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Battery swapping stations efectively address the challenges of long charging times, lack of charging stations, and safety hazards for
electric two-wheelers.With the rapid development of shared electric bicycles and takeaways, the scale of electric two-wheeler users
is expanding while generating a huge demand for battery swapping. Te research on the planning and operation of battery
swapping stations (BSSs) for electric two-wheelers has yet to be widely discussed.Tis study developed a data-driven optimization
model based on machine learning algorithms using Beijing’s battery swapping stations and point of interest (POI) dataset. First,
through the spatial features of BSS analyzed by ArcGIS, we found that the coverage of BSSs was mainly concentrated within the
ffth ring road, and the utilization rate was unbalanced. Ten, on a 3000m grid scale, a prediction model of BSS quantity with
random forest, support vector regression, and gradient-boosting decision tree algorithm was built. Te fnal stacking model was
constructed by strengthening three single models with an accuracy of 86.21%. Compared with the original BSSs layout, the
machine-learning algorithm proposed in this study can cover more factors and avoid the subjectivity of site selection. Finally, the
queuing model for BSSs based on the Monte Carlo simulation was proposed. Trough two scenarios, we found that the key
parameters m (the number of charging slots) and λ (the user arrival rate) were infuential to the outputs of service capability.

1. Introduction

Under the dual constraints of resources and the environment,
promoting low-carbon travel is the key to achieving sustainable
development of the environment. Electric two-wheelers
(E2Ws) have become a widely used sustainable transportation
policy tool for short-distance trips [1, 2]. EVTank (China Yiwei
Institute of Economics) reported that China’s electric two-
wheelers sales had reached 49.8million in 2021 (Figure 1). As of
October 2021, Beijing has 3.333 million E2Ws with legal
licenses. Tere are two main user markets for E2Ws, namely,
personal users and business felds, such as takeaway delivery
[3].Te rider in the distribution industry is the fastest-growing
force in the E2Ws army and is also the high-frequency user of
the E2Ws battery. Figure 2 shows the user size of online food
ordering inChina. Up toDecember 2021, the user size of online
food ordering had reached 544 million. According to the
survey, there are about 54,000 food delivery riders in Beijing,

and one million orders are delivered daily. 68% of diners order
takeout food every day [4]. At the same time, the type of order
also determines that most of these orders are delivered by
E2Ws.Te Internet report shows that the takeaway platform is
still dominated by catering, accounting for about 97%. Catering
takeaway orders are in high demand and have a strict time
window [5]. Te delivery rider will be punished if he goes over
time. Terefore, to complete the order pickup and delivery
quickly, riders must choose a convenient means of trans-
portation. Compared with cars, which face trafc jams and
cannot stop at any time, or motorcycles, which need to apply
for many certifcates, E2Ws have fewer constraints. Tus,
E2Ws are still the frst choice for food delivery riders to carry
out their work.

A limited range is an important factor hindering the
development of the electric vehicle industry [6], and it will
also afect the work efciency and income of the delivery
worker. Te most common electric two-wheeler range is 60
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kilometres, while a takeout delivery rider travelled 120
kilometres on an average per day, which is entirely unsat-
isfactory. So the rider needs to recharge the battery. At
present, there are two charging modes for E2Ws. Te frst is
traditional plug-in charging. Plug-in charging takes more
than 8 hours, which is quite time-consuming [7] and reduces
business efciency. Fire hazard is also a problem in tradi-
tional charging mode. Due to the lack of charging facilities in
domestic communities, some users will charge their batteries
at home, which creates a huge safety hazard. Finding a
charging station and prolonged charging times are two
signifcant concerns encountered by most E2Ws users.
Terefore, battery swapping shows up. In a nutshell, battery
swapping saves the waiting time during the charging session
and exchanges the discharged battery for a fully charged one
[8].Te battery charging time can be shortened to between 1
and 2 minutes [8]. Battery swapping brings higher efciency
and a safer user experience for customers.

Initially, battery swapping stations are designed for
electric vehicles. It refers to the rapid recovery of electric
vehicle energy by replacing batteries when they are about to
run out [9, 10]. In 2011, Israel’s Better Place frst promoted
battery swapping in Denmark. Tesla, an American electric
vehicle giant, also launched a pilot project for replacing
electric vehicles [11, 12]. China’s Nio built its frst battery
swapping station for private users in Shenzhen in 2018.
Driven by the practice of battery swapping in electric ve-
hicles, China and Southeast Asia are seeing a fourishing
battery swapping market for E2Ws [13]. Successful com-
panies to adopt the model include Gogoro in Taiwan, China
Tower, and E-Huandian in Mainland China. Figure 3 shows
the process of a battery swap for E2Ws users. Locating swap
stations is made simple via a mobile app that connects to the
vehicle. Tis app alerts riders when their battery is low and
will give them directions to the nearest swap station. Drivers
can head to a swap station multiple times a day to replace
their discharged battery with a new, fully charged one, all of
which takes place in less than two minutes.

For personal users, the driving range of E2Ws is rela-
tively short, and the demand for battery swapping is mainly
concentrated in the food delivery industry. To satisfy the
battery swapping demands, BSS operators must build
enough swapping stations. As shown in Figure 4, for ex-
ample, the BSS in Beijing has an uneven utilization rate at
peak times. It refects that operators may build more BSS in
low-demand areas, resulting in a waste of resources. Battery
swapping demand is afected by the demand for takeaways.
Terefore, it is possible to fnd the relationship between the
points of interest (POI) that may generate takeaway demand
and the layout of the BSS. In addition, BSS operators also
need to make trade-ofs between service capacity and op-
erating costs. Essentially, BSS operators need to fnd answers
to the following three questions when providing battery
swapping services for E2Ws: (1) What are the behavior
patterns of battery swapping by E2W users? (2) How to
deploy BSSs? (3) How many services can BSS provide to
E2Ws users?

