting customers to be served by unemployed ODs. Two
other variants of greedy insertion are also proposed: Greedy
insertion with noise, where the insertion cost is modifed
using the noise factor p ∈ [0.8, 1.2] for randomization
purposes, and Greedy insertion with a prohibition, where
nodes are not allowed to be reinserted into routes that they
were recently excluded from.

(2) Regret Insertion. Nodes are inserted based on their regret
values, which are the absolute subtraction value between the
insertion position of the node’s best cost and its second-best
ones among existing routes. Similar to the greedy operator,
the insertion costs also consider the scenario where a new
route is opened. In addition, the regret value for each re-
moved node holds its value until the current iteration
fnishes.

(3) Related Insertion. Tis operator frst randomly chooses a
removed customer node as a seed and selects the following
inserted candidates based on the distance between the seed and
the remaining nodes in the removal pool in ascending order.

5.4.3. Local Search. Tis study implements local search (LS)
for the purpose of intensifcation. Five operators are con-
sidered in this procedure: insertion, interroute swap,
intraroute swap, 2-opt, and 2-opt∗. For each local search
operator, a solution is accepted when its objective value
surpasses the current one. When a better solution is
achieved, it is immediately implemented by the procedure,
just prior to the termination of the search process, and the
operator is restarted. Tis loop continues until no more
improvements are achieved. In this case, the next local
search operator using the same mechanism is implemented.
Each move is explained as follows:

(1) Insertion. One node is randomly excluded from its
current route and then assigned to a diferent place within
the same route that extracted it. If a TN is excluded for
wrapping itself into a new position in the routing sequence

of the second-level route, then there are no changes to the
customers’ sequences served using this TN.

(2) Inter-Route Swap. A pair of nodes is removed from their
current route, and their origin position in the route sequence
is switched with the other ones within the same route. If a
TN is chosen for switching its position with another node,
then no changes happen to all customers in the servicing
sequence from this TN.

(3) Intra-Route Swap. A pair of routes is chosen, and within
themselves, a node is taken out and switched positions in the
route sequence with the ones that are extracted from the other
route. If a TN is chosen for swapping positionswith nodes from
other routes, then all customers in the servicing sequence using
this TN are also delivered to the new route and are still served
by this TN. It must be noted that the swapping method also
checks the validity of the respected constraints when swapping
nodes; hence, the demands of all TNs are determined, bringing
no violations to the whole solving procedure.

(4) 2-Opt. Tis option selects 2 consecutive pairs of nodes
(i, i + 1) and (j, j + 1) in a random route through the so-
lution pool, and then each candidate in a pair swaps with the
respected candidate on the other pair. Te two new pairs
(i, j) and (i + 1, j + 1) are then formed from the previous
ones on the same route. Similar to the interroute swap,
customers’ orders that are fulflled by a selected TN are still
handled by this TN.

(5) 2-opt∗. Tis option is similar to the 2-opt, but instead of
doing the swapping on the same route, a pair of random
routes is selected for initiating the swapping process, and at
each route, there is only one consecutive pair excluded from
the existing route. Just like the intraroute swap, if a TN is
chosen for this swapping operator, then its validity on the
demand constraints is checked to ensure there is no violation
of the route capacity, and all customers whose demands are
delivered from this TN are still distributed using it.

5.4.4. First-Echelon Routes’ Optimization. After the repair
phase of the second-echelon network, a procedure for
building frst-echelon trucks’ routes is implemented to
complete the solution.Te procedure consists of two phases:
the route construction phase and the route improvement
phase. Te frst phase constructs frst-echelon trucks’ routes
following the algorithm proposed by Breunig et al. [42]. Te
second phase applies the improvement heuristic shown in
Algorithm 2 to improve the solution obtained in Phase 1.

Let FC
1E and FW

1E be the routes of the frst-echelon net-
work in FC and FW, respectively. For every iteration of
Algorithm 2, a random number r is generated. One of the
three local search operators (i.e., insertion, swap, and 2-opt)
is then implemented. Tis procedure terminates when the
number of iterations reaches μ1E. In this work, μ1E is set to
500 based on a trial-and-error experiment. In this procedure,
there is no involvement with the routes that cross the TNs;
thus, the cases when TNs are selected are not considered.
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5.5. Our Contributions. Diferent from the existing 2EVRP,
our 2EVRP-TN-DO included the pickup point operator for
the removal process, in which the selected nodes can be
either TNs or satellites, while Hemmelmayr et al. [24]
addressed this as a satellite removal only. Our random and

node neighborhood removals also include the retrieval of
TNs, which is not mentioned in the work of the scholars
mentioned.

In the insertion phase, we also account for the cost of
opening new TNs that are served by unemployed ODs in

Input: OD, OI, λ, p, δ, θ, β, T, L and an instance of 2EVRP-TN-OD
Output: S∗

(1) Fc⟵ InitialSolution

(2) F∗⟵Fw⟵Fc

(3) T⟵T0, i⟵ 0, nnoupdate⟵ 0
(4) q⟵RandInt[δ, θ]

(5) while T≤Tmax do
(6) if nnoupdate < L then
(7) Remove and reinsert q customers based on removal and a repair

operator λr and λi where r ∈ OD and i ∈ OI

(8) else
(9) Pick − up point removal and a repair operator based on λi is

Selected

(10) nnoupdate⟵ 0
(11) Fw⟵Repair(ChangeODPickupPoint(Destroy(Fc)))

(12) LocalSearch(Fw)

(13) if f(LocalSearch(Fw))>f(Fw)) then
(14) while f(LocalSearch(Fw))>f(Fw)) do
(15) LocalSearch(Fw)

(16) if f(LocalSearch(Fw))≤f(Fw)) then
(17) Fw⟵LocalSearch(Fw)

(18) else
(19) Fw⟵ LocalSearch(Fw)

(20) if f(Fw)<f(Fc) then
(21) Fc⟵Fw

(22) if f(Fc)<f(F∗) then
(23) F∗⟵Fc

(24) λr, λi⟵UpdateOperatorScore(λr, λi)

(25) nnoupdate⟵ 0
(26) else
(27) Fc⟵ accept(Fw, Fc)

(28) if nnoupdate ≥ β then
(29) Fc⟵F∗

(30) nnoupdate⟵ nnoupdate + 1
(31) return F∗

ALGORITHM 1: Te proposed ALNS heuristic.

(1) for i � 1 to μ1E do
(2) r⟵U(0, 1)

(3) if (r< 1/3) then
(4) 1E Insertion(FW

1E)

(5) else if (1/3≤ r< 2/3) then
(6) 1E Swap(FW

1E)

(7) else
(8) 1E 2opt(FW

1E)

(9) if (f(FW
1E)< f(FC

1E)) then
(10) FC

1E⟵FW
1E

(11) end for
(12) return FC

1E

ALGORITHM 2: Te pseudocode of the frst-echelon routes’ optimization.
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addition to the related insertion operator. Tis has not
been suggested by the studies of Hemmelmayr et al. [24]
and Breunig et al. [42]. Instead of implementing the local
search procedure on the frst level of existing work, we
apply it to both frst- and second-level route optimizations
in our work.

6. Computational Experiments

MINLP is solved using AMPL with the Gurobi solver, and
the proposed ALNS is coded in Microsoft Visual Studio C++
2019. Both of them were run on a computer with an Intel®Core i7-6700 CPU at 3.40GHz and 8GB of RAM under
Windows 10 Professional.

6.1. Benchmark Instances. Te 2EVRP-TN-OD datasets are
generated based on the existing 2EVRP instances. Tere are
four sets of benchmark instances. Set 1, originally proposed
by Perboli et al. [8], consists of 1 depot, 2 satellites, and 12
customers. Sets 2 and 3 are larger instances, with 1 depot,
2–4 satellites, and 21–50 customers, respectively. A set of
available ODs and a set of TNs are added to the 2EVRP
instances. We follow Archetti et al. [33] by setting the
number of ODs in the system to be equal to the number of
customers. For a given instance with locations of customers
(xi, yi), ∀i ∈ Nc, the origin and destination of ODs are
randomly generated in the lower left-hand corner of the
square (mini∈Nc

xi × 0.75,mini∈Nc
yi × 0.75) and upper right-

hand corner of the square (maxi∈Nc
xi × 1.25,maxi∈Nc

yi ×

1.25), respectively. Second, ODs’ capacity is generated under
a uniform distribution of U[0.05, 0.25] × Q2.Tird, wemake
sure that every generated OD is able to at least serve one
customer; otherwise, another OD is generated to replace the
OD who is not able to serve any customers. Te parameters
of ODs, partly adopted fromArchetti et al. [33], are provided
as follows:

(1) Te variable cost of an OD is set to 0.2 times the total
travelled distance, and the fxed cost of an OD is set
to 5.

(2) Te maximum distance deviation that is willingly
traversed by an OD is 0.5 times the distance between
the origin and destination nodes of the OD.

TNs are generated by following these rules. First, the
number of TNs in the system is set to 3. Tis is reasonable
since the number of satellites in these instances is 2 or 4.
Second, for the location of TNs, we randomly select a po-
sition in the lower left-hand corner of the customer zone
(mini∈Nc

xi,mini∈Nc
yi) and the upper right-hand corner of

the customer zone (maxi∈Nc
xi,maxi∈Nc

yi) and locate a TN in
the selected position. After that, we ensure that every TN is
not too close to each other and the satellites by defning a
minimum distance requirement, c. Here, c is set by the
following equation (50). In case a newly generated TN vi-
olates the distance requirement, another location is gener-
ated using the aforementioned mechanism. Tis procedure
repeats until all generated TNs fulfll the minimum distance
requirement.

c � sqrt max xi − minxi( 􏼁
2

+ maxyi − minyi( 􏼁
2

􏼐 􏼑 × 0.25.