To address these three problems, this study aims to
develop a data-driven approach to deploy BSSs. Te rest of
the article is outlined as follows: A general overview is
presented in Section 2. Section 3 ofers the research dataset.
Ten, Section 4 presents the research methodology, in-
cluding data analysis, machine learning algorithms, and a
queuing model based on Monte Carlo. A case study and
sensitivity analyses are presented in Section 5. Finally, in
Section 6, some conclusions and suggestions are given.

2. Literature Review

Electric two-wheelers (E2Ws) are defned as two-wheeled
vehicles with electric propulsion [13]. In Taiwan, there are
13.7 million scooter users [13]. To improve air quality,
Taiwan is dedicated to increasing the penetration level of
electric two-wheelers. Gogoro proposed the battery swap-
ping system in 2015 [14], which overcomes the limitations of
E2Ws, such as shorter driving range, long charging time, and
inconvenient charging [15]. Te questionnaire survey found
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Figure 1: China’s two-wheeler sales from2012 to 2021 (source: EVTank).
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Figure 2: Online takeaway demand in China from June 2018 to
December 2021.
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that more than 80% of the respondents believe that the BSS is
efcient and willing to accept it [13, 16]. Operators expect to
provide services to E2Ws users involved in the issue of how
the BSS facilities could be located. In this study, CiteSpace
has been selected to analyze the relevant literature on E2W’s
battery swapping station. Currently, the research on E2Ws is
mainly divided into two parts (Figure 5). One is related to
technology, such as vehicle design and battery technology,
and the other is social interaction, such as trafc accident
rate, the impact of energy consumption, and the user’s
perception of E2Ws. Only a few studies have been conducted
on the siting of battery swapping stations for E2Ws.

2.1. Optimization-Based Models. Zhu and Pei [17] devel-
oped a simple deterministic location model for E2Ws
battery swapping stations to reduce construction and user
access costs. Te frequency, restaurant, and timing of our
online ordering are all uncertain, making the battery

swapping demand for delivery drivers equally uncertain.
Terefore, the BSS location problem could be expanded to
stochastic circumstances. Te uncertain events were
presented as specifc probability density functions (PDFs).
A Monte Carlo simulation-based approach was repeatedly
conducted through random sampling from the PDFs to
resolve the stochastic location problems [14]. E2Ws are
not limited to daily life scenarios and can be further
considered for urban tourism activities [18]. Each travel
demand is associated with a trip chain, and the time-space
networks are a valuable method for modeling conveyance
movements in terms of time and space. Te model is
formulated as an integer network fow problem to min-
imize the total long-term cost. Since this model is char-
acterized as NP-hard, we used a problem decomposition
technique coupled with the mathematical solver CPLEX
to solve the model [19].

E2W’s battery swapping station site selection is similar
to the electric vehicle swapping station location problem.
Traditional network location problems (coverage problem
and P-median problem) assume that the demand and siting
points are located in the network nodes. At the same time,
service objects like convenience stores and gas stations
represent the fow of customers through the facility, so a
fow-based location model is proposed to capture trafc
fow as much as possible [20]. Based on the fow-based
model, the problem of BSSs deployed under deterministic
trafc fow is presented to minimize construction and
inventory costs [21]. In reality, randomness is a charac-
teristic of trafc fow, especially for online car-hailing and
taxis with frequent battery swaps, which are not deter-
ministic O-D demands. Terefore, the problem of site
selection under random trafc fow is proposed [22]. Ro-
bust optimization is one of the efective methods to cope
with uncertainty problems. Te authors in [23] proposed a
distributed robust optimization model, proved that the
model can be equated to a mixed-integer nonlinear opti-
mization problem, and proposed an outer approximation
algorithm to solve it. Te widespread location-route
problem is another research branch. Yang and Sun [24]
developed an integer programming model to determine the
locations of BSSs and the routes of an electric vehicle and
proposed a four-phase heuristic (scanning algorithm,
greedy algorithm, adaptive large neighborhood search, and
algorithm improvement) to solve the model. Based on the
algorithm and problem proposed by Yang and Sun [24, 25],
an improved adaptive large neighborhood search algorithm
to extend the solution methods was proposed. Te authors
in [26] proposed a hybrid VNS algorithm to fnd the op-
timal number and location of BSSs. According to various
variants of vehicle routing problems, the location-routing
problem of BSSs with time windows [27, 28], multiple
vehicle types [29], and multiple depots [30, 31] is also
developed. In addition to considering the BSS operator’s
cost, it also involves interactions with drivers, power grids,
society, and other environments, improving customer
satisfaction [32], reducing grid load [33], and reducing the
impact on the distribution grid [34]. Tese factors also have
social signifcance for the construction of swap stations.

Smart phone

Two‐wheeled electric vehicle
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Figure 3: User battery swapping process.

0

1000

2000

3000

4000

nu
m

be
r o

f v
al

ie
d 

ba
tte

rie
s

Sh
iji

ng
sh

an

To
ng

zh
ou

Fa
ng

sh
an

Fe
ng

ta
i

H
ai

di
an

Sh
un

yi

D
on

gc
he

ng

Xi
ch

en
g

Ch
an

gp
in

g

Ch
ao

ya
ng

D
ax

in
g

District

sum
11:00

13:30
17:30

Figure 4: Te utilization rate of BSS in Beijing during the peak
period.