(50)

6.2. Parameter Tuning. We follow the parameter tuning
procedure for the ALNS heuristic developed by Hemmel-
mayr et al. [24] and Ropke and Pisinger [44]. Initially, the
parameters’ values of the proposed ALNS follow the
aforementioned references. By considering a set of candidate
values for each parameter, the tuning procedure is con-
ducted by only accepting the value leading to an im-
provement in terms of the average objective value over all
selected testing instances. Te aforementioned procedure is
performed sequentially over all parameters being tuned. Te
fnal selected values for all parameters are presented in
Table 2.

6.3. Performance of the Proposed ALNS for Solving 2EVRP
Instances. Tree sets of 2EVRP instances from Perboli et al.
[8] and Hemmelmayr et al. [24] are used to test the efec-
tiveness of the proposed ALNS. We compare the results
obtained by ALNS with three state-of-the-art algorithms
proposed by Hemmelmayr et al. [24]; Breunig et al. [42]; and
Enthoven et al. [14]. Tables 3–5 present the comparative
Table 6 results. In these tables, columns “Best” and “CPU (s)”
represent the best value obtained and the average compu-
tational time used by each method, respectively.

Based on Tables 3–5, the proposed ALNS provides re-
sults comparable to those obtained from the state-of-the-art
algorithms. In particular, ALNS achieves exactly the same
best solutions for Sets 2 and 3 instances, while the average
gap between the best solutions obtained by our ALNS for Set
5 and BKS is 1.40%. Te average gaps to BKS are 0.25% for
Set 2, 1.37% for Set 3, and 2.47% for Set 5, respectively.

6.4. Performance of ALNS for Solving 2EVRP-TN-OD Small
Instances. Table 7 shows the results obtained by MINLP and
the proposed ALNS. All of the instances of Set 1 are solved to
optimality by the Gurobi solver, but it takes more than
5 hours on average to solve one small-scale instance. ALNS is
run 5 times to solve each instance of Set 1. Based on Table 7,
our ALNS can obtain results of equal quality to those
produced by Gurobi’s solver. Moreover, both the best so-
lution and average solution values are the same, showing the
robustness of the proposed ALNS for solving small-scale
instances. Te computational time required by ALNS to
obtain those results is signifcantly smaller. To sum up, the
proposed ALNS outperforms the Gurobi solver in terms of
computational time.

6.5. Performance of ALNS for Solving 2EVRP-TN-OD Larger
Instances. Tables 8 and 9 show the results of solving the
larger instances; i.e., Sets 2 and 3 of 2EVRP-TN-OD in-
stances. For solving each instance of Sets 2 and 3, we utilize
both Gurobi and the proposed ALNS. We set the maximum
running time to 3600 seconds for Gurobi. ALNS is run5

12 Journal of Advanced Transportation



Table 2: Final parameters in the proposed ALNS algorithm.

Symbol Explanation Final value
λ Initial score of destroy and repair operators 50
p Perturbation factor 0.2
δ Minimum number of customers and/or TNs to be removed 1
θ Maximum number of customers and/or TNs to be removed 0.4 |N|

β Number of iterations without improvement before returning to the
best-found solution 1000

L
Number of iterations without improvement before implementing

the satellite removal 100

T2E−VRP Time budget for 2EVRP 60 s (small instance), 900 s (large instance)

T2E−VRP− TN− OD Time budget for 2EVRP-TN-OD 60 s (small instance), 120 s (medium instance), 300 s
(large instance)

Table 3: Comparative results for solving 2EVRP Set 2 instances

Instance BKS
Hemmelmayr
et al. [24]

Breunig et al.
[42]

Enthoven et al.
[14] Proposed ALNS Avg. gap to

BKS (%)
Best gap to
BKS (%)

Best CPU (s) Best CPU (s) Best CPU (s) Avg. 5 Best CPU (s)
Set 2a

E-n22-k4-s6-17 417.07 417.07 37 417.07 60 417.07 75 417.07 417.07 60 0.00 0.00
E-n22-k4-s8-14 384.96 384.96 34 384.96 60 384.96 103 384.96 384.96 60 0.00 0.00
E-n22-k4-s9-19 470.6 470.6 35 470.6 60 470.6 64 470.60 470.60 60 0.00 0.00
E-n22-k4-s10-14 371.5 371.5 37 371.5 60 371.5 75 371.50 371.50 60 0.00 0.00
E-n22-k4-s11-12 427.22 427.22 31 427.22 60 427.22 138 427.22 427.22 60 0.00 0.00
E-n22-k4-s12-16 392.78 392.78 36 392.78 60 392.78 67 392.78 392.78 60 0.00 0.00
E-n33-k4-s1-9 730.16 730.16 74 730.16 60 730.16 157 730.16 730.16 60 0.00 0.00
E-n33-k4-s2-13 714.63 714.63 64 714.63 60 714.63 83 714.63 714.63 60 0.00 0.00
E-n33-k4-s3-17 707.48 707.48 58 707.48 60 707.48 80 707.48 707.48 60 0.00 0.00
E-n33-k4-s4-5 778.74 778.74 77 778.74 60 778.74 79 778.74 778.74 60 0.00 0.00
E-n33-k4-s7-25 756.85 756.85 53 756.85 60 756.85 82 756.85 756.85 60 0.00 0.00
E-n33-k4-s14-22 779.05 779.05 85 779.05 60 779.05 82 779.05 779.05 60 0.00 0.00

Set 2b
E-n51-k5-s2-4-17–46 530.76 530.76 154 530.76 60 530.76 145 530.76 530.76 60 0.00 0.00
E-n51-k5-s2-17 597.49 597.49 100 597.49 60 597.49 140 597.49 597.49 60 0.00 0.00
E-n51-k5-s4-46 530.76 530.76 173 530.76 60 530.76 211 534.76 530.76 60 0.75 0.00
E-n51-k5-s6-12 554.81 554.81 149 554.81 60 554.81 199 555.03 554.81 60 0.04 0.00
E-n51-k5-s6-12-
32–37 531.92 531.92 150 531.92 60 531.92 141 537.78 531.92 60 1.10 0.00

E-n51-k5-s11-19 581.64 581.64 182 581.64 60 581.64 131 584.06 581.64 60 0.42 0.00
E-n51-k5-s11-19-
27–47 527.63 527.63 147 527.63 60 527.63 137 533.96 527.63 60 1.20 0.00

E-n51-k5-s27-47 538.22 538.22 136 538.22 60 538.22 237 538.22 538.22 60 0.00 0.00
E-n51-k5-s32-37 552.28 552.28 141 552.28 60 552.28 263 552.28 552.28 60 0.00 0.00

Set 2c
E-n51-k5-s2-4-17–46 601.39 601.39 60 601.39 209 606.75 601.39 60 0.89 0.00
E-n51-k5-s2-17 601.39 601.39 60 601.39 141 602.66 601.39 60 0.21 0.00
E-n51-k5-s4-46 702.33 702.33 60 702.33 196 706.78 702.33 60 0.63 0.00
E-n51-k5-s6-12 567.42 567.42 60 567.42 129 569.36 567.42 60 0.34 0.00
E-n51-k5-s6-12-
32–37 567.42 567.42 60 567.42 136 569.97 567.42 60 0.45 0.00

E-n51-k5-s11-19 617.42 617.42 60 617.42 137 621.18 617.42 60 0.61 0.00
E-n51-k5-s11-19-
27–47 530.76 530.76 60 530.76 135 532.10 530.76 60 0.25 0.00

E-n51-k5-s27-47 530.76 530.76 60 530.76 134 530.76 530.76 60 0.00 0.00
E-n51-k5-s32-37 752.59 752.59 60 752.6 132 757.74 752.59 60 0.68 0.00
Average 578.27 565.55 93 578.27 60 578.27 134 579.76 578.27 60.00 0.25 0.00
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Table 4: Comparative results for solving 2EVRP set 3 instances.

Instance BKS
Hemmelmayr
et al. [24]

Breunig et al.
[42]

Enthoven et al.
[14] Proposed ALNS Avg. Gap to

BKS (%)
Best gap to
BKS (%)

Best CPU (s) Best CPU (s) Best CPU (s) Avg. 5 Best CPU (s)
Set 3a

E-n22-k4-s13-14 526.15 526.15 43 526.15 60 526.15 70 532.25 526.15 60 1.16 0.00
E-n22-k4-s13-16 521.09 521.09 44 521.09 60 521.09 64 521.96 521.09 60 0.17 0.00
E-n22-k4-s13-17 496.38 496.38 49 496.38 60 496.38 65 511.59 496.39 60 3.06 0.00
E-n22-k4-s14-19 498.8 498.8 43 498.8 60 498.8 63 518.63 498.80 60 3.98 0.00
E-n22-k4-s17-19 512.81 512.81 26 512.81 60 512.81 72 526.15 512.81 60 2.60 0.00
E-n22-k4-s19-21 520.42 520.42 34 520.42 60 520.42 62 525.93 520.42 60 1.06 0.00
E-n33-k4-s16-22 672.17 672.17 76 672.17 60 672.17 114 677.53 672.17 60 0.80 0.00
E-n33-k4-s16-24 666.02 666.02 77 666.02 60 666.02 106 692.45 666.02 60 3.97 0.00
E-n33-k4-s19-26 680.36 680.36 84 680.36 60 680.36 79 681.16 680.37 60 0.12 0.00
E-n33-k4-s22-26 680.37 680.37 77 680.37 60 680.37 136 683.34 680.37 60 0.44 0.00
E-n33-k4-s24-28 670.43 670.43 88 670.43 60 670.43 77 679.16 670.43 60 1.30 0.00
E-n33-k4-s25-28 650.58 650.58 63 650.58 60 650.58 112 675.43 650.58 60 3.82 0.00