Journal of Advanced Transportation 3



2.2. Optimization-Based Machine Learning. Diferent from
modeling optimization, combining big data and machine
learning is another way to solve the location problem. Te
authors in [35] used the K-means clustering algorithm to
deploy BSSs. Te authors in [36] frst conducted map
matching using the hidden Markov model (HMM), then
extracted trajectories, determined the space-time distribu-
tion of battery swapping demand by the clustering algo-
rithm, and fnally identifed the places with dense battery
demand as BSS location candidates. With the development
of geographic information systems and grid-based systems,
the spatial analysis of massive data by GIS has also been
applied to location problems, such as the location of logistic
centers [37], car sharing stations [38], and wind farms [39].
Te combination of machine learning algorithms like ran-
dom forest andGIS has also been used in real-world problem
research in a few studies, such as population spatialization
[40].

2.3.ResearchGapsandAims. On the object of research, most
previous studies focused on planning for the deployment of
charging stations or battery swapping stations for electric
vehicles, with fewer studies on electric two-wheelers.
Compared to electric vehicles, E2Ws have quite diferent
user and operation modes. In the research method, model
construction is used in most articles, and some constraints
are more challenging to express quantitatively and will
choose ignore or make assumptions. However, the location

of BSSs involves many factors, and the analysis of economic,
social, geographical, and other factors should be carried out
in the region. Second, regarding the method of machine
learning and GIS, location problem is usually regarded as a
binary classifcation problem. Whether the area has such
facilities (0-1) is the standard for labeling; this method is
simple and incomplete without combining the area situa-
tion. In addition, research on the operation capacity of the
E2Ws battery swapping station is rarely involved.

In response, we will frst use the state of charge (SOC)
dataset on actual BSSs in Beijing to extract the behavior
patterns of E2Ws. Ten, based on map gridding by ArcGIS,
machine learning algorithms such as random forest and
support vector regression will be proposed to predict the
number of BSSs. Finally, the queuing model is built, and the
Monte Carlo algorithm will be used to simulate the service
capability of the BSSs.

3. Datasets

Te capital of China, Beijing, was chosen as a study area.Tis
study explores how points of interest afect the layout of the
E2Ws battery swap station. Te data collected are as follows:
(1) the location data of the BSSs, (2) the battery state of
charge, and (3) the data of the point of interest (POI).

3.1. Te Location Data of the BSSs. Te dataset contains the
location information of the E2Ws battery swapping stations
in Beijing, which was collected by the “E-huandian” and

Figure 5: Clustering of research topics on electric two-wheelers.
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“China Tower” APPs that mainly provide battery swap
services through Python Spider. Table 1 shows an example of
the BSS information, including BSS ID, address, longitude,
and latitude. Te visual analysis of this dataset is given in
Section 5.1.1.

3.2. Te State of Charge of a Battery. One battery swapping
station has multiple charging slots that can charge the
battery. Te state of charge (SOC) is varied within the
charging slots. We obtain the SOC of each slot in the swap
station, and SOC is the ratio of the remaining power to the
battery capacity.Te capture date is 2022/4/6 0 : 00–2022/4/7
0 : 00, with 20min intervals. About 650,000 pieces of data
were collected, and 560,000 pieces of data were obtained
after data deduplication. Te analysis of this dataset will be
given in Section 5.1.2. Table 2 is an example of the state of
charge, including BSS ID, battery port number, the state of
charge, and capture time.

3.3. Point of Interest. A point of interest (POI) is a specifc
point location that someone may fnd useful or interesting.
Te core attributes of point of interest data include type,
name, address, latitude, longitude, and other related in-
formation. Tis study collects POI data that may generate
online food ordering demand in Beijing, such as restaurants,
cofee bars, shopping centers, universities, ofce buildings,
companies, hospitals, and dormitories. Te POI data are
divided into seven categories according to their functions:
restaurant, shopping, university, company, hospital, and
residence (Table 3).

4. Methodology

4.1. Data Cleaning and Mining. Data cleaning can help
detect and remove invalid or wrong data, resulting in a
dataset for subsequent analyses. For example, to delete those
data with unreasonable values (e.g., “SOC”> 100%) and
duplicates.

Points of interest are needed for the deployment of BSSs.
Te frst step is the spatial analysis of BSSs and POIs by
ArcGIS (5.1.1 and 5.1.2). Te primary service area of the
facility can be obtained, resulting in a dataset for subsequent
machine learning predictions. Te second step is data
mining to characterize the user’s battery swapping behavior
(5.1.3). We identifed battery swapping behavior with the
following principle (Figure 6). Te battery’s state of charge
(SOC) can be an efective indicator for judging whether the
battery has been exchanged. Like mobile phones, users
prefer to replace a fully charged battery to ensure the device’s
usability. We recorded the SOC of each battery at 20 min
intervals. If the SOC at the next moment is lower than the
last, it indicates that the battery slot has had a battery swap
during this period. Conversely, it means that there is no
battery swap and the battery is being charged. For example,
for port 1, the SOC is 96% at 12 : 20 and the SOC is 33% at
12 : 40, indicating that a user has removed the battery with
higher power during this period and put the battery with an
SOC of 33% or lower into the port for charging because the

SOCwill not decrease without use.Te SOC is 60% at 13 : 00,
and it can be inferred that there is no battery swapping
between 12 : 40 and 13 : 00. Similarly, the battery swapping
behavior of all data can be identifed by this rule.

4.2. Te Machine Learning Model of BSSs Deployment Based
on POI. In this study, using the fshnet tool of ArcGIS,
Beijing is divided into several grids with a scale of 3000m∗
3000m. Ten, we determine the number of BSSs and POI in
each grid. Finally, the random forest (RF), support vector
regression (SVR), gradient boosting decision tree (GBDT),
and stacking ensemble learning are used to predict the
number of BSSs (5.2). Te whole process is composed of
three steps:

(i) Step 1: Create test and training sets: Separating data
into training and testing sets is an important part of
machine learning [41]. Te training set learns and
adjusts model parameters, and the test set can test
the accuracy of the trained model. Determine the
research scope and divide the training set and test
set according to the ratio of 7 : 3.

(ii) Step 2: Feature extraction: Before forecasting, this
study uses correlation analysis to determine which
type of POI, namely, service facilities, has a greater
impact on the deployment of BSSs.

(iii) Step 3: Predictions based onmachine learning: First,
the number of BSSs is ftted by a single machine
learning algorithm (RF, SVR, and GBDT). Grid
search was used to determine the optimal param-
eters. Ten, we select stacking to ensemble models.
Stacking is one of the most popular ensemble
machine learning techniques. In stacking, an al-
gorithm takes the outputs of submodels as input and
attempts to learn how to combine the input pre-
dictions best to make a better output prediction
[42].

Te prediction results of machine learning algorithms
are usually measured by R2 (coefcient of determination),
MSE (mean squared error), MAE (mean absolute error), and
RMSE (root mean square error) [43].
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where, in formulas (1)–(4), yi is the true value, f(xi) is the
predicted value, y is the mean of the dataset yi, and n is the
sample size. Te value of R2 shows whether the model would
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be a good ft for the given dataset. MAE, MSE, and RMSE
describe the error between the true value and the predicted
value of the test set. Te lower the error, the better a given
model is able to ft a dataset.

4.3. Queuing Model Based on Monte Carlo Simulation.
Te procedure of user battery swapping at the BSS can be
seen as a queuing problem. Te BSS is equipped with
multiple charging slots in which batteries are placed.Tere is
a slight diference between the BSS queuing problem and the

general queuing problem. Te general queuing problem is
that an idle server is created after the customer has been
served. However, whether the BSS has idle servers depends
on the battery status. So, the queuing system of the BSS is
actually coupled with the E2Ws queuing system and the
battery queuing system. We can use the diagram of the
battery swap queue in Figure 7 to explain this problem. Te
QR code can be regarded as only one server, while charging
slots can be considered as multiple servers. Since the user’s
service time is only one minute, the battery swapping
process can be viewed as an M/M/C queuing system. Te

Table 1: An example of the BSS information.

ID Address Longitude Latitude
STA602000725 Station A, no. 14, Guangqumenwai street, Chaoyang district 116.458201 39.891682
STA601901065 Station A, no. 13, Yunan street, Dongcheng district 116.424759 39.878862
STA601901048 Station B, Ziru Apartment, no. 1 Xiushui street, Chaoyang district 116.436987 39.911785
STA601902349 Station D, Huasheng Building, no. 12 Yabao road, Chaoyang district 116.436647 39.914235
STA602000152 Station B, Wanrun Landscape, Fengtai district 116.339599 39.857696

Table 2: An example of the state of charge.

ID Charging slot SOC (%) Time
STA602000725 1 85 14 : 20
STA602000725 2 51 14 : 20
STA602000725 3 38 14 : 20
STA602000725 4 57 14 : 20
STA602000725 5 77 14 : 20
STA602000725 6 28 14 : 20
STA602000725 7 22 14 : 20
STA602000725 8 37 14 : 20
STA602000725 9 60 14 : 20
STA602000725 10 83 14 : 20

Table 3: POI data classifcation in Beijing.

Classifcation Facility name Number of POI
Restaurant Restaurant, snack_bar, dessert bar, and cofee bar 14076
Shopping Shopping center, supermarket, and convenience store 3358
Education University, training institution 1735
Company Te company, industrial park, bank, investment, and pawnshop 10684
Hospital General hospital, specialist hospital, and medical center 1348
Residential district Community, dormitory 5518

12:00 12:20 12:40

SOC:71% SOC: 96% SOC:33%

Battery
swapping

Battery
charging

00 12 20 13:00

SOC:60%

BSS ID: STA602000235
Port: 1e.g.

Figure 6: Illustration of battery swapping behavior.
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FIFO queuing method is adopted, and the length of the
queue and working hours are not limited. Te user’s wait
time depends on the number of customers in the queue and
the number of fully charged batteries in the BSS. Te state of
the battery is afected by the arrival rate and charging time.

4.3.1. Queuing Model of Battery Swapping Station. We as-
sume that the arrival of the E2Ws follows the Poisson
distribution with parameter λ. Te charging time for a low-
charge to full-charge battery follows the exponential dis-
tribution of the charging rate μ. Let m be the number of
charging slots and n be the number of E2Ws. Te state
transfer of the BSS is a birth-death process, as shown in
Figure 8. Te initial stage assumes that the batteries in the
BSS are fully charged. When the number of E2Ws n is less
than the number of fully charged batteriesm, the service can
be provided by n batteries.When n exceedsm, the user needs
to wait.