Set 3b
E-n51-k5-s12-18 690.59 690.59 147 690.59 60 690.59 125 693.62 690.57 60 0.44 0.00
E-n51-k5-s12-41 683.05 683.05 133 683.05 60 683.05 239 690.74 683.05 60 1.13 0.00
E-n51-k5-s12-43 710.41 710.41 217 710.41 60 710.41 137 710.83 710.41 60 0.06 0.00
E-n51-k5-s39-41 728.54 728.54 155 728.54 60 728.54 179 736.08 728.54 60 1.03 0.00
E-n51-k5-s40-41 723.75 723.75 154 723.75 60 723.75 129 736.46 723.75 60 1.76 0.00
E-n51-k5-s40-43 752.15 752.15 158 752.15 60 752.15 242 763.2 752.15 60 1.47 0.00

Set 3c
E-n51-k5-s13-19 560.73 560.73 60 560.73 119 566.35 560.73 60 1.00 0.00
E-n51-k5-s13-42 564.45 564.45 60 564.45 174 568.69 564.45 60 0.75 0.00
E-n51-k5-s13-44 564.45 564.45 60 564.45 121 571.14 564.45 60 1.19 0.00
E-n51-k5-s40-42 746.31 746.31 60 746.31 122 749.71 746.31 60 0.46 0.00
E-n51-k5-s41-42 771.56 771.56 60 771.56 203 775.65 771.56 60 0.53 0.00
E-n51-k5-s41-44 802.91 802.91 60 802.91 169 807.64 802.91 60 0.59 0.00
Average 641.44 632.45 92 641.44 60 641.44 124 649.82 641.44 60.00 1.37 0.00

Table 5: Comparative results for solving 2EVRP Set 5 instances.

Instance BKS
Hemmelmayr
et al. [24] Breunig et al. [42] Enthoven et al.

[14] Proposed ALNS Avg. Gap to
BKS (%)

Best gap to
BKS (%)

Best CPU (s) Best CPU (s) Best CPU (s) Avg. 5 Best CPU (s)
100-5-1 1564.46 1578.4 429 1564.46 900 1605.59 554 1583.75 1569.47 900 1.23 0.32
100-5-1b 1108.62 1118.95 476 1108.62 900 1121.7 699 1134.03 1112.88 900 2.29 0.38
100-5-2 1016.32 1016.32 432 1016.32 900 1022.7 647 1024.36 1022.34 900 0.79 0.59
100-5-2b 782.25 784.06 415 782.25 900 782.25 345 803.73 794.32 900 2.75 1.54
100-5-3 1045.29 1046.05 418 1045.29 900 1046.05 565 1047.76 1045.29 900 0.24 0.00
100-5-3b 828.54 828.99 391 828.54 900 828.99 372 829.63 828.54 900 0.13 0.00
100-10-1 1124.93 1133.17 353 1125.53 900 1125 643 1130.61 1127.06 900 0.51 0.19
100-10-1b 916.25 917.05 397 916.25 900 921.29 402 930.69 924.58 900 1.58 0.91
100-10-2 990.58 997.42 406 1002.15 900 1010.72 454 1014.79 1009.61 900 2.44 1.92
100-10-2b 768.61 770.7 340 774.11 900 775.72 384 795.48 779.41 900 3.50 1.41
100-10-3 1043.25 1047.05 352 1048.53 900 1053.02 810 1057.34 1049.48 900 1.35 0.60
100-1-3b 850.92 862.11 391 854.9 900 859.24 682 874.22 871.19 900 2.74 2.38
200-10-1 1556.79 1597.19 888 1556.79 900 1570.88 2375 1593.15 1572.30 900 2.34 1.00
200-10-1b 1187.62 1225.9 692 1187.62 900 1195.12 827 1253.27 1238.17 900 5.53 4.26
200-10-2 1365.74 1385.9 1072 1365.74 900 1389.11 1364 1413.51 1392.86 900 3.50 1.99
200-10-2b 1002.85 1016.14 1058 1002.85 900 1002.63 810 1055.70 1033.49 900 5.27 3.06
200-10-3 1787.73 1799.85 916 1793.99 900 1837.62 1096 1833.30 1806.15 900 2.55 1.03
200-10-3b 1197.9 1203.05 1217 1197.9 900 1219.92 825 1266.69 1241.07 900 5.74 3.60
Average 1118.81 1129.35 591.38 1120.66 900 1131.53 769.67 1146.78 1134.35 900.00 2.47 1.40
BKS: best-known solution from the state-of-the-art algorithms. Avg. gap to BKS: (ProposedALNSAvg. 5 − BestSolution/BestSolution) × 100%. Best gap to BKS:
(ProposedALNSBest − BestSolution/BestSolution) × 100%. Bold number indicates the same solution with BKS.
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times. We provide BKS from solving the related 2EVRP
instance for the purpose of analyzing the beneft of con-
sidering ODs and TNs.