It can be seen that the state transition probability of the
BSS is related to the arrival rate λ, charging rate μ, and the
number of batteries m in the BSS. In an equilibrium state,
from Figure 8, the following equations can be formed:

λP0 � μP1,

λP0 + 2μP2 � (λ + μ)P1,

· · · · · ·

λPn−1 + mμPn+1 � (λ + nμ)Pn,

· · · · · ·

(5)

Set ρ � λ/μ, ρm � λ/mμ, when ρm < 1, according to the
above equation, we can observe that
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According to equation (6), the mathematical expectation
of the queue length of E2Ws can be written as
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Essentially, when the BSS increases the number of
charging slots, that is, the number of batteries, the waiting
time, and length of the queue will decrease, thus improving
the service capability of the BSS.

4.3.2. Monte Carlo Simulation. When the E2Ws arrive at the
BSS, whether the service can be started needs to be judged on
the following two conditions: (1) Is there a vehicle ahead? (2)
Is there a fully charged battery for the user to swap?
Terefore, the simulation process will be based on several
situations formed by the queue and battery state to calculate
the start time and wait time. Table 4 lists all the parameters
used in the queuing system.

(1) No Queuing Process. When the E2Ws arrive at the BSS, if
there is at least one fully charged battery, the E2Ws n starts to
replace the battery, and the time to start receiving service is
equal to its arrival time:

sn � an, an ≥gn−1, an ≥min t socn,m􏼐 􏼑. (9)

If the battery is not fully charged at this time, the E2Ws n
will have to wait. Te start time of the service depends on
which battery can be fully charged the earliest. Te start time
for battery swapping is

sn � min t socn,m􏼐 􏼑, an ≥gn−1, an <min t socn,m􏼐 􏼑. (10)

Queue
Server

QR code

Battery swapping station

charging fully
charged charging

fully
charged charging charging

01 02 03

05 0604

charging fully
charged

fully
charged

07 08 09

Arrival
point

Departure
point

Figure 7: Diagram of the battery swapping queue.
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Departure time gn is the sum of service start time and
service time:

gn � sn + d. (11)

(2) Queuing Process. When the E2Ws arrive at the BSS, if
there is a queuing situation, vehicle n needs to exchange
batteries after the previous vehicle leaves. If there is a fully
charged battery in the BSS after the previous vehicle leaves,
the time for the E2Ws n to start receiving service is equal to
the time when the previous vehicle leaves:

sn � gn−1, an <gn−1, gn−1 ≥min t socn,m􏼐 􏼑. (12)

If there is no fully charged battery at the BSS after the
previous vehicle leaves, the E2Ws n needs to wait. Te start
time of the service depends on which battery can be fully
charged the earliest. Te start time for battery swapping is

sn � min t socn,m􏼐 􏼑, an <gn−1, gn−1 <min t socn,m􏼐 􏼑. (13)

After summarizing the above four cases, the model can
be obtained as follows:

tn � an − an−1, n � 2, 3 . . . , N, (14)

cm �
B 95% − socn,m􏼐 􏼑

p
, (15)

t socn,m � gn−1 + cm, (16)

sn �
max an,min t socn,m􏼐 􏼑􏽮 􏽯, an ≥gn−1,

max gn−1,min t socn,m􏼐 􏼑􏽮 􏽯, an <gn−1,

⎧⎪⎨

⎪⎩
(17)

gn � sn + d, (18)

wn � sn − an. (19)

Figure 9 is an explanation of the variables socn,m and
t socn,m. In the initial state, the time is set to 0, and the SOC
of the three charging slots is 98%. When the frst user arrives
at the 10th minute, that is, n� 1, t� 10, the batteries for all
three charging slots are available. So, set t soc1,1 � 0. After
the battery swap, the SOC in charging slot1 becomes 35%,
which is the old battery swapped by the user. When the
second user arrives after 15 minutes, that is, t� 25, n� 2,
charging slots2 and slots3 are available, and slot1 is only
available when t is 54. So, set t soc2,1 � 54.

Monte Carlo simulation is a mathematical technique to
estimate an uncertain event’s possible outcomes [44]. Based
on the above analysis, the Monte Carlo algorithm was used
in this study to solve the queuing model, and the number of
users that can be served in one day and the average waiting
time are given. Figure 10 shows the simulation fow. Te
specifc steps are as follows:

Table 4: Te parameters in the queuing model.

Parameters Description
N Number of users, n � 1, 2, 3 . . . N

M Number of charging slots, m � 1, 2, . . . M

an Te arrival time of E2Ws users
sn Start time of battery swapping
gn Te departure time of E2Ws users
d Service time
tn Interarrival times
B Battery capacity
p Charging power
cm Te charging time of the battery in the charging slot
socn,m Te SOC of the battery in the charging slot after battery swapping

t socn,m

Te time each battery can be swapped in the swap station.Tat is the sum of the charging start time and the charging time.Tis
value is used to confrm whether the user can swap the battery

wn Te waiting time of E2Ws users

0 1 2 n-1 n n+1 n+2

λ λ λ λ λ

μ 2μ nμ mμ mμ

n m n>m

...... ......

Figure 8: State transition of a battery swapping station system.
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(i) Step 1: Input parameters: Te parameters include
the number of iterations, the parameter values of the
probability density function of SOC, and the in-
terval time.

(ii) Step 2: Initialize the battery state: According to the
probability density function, the SOC of each bat-
tery cabinet is randomly generated.