Based on both Tables 8 and 9, Gurobi can only provide
11 and 10 feasible solutions for Sets 2 and 3, respectively.Te

results show that ALNS outperforms Gurobi in terms of both
solution quality and computational time. While the time
limit of Gurobi is 1 hour, the time limit of ALNS is set to
60–300 seconds, depending on the size of a particular
instance.

Table 7: Comparison between Gurobi and the proposed ALNS for solving Set 1 instances of 2EVRP-TN-OD.

Instance
Gurobi Proposed ALNS

Avg. Gap (%) Best gap (%)
Cost CPU (s) Avg. 5 Best 5 Avg. CPU (s)

ODE-n13-s2-m2-1 319.7 48,643 319.7 319.7 30 0 0
ODE-n13-s2-m2-2 291.19 7,692 291.19 291.19 30 0 0
ODE-n13-s2-m2-3 372.74 19,379 372.74 372.74 30 0 0
ODE-n13-s2-m2-4 321.58 11,940 321.58 321.58 30 0 0
ODE-n13-s2-m2-5 324.2 26,099 324.2 324.2 30 0 0
ODE-n13-s2-m2-6 273.83 3,489 273.83 273.83 30 0 0
ODE-n13-s2-m2-7 315.13 2,445 315.13 315.13 30 0 0
ODE-n13-s2-m2-8 300.54 5,933 300.54 300.54 30 0 0
ODE-n13-s2-m2-9 303.83 8,101 303.83 303.83 30 0 0
ODE-n13-s2-m2-10 334.28 58,091 334.27 334.27 30 0 0
Average 315.7 19,181 315.7 315.7 30 0 0

Table 8: Comparison between Gurobi and the proposed ALNS for solving Set 2 instances of 2EVRP-TN-OD.

Instance BKS of 2EVRP Gurobi
Proposed ALNS

Gap+ Gap∗
Best Average CPU (s)

Set 2a
E-n22-k4-s6-17 417.07 329.64 328.18 328.21 60 −21.31 −0.44
E-n22-k4-s8-14 384.96 316.96 316.96 316.96 60 −17.66 0.00
E-n22-k4-s9-19 470.6 372.77 351.51 351.69 60 −25.31 −5.70
E-n22-k4-s10-14 371.5 277.09 277.09 277.09 60 −25.41 0.00
E-n22-k4-s11-12 427.22 367.62 350.58 350.58 60 −17.94 −4.64
E-n22-k4-s12-16 392.78 311.88 306.24 306.58 60 −22.03 −1.81
E-n33-k4-s1-9 730.16 606.01 511.93 513.07 120 −29.89 −15.52
E-n33-k4-s2-13 714.63 763.04 510.77 513.83 120 −28.53 −33.06
E-n33-k4-s3-17 707.48 — 512.48 512.95 120 −27.56 —
E-n33-k4-s4-5 778.74 761.61 555.73 557.81 120 −28.64 −27.03
E-n33-k4-s7-25 756.85 612.65 536.78 536.92 120 −29.08 −12.38
E-n33-k4-s14-22 779.05 713.55 573.87 583.34 120 −26.34 −19.58

Set 2b
E-n51-k5-s2-4-17-46 530.76 — 334.54 350.99 300 −36.97 —
E-n51-k5-s2-17 597.49 — 389.54 401.84 300 −34.80 —
E-n51-k5-s4-46 530.76 — 358.97 365.06 300 −32.37 —
E-n51-k5-s6-12 554.81 — 347.34 360.41 300 −37.39 —
E-n51-k5-s6-12-32-37 531.92 — 336.03 341.66 300 −36.83 —
E-n51-k5-s11-19 581.64 — 398.27 413.28 300 −31.53 —
E-n51-k5-s11-19-27-47 527.63 — 341.57 363.55 300 −35.26 —
E-n51-k5-s27-47 538.22 — 349.85 353.78 300 −35.00 —
E-n51-k5-s32-37 552.28 — 371.96 373.12 300 −32.65 —

Set 2c
E-n51-k5-s2-4-17-46 601.39 — 485.8 491.75 300 −19.22 —
E-n51-k5-s2-17 601.39 — 448.58 452.99 300 −25.41 —
E-n51-k5-s4-46 702.33 — 534.21 540.66 300 −23.94 —
E-n51-k5-s6-12 567.42 — 415.9 421.48 300 −26.70 —
E-n51-k5-s6-12-32-37 567.42 — 463.34 473.26 300 −18.34 —
E-n51-k5-s11-19 617.42 — 452.49 461.79 300 −26.71 —
E-n51-k5-s11-19-27-47 530.76 — 421.11 428 300 −20.66 —
E-n51-k5-s27-47 530.76 — 440.76 444.43 300 −16.96 —
E-n51-k5-s32-37 752.59 — 670.74 683.62 300 −10.88 —
Average 423.10 429.02 −26.71
Gap+ � (ALNSBest − BKS of 2E − VRP)/BKS of 2E − VRP × 100%,Gap∗ � (ALNSBest − Gurobi)/ALNSBest × 100%.
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Te impacts of considering ODs and TNs are analyzed
by comparing the BKS of 2EVRP and the best solution
obtained by solving the related 2EVRP-TN-OD instance.
Based on Tables 8 and 9, the existence of ODs and TNs on
average reduces the total operational costs up to 26.71% and
21.50% for Sets 2 and 3, respectively. Te higher cost
resulting from 2EVRP occurs due to the longer distances
that should be travelled by city freighters in order to serve all
customers. In 2EVRP-TN-OD, some customers are more
benefcially served by OD.

6.6. Sensitivity Analyses. We further elaborate on the impact
of varying several characteristics of ODs on operational
costs. We also analyze the impact of considering TNs in the
system. Te considered characteristics of ODs are described
as follows:

(1) Te variable cost (ρOD) and the fxed cost (H) of
utilizing an OD.

(2) Te number of available ODs, |KOD|.
(3) Te delivery fexibility of an OD, μ.

When the crowd-shipping system is implemented, the
fxed and variable costs of an OD surely infuence the total
operational costs. Figures 3(a) and 3(b) show that changes in
both fxed and variable costs lead to similar behavior. When
the fxed/variable cost of an OD increases, the operational

cost also increases while the number of employed ODs
decreases.

Based on the observation in Figure 3, it is better to keep
the fxed and variable costs as low as possible. However, from
a practical perspective, fxed and variable costs will be one of
the concerns when one implements such a system. Although
the lower fxed and variable costs of an OD lead to lower
operational costs, they also impact the number of available
ODs. If the values are too low, then the number of available
ODs will likely decrease.

Figure 4 shows the impact of varying the number of
available ODs on the total operational costs. Te lower the
number of available ODs is, the higher the operational cost
is. Based on the sensitivity analyses presented in both Fig-
ures 3 and 4, anyone who plans to implement the system
needs to carefully design the fxed and variable costs of
employing ODs so that the costs should be reasonable
enough to attract ODs and to gain operational cost savings.

Figure 5 shows the sensitivity analyses of varying the
fexibility of ODs. When the fexibility of ODs increases, the
operational cost drops while the utilization of ODs increases.
Similar behaviors are exhibited by varying the number of
available ODs, as shown in Figure 4. However, both the
marginal reduction of operational cost and the marginal
improvement of the utilization of ODs are lower when the
value of fexibility of ODs reaches 0.5 and the number of
available ODs equals the number of customers. Tese

Table 9: Comparison between Gurobi and the proposed ALNS for solving Set 3 instances of 2EVRP-TN-OD.

Instance BKS of 2EVRP Gurobi
Proposed ALNS

Gap+ Gap∗
Best Average CPU (s)
Set 3a

E-n22-k4-s13-14 526.15 556.14 457.51 457.65 60 −13.05 −17.74
E-n22-k4-s13-16 521.09 442.88 430.08 430.08 60 −17.47 −2.89
E-n22-k4-s13-17 496.38 485.54 438.44 438.44 60 −11.67 −9.70
E-n22-k4-s14-19 498.8 444.79 411.3 411.3 60 −17.54 −7.53
E-n22-k4-s17-19 512.81 491.22 443.2 443.37 60 −13.57 −9.78
E-n22-k4-s19-21 520.42 490.14 448.91 448.91 60 −13.74 −8.41
E-n33-k4-s16-22 672.17 744.65 469.01 469.88 120 −30.22 −37.02
E-n33-k4-s16-24 666.02 720.02 478.78 487.85 120 −28.11 −33.50
E-n33-k4-s19-26 680.37 503.14 450.44 450.44 120 −33.79 −10.47
E-n33-k4-s22-26 680.37 — 462.8 463.22 120 −31.98 —
E-n33-k4-s24-28 670.43 — 494.86 495.55 120 −26.19 —
E-n33-k4-s25-28 650.58 726.24 453.11 455.65 120 −30.35 −37.61