(iii) Step 3: Update the battery status:Te user departure
time gn is calculated based on formulas (14)∼(19).
We generate the SOC of the removed battery to
calculate the battery charging time tm and battery
available time t socn,m. Generate the arrival time of
the following user according to the distribution
function of the user’s arrival time interval.

(iv) Step 4: Based on the Monte Carlo algorithm, the
operation of the BSS is simulated 1,000 times to
obtain the average service capacity and waiting time.

5. Results

5.1. Data Analysis

5.1.1. Spatial Features of E2Ws Battery Swapping Station.
As introduced in Section 3.1, the spatial distribution of BSS
in Beijing is given. Figure 11 shows the number of BSSs in
each administrative district of Beijing. Based on the “E-
huandian” and “China Tower” apps that mainly provide
battery swapping services in Beijing, 1,741 BSSs have been
deployed. Te deployment of BSSs has prominent regional
characteristics that are related to their service functions. Te
frst is Chaoyang District, where around 38.77% of the swap
stations are built. Chaoyang District is the largest and most

popular urban area in Beijing. 18.78% of the BSS are located
in Haidian District, known for its top universities, research
academies, and Internet companies. Te third is Fengtai
District, which includes a railway station, long bus stations,
an industrial park, and a leisure square. It is also a hot spot
for battery swapping, and 10.05% of the BSSs are deployed.
About 8.96% of the swap stations are located in Changping
District, which is dominated by residential areas. Tese
locations are potential food delivery demand points, in-
creasing the demand for battery swapping.

5.1.2. Spatial Features of POI Data. Based on the data in
Section 3.3, this section uses ArcGIS to draw the spatial
distribution density map of POI data. Figures 12–17 show
the distribution of various service facilities in Beijing that
may generate food delivery demand. As can be seen from the
fgure, Beijing covers a large number of restaurants and
companies and has a wide distribution range.Ten, the most
covered are residential areas, universities and shopping
centers, andmedical institutions. Universities, hospitals, and
large shopping centers in Beijing are mainly distributed on
the Fifth Ring Road.

5.1.3. Features of Battery Swapping Behavior. According to
the identifcation rules in Section 4.1, the battery swap data
within the BSS is inferred. Figure 18 shows the battery swap
demand in diferent administrative districts, and there are
apparent diferences between the administrative districts.
Compared with the layout of the BSSs given above, the
demand trend is consistent with the number of BSSs in each
district and is also related to the POI data.

Soc1,1: 35%
t_soc1,1: 0

time=10, n=1 Soc1,2: 98%
t_soc1,2: 0

Soc1,3: 98%
t_soc1,3: 0

battery swapping

Soc2,1: 47%
t_soc2,1: 54

time=25, n=2 Soc2,2: 50%
t_soc2,2: 0

Soc2,3: 98%
t_soc2,3: 0

battery swapping

Slot1 Slot2 Slot3

Soc: 98%initial
time=0 Soc: 98% Soc: 98%

Battery swapping station

Figure 9: Explanation of variables socn,m and t socn,m.
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Figure 19 shows the battery swap demand at diferent
times. Data analysis shows that the peak time of battery
swapping orders occurs at 11 : 00, 15 : 00, 18 : 00, and 21 : 00.
Tese four times also coincide with the peak period for
online food delivery. Te valley time of the battery swap is
02 : 00–07 : 00, which is the rest time. After 07 : 00, the de-
mand for battery swaps gradually increased. 12 : 00–14 : 00 is
the most intensive time for takeaway orders involving
multiple business ofce areas. Terefore, there is a lot of
battery swap demand at 11 : 00 to maintain the mileage of
E2Ws to cope with the peak delivery period. From 11 : 00 to
15 : 00, the demand has dropped, but it remains high.

Depleted batteries need to be replaced after the peak period,
so demand rises at 15 : 00. Similarly, 18 : 00–20 : 00 is the
peak period for takeaways in the evening. 18 : 00 and 21 : 00
are the start and end times of the peak period, and the user
needs to swap the battery. After 21 : 00, the demand for
battery swapping showed a decreasing trend.

Figure 20 shows the user’s electricity preferences when
swapping batteries. According to the statistics, 80% of users
will choose the battery with more than 90% SOC to ex-
change. Almost all users consider that batteries with a SOC
above 80% can be swapped. Terefore, we set the battery
usable SOC threshold to 95% during the simulation.

Start

Extract the initial SOC of each battery according to the 
probability density function (PDF)

According to formulas (14)~(19), calculate the user 
leaving time gn, waiting time wn, and battery available 

time t_socn,m

Extract the arrival rate that follows the Poisson 
distribution

Status update: departure time gn, arrival time an+1, 
Waiting time wn, battery available time t_socn,m

an ≥ 1440

K ≥ 1000

No

No

n = n+1k = k+1

Yes

Yes

End

Input random parameters such as 
initial SOC

Input deterministic parameters 
such as charging rate

Set start time: an = 0

Figure 10: Simulation process based on the Monte Carlo algorithm.
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5.2. Prediction of Battery Swap Station Deployment

5.2.1. Dataset Partitioning. Trough the distribution map in
Section 5.1, most service facilities move from the edge of the
Fifth Ring Road to the urban area, and fewer are close to the
Sixth Ring Road. Te swap station mainly covers Fifth Ring

Road. Terefore, the study area is limited to the longitude
range of 116.1200027∼116.7289963 and the latitude range of
39.6907005∼40.2299003.