Set 3b
E-n51-k5-s12-18 690.59 — 494.18 506.34 300 −28.44 —
E-n51-k5-s12-41 683.05 — 506.84 520.78 300 −25.80 —
E-n51-k5-s12-43 710.41 — 538.31 548.97 300 −24.23 —
E-n51-k5-s39-41 728.54 — 606.12 611.77 300 −16.80 —
E-n51-k5-s40-41 723.75 — 633.6 640.05 300 −12.46 —
E-n51-k5-s40-43 752.15 — 631.78 643.05 300 −16.00 —

Set 3c
E-n51-k5-s13-19 560.73 — 359.91 372.4 300 −35.81 —
E-n51-k5-s13-42 564.45 — 421.6 425.68 300 −25.31 —
E-n51-k5-s13-44 564.45 — 461.58 468.5 300 −18.22 —
E-n51-k5-s40-42 746.31 — 594.25 603.82 300 −20.37 —
E-n51-k5-s41-42 771.56 — 682.28 698.77 300 −11.57 —
E-n51-k5-s41-44 802.91 — 664.06 693.47 300 −17.29 —
Average 498.08 507.75 −21.50
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Figure 3: Sensitivity analyses of the cost of ODs. (a) Sensitivity analyses of the variable cost of ODs. (b) Sensitivity analyses of the fxed cost
of ODs.
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Figure 4: Sensitivity analyses of the number of ODs.

0 0.25 0.5 0.75 1
OD maximum travel deviation/Origin-

Destination distance of OD

Sensitivity analyses of OD's Flexibility

Avg Operational Cost
Avg Employed ODs

0
2
4
6
8
10
12
14

Av
g 

Em
pl

oy
ed

 O
D

s

0.00
100.00
200.00
300.00
400.00
500.00
600.00
700.00

Av
g 

O
pe

ra
tio

na
l C

os
t

Figure 5: Sensitivity analyses of the fexibility of ODs.
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phenomena indicate that the company that plans to im-
plement this system needs to carefully design a compen-
sation scheme to attract a reasonable number of ODs who
ofer a reasonable value of fexibility in order to leverage the
crowd-shipping system.

Te impact of TNs on operational costs is presented in
Table 10. When TNs are introduced to the delivery system,
there is an average cost reduction of 1.67%.

7. Conclusion

Tis research introduces a new variant of 2EVRP called
2EVRP-TN-OD by considering the existence of trans-
shipment nodes (TNs) and occasional drivers (ODs). Te
available ODs are heterogeneous in terms of capacity. In
addition, a set of TNs is introduced to leverage the ODs so
that ODs may collect the assigned demands at either
satellites or TNs. We developed MINLP and ALNS to deal
with the problem. Te experiments indicate that MINLP
took a signifcantly large amount of computational time
to solve small-scale instances; i.e., 19,181 seconds. Te
proposed ALNS combines the problem-specifc destroy
and repair operators with a local search procedure for the
purpose of intensifcation. Our developed ALNS out-
performs the performance of MINLP in terms of solution
quality over a signifcantly shorter computational time. In
addition, we benchmark our ALNS with the state-of-the-
art algorithms for solving the 2EVRP benchmark in-
stances. Te results show that our ALNS provides a
comparable result to BKS; i.e., 0.0% gap for both Sets 2
and 3 and 1.4% gap for Set 5.

Te results show that considering TNs andODs in a two-
echelon distribution system is benefcial in terms of cost
savings. By utilizing the developed 2EVRP-TN-OD in-
stances, we compare the obtained results with the BKS of the
associated 2EVRP instances. Te results show that consid-
ering TNs and ODs can result in cost reductions of up to
26.71% and 21.50% for Sets 2 and 3, respectively.

To give a deeper understanding of how ODs afect the
operational cost and decisions in a two-echelon distribution
system, sensitivity analyses regarding three OD parameters
are provided: (1) the cost of utilizing ODs, (2) the number of
available ODs, and (3) the fexibility of ODs. As expected, the
cost reduction can be further achieved by considering the
TNs.Temarginal improvements from adopting TNs in our
research can be explained by various reasons (e.g., the
generated instances for experimental designs); however, the
beneft of adopting TNs has validated the correctness of our
work compared to existing studies. In addition, other
benefts of introducing TNs, as mentioned in Section 2.4, can
be considered for future work.

Several interesting extensions can be deliberated due to
the limitations of this study, resulting in a range of research
opportunities. Tey include (1) designing various com-
pensation schemes for ODs, (2) heterogeneous occasional
drivers, (3) amultiobjective problem to analyze the impact of
considering ODs toward both operational costs and envi-
ronment-related objectives, (4) time windows of customers
and ODs, and (5) the dynamic version to approach the
realistic case of a system where only partial information is
provided at the beginning of a planning period.
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