Ten, we delete the outliers. After fltering, the fnal
sample data contain 198 grids. Te training and test sets are
divided according to the ratio of 7 : 3.
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Figure 11: Te number of BSSs in each administrative district of Beijing.

Figure 12: Distribution of restaurants.

Figure 13: Distribution of companies.
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Figure 14: Distribution of shopping centers.

Figure 15: Distribution of residential district.

Figure 16: Distribution of universities.

Figure 17: Distribution of hospitals.
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Figure 18: Demand for battery swapping in diferent administrative districts.
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5.2.2. Feature Extraction. Since the data present a nonlinear
relationship, we use the Spearman coefcient to test the
correlation between the BSSs and service facilities. Table 5
shows the correlation coefcients based on gridded data. We
can see a positive correlation between the BSSs and service
facilities, and p< 0.01 indicates a signifcant correlation.
Terefore, we choose the above fve variables for machine
learning prediction.

5.2.3. Prediction of the Number of Battery Swap Stations.
Random forest, support vector regression, and gradient
boosting decision tree were adopted to predict the number of
BSSs. We are using grid search to fnd optimal hyper-
parameters. Table 6 shows the hyperparameters. Te pre-
dicted error of the model is shown in Table 7. Te curve that
fts between predicted and actual values is given in Figure 21.
By comparison, there is little diference in the simulation
efect of a single machine learning algorithm, and the
random forest algorithm is relatively better.

We adopted the stacking ensemble model to improve
prediction accuracy. First, RF, SVR, and GDBT are set as
the basic models. Since the prediction results of RF are
better, we choose RF as the second-level model. We found
the optimal hyperparameters by grid search:
n_estimators� 150, max_depth� 6, min_samples_split� 4,
and min_samples_leaf� 6. Table 8 shows the prediction

error of the stacking model. A curve ftting between pre-
dicted and true values is given in Figure 22.

Based on the results of the stacking model, all 198 grids
were predicted, and the results were visualized using ArcGIS.
Figure 23 shows the predicted number of BSSs that should be
deployed within each grid. We analyzed the results and
found that the true and predicted values of the swap stations
in each grid were slightly diferent. Specifcally, there are fve
grids with a total of 31 battery swapping stations; the pre-
dicted number of swapping stations difers from the actual
number by more than 5. Te diference accounted for 2.5%
of the total grids and 7.5% of the total battery swapping
stations.

Trough the above analysis, there are some errors in the
results. On the one hand, all characteristic variables, such as
rent and the proportion of young people, are not considered
in the model’s prediction. On the other hand, it is caused by
practical factors. It is difcult to collect data such as rent
through the Internet. Te population data given in the
Statistical Yearbook can only be matched to areas or streets
and cannot be mapped to grids. Terefore, it is impossible to
add these features to the model at this stage.

Beside the above fve grids, the number of BSSs predicted
by machine learning difers from the true value by less than 5
in the other 193 grids (about 97.5%).Te model fts well into
these grids. Terefore, in general, the stacking model is
helpful in predicting the number and layout of BSSs.

Table 5: Spearman’s rank correlation coefcient.

Restaurant Residential_district Company Hospital Shopping_center University

BSS
Correlation coefcient 0.743∗∗ 0.562∗∗ 0.661∗∗ 0.780∗∗ 0.784∗∗ 0.641∗∗

Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000 0.000
N 342 342 342 342 342 342

∗∗Correlation is signifcant at the 0.01 level (2-tailed).

Table 6: Hyperparameters in machine learning.

Machine learning algorithm Hyperparameters Value

Random forest

n_estimators 148
max_depth 7

min_samples_split 10
min_samples_leaf 2

SVR (rbf) Gamma 0.00032
C 123

SVR (linear) C 0.6

GBDT
n_estimators 148
Learning rate 0.1

Loss ls

Table 7: Prediction error of a single machine learning algorithm.

R2 RMSE MSE MAE
Random forest 0.838067 1.480535 2.191986 0.993119
GBDT 0.823488 1.545744 2.389324 0.976247
SVR-RBF 0.828957 1.521609 2.315296 0.885391
SVR-linear 0.771644 1.758154 3.091107 1.195948
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5.3. Service Capability Simulation of E2Ws Battery Swap
Station. Based on the predicted number and layout of BSSs,
we can choose one of the swap stations for the Monte Carlo
simulation. Ten, we get the average number of users a swap
station that can serve in a day and the average waiting time.
Tese data can provide recommendations for swap station
operators.

5.3.1. Factors Afecting BSS Service Capability. Te SOC of
the battery determines its service capability. As introduced
in Section 4.3, the randomness of the SOC is afected by the
user arrival rate, starting SOC, and charging duration. Based
on the data given in Section 3.2, we estimate that the initial
SOC follows a beta distribution, and the probability density
function is

f(x) �
1

B(α, β)
x
α− 1

(1 − x)
β− 1

, (20)

where α � 2.43 and β � 1.72.
Since the time for each user to arrive at the BSS is an

independent variable, the interval time is also an indepen-
dent random variable. Te number of users arriving at the
BSS follows the Poisson distribution:

f(x) �
(λt)

k

k!
e

− λt
. (21)

Here, λ is the frequency of user in the BSS between two
battery swapping time. Although the arrival rate λ is con-
stant, it has diferent values at diferent time periods. Te
battery exchange probability of E2Ws is diferent in each
period.
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Figure 21: Comparison of prediction results.

Table 8: Prediction error of the stacking ensemble model.

R2 RMSE MSE MAE
Stacking 0.862143 1.366043 1.866075 0.851411
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5.3.2. Analysis of Simulation Result

(1) Baseline Scenario. A baseline scenario was set up to test
the performance of the BSS. In the baseline scenario, the two
key parameters were set as follows:

(i) M: as introduced in Section 4.3, this denotes the
number of charging slots in the BSS. It can also be
considered in terms of the number of BSS batteries.
M was set to 13.

(ii) λ: denotes the user arrival rate. Te value of λ was
calculated by data analysis based on the results in
Sections 4.1 and 5.1.3 (Table 9).

Figure 24 shows the service capability of the BSS in the
basic scenario. Te average number of users that can be
served by one battery swapping station daily is 203. When
the number of charging slots m is 13, the average waiting
time for users is 0. On the one hand, there are enough
charging slots and fast charging speeds. On the other hand,
because of range anxiety, the SOC of the old battery that the
user needs to replace will not be very low, and less electricity
needs to be replenished. Terefore, the BSS can guarantee
that at least one battery is available when the user arrives.

(2) Sensitivity Analysis. In this section, we will test the
sensitivity of the two parameters.
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Figure 22: Prediction results of the stacking ensemble model.
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Figure 23: Te predicted number of battery swap stations.
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(i) Scenario 1-Varyingm. With the other parameters
kept unchanged, M was set to 5–20 in sixteen dif-
ferent scenarios. In order to explore how the number
of charging slots would infuence the outputs of
service capability.

(ii) Scenario 2-Varyingλ. According to Section 5.1.3, the
user arrival rate is mainly afected by the peak period
of food delivery. Te peak time for users to replace

batteries is at 11 : 00. Terefore, we will only change
the arrival rate at [10–12). With the other parameters
kept unchanged, λ was set to 20–60 to explore how
the arrival rate would infuence the 1 output of
service capability.

Figure 25 shows how diferent charging slots could afect
the service capability. It can be found that a higherM (which
means more charging slots) would give rise to higher

Table 9: Distribution of the number of user arrivals per hour.

O’clock λ O’clock λ
[0, 1) 8 [10, 12) 17
[1, 2) 6 [12, 15) 14
[2, 6) 2 [15, 17) 12
[6, 8) 4 [17, 21) 11
[8, 10) 10 [21, 24) 7
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Figure 24: Simulation results in the basic scenario.
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Table 10: Results in diferent scenarios.

Scenarios
Parameters

Average service capacity Average waiting time (minutes)
m λ

Baseline 13 Table 9 203 1

1

5 — 140 179
6 — 159 153
7 — 179 113
8 — 198 56
9 — 203 19
10 — 203 11
11 — 203 5
12 — 203 2
13 — 203 1
14 — 203 1
15 — 203 1
16 — 203 1
17 — 203 1
18 — 203 1
19 — 203 1
20 — 203 1
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numbers of services and reduce user waiting time. Tere is
no diference in service capacity when charging slots are 12
and 13. Tis points out that under the current user arrival
rate, operators do not need to invest too many charging slots
and cause waste.

Figure 26 shows how diferent user demands afect the
service’s capability. It can be found that the more users
needed, the more users can be served, and the waiting time
of users is also increasing. At this time, operators can add 2
charging slots or battery swapping stations. Table 10 shows
the detailed simulation results under two scenarios.

6. Conclusions

Te battery swapping station solves the problems of in-
convenient charging, long charging times, and hidden

charging hazards. Tis study proposes a data-driven method
that combines ArcGIS and machine learning to optimize the
deployment and management of BSSs for E2Ws.

Specifcally, frst, the data of POI and BSSs are collected.
Beijing is divided into 198 grids with a scale of 3000m. Te
spatial features of service facilities such as BSSs, restaurants,
and shopping centers are given through density analysis.Te
coverage of service facilities is mainly within Fifth Ring
Road. So, we select the dataset range for subsequent machine
learning predictions within the Fifth Ring Road.

Second, use RF, SVR, and GBDT algorithms to predict
the number of BSSs. We found that the three algorithms’
prediction accuracy is about 80%. After using stacking in-
tegration, the prediction accuracy increased to 86.21%. Fi-
nally, the number of swap stations in all grids is predicted.
Tere is a deviation between the predicted and real values,

Table 10: Continued.

Scenarios
Parameters

Average service capacity Average waiting time (minutes)
m λ

2

— 20 208 3
— 21 210 5
— 22 212 8
— 23 214 7
— 24 216 9
— 25 218 10
— 26 220 15
— 27 222 20
— 28 224 20
— 29 226 26
— 30 228 28
— 31 230 27
— 32 232 28
— 33 234 31
— 34 236 34
— 35 238 38
— 36 240 47
— 37 242 45
— 38 244 51
— 39 245 49
— 40 247 53
— 41 250 57
— 42 251 62
— 43 253 61
— 44 256 65
— 45 257 66
— 46 260 74
— 47 261 77
— 48 263 90
— 49 265 85
— 50 267 87
— 51 269 91
— 52 271 99
— 53 273 96
— 54 275 105
— 55 277 106
— 56 279 112
— 57 281 125
— 58 283 108
— 59 284 121
— 60 286 122
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but the overall prediction efect is good. Te machine
learning model proposed in this study provides a solution
for operators to deploy swap stations efectively.

Finally, several scenarios were set up to examine the
performance of the BSS. Te two key parameters (namely
parameters m and λ) can heavily infuence the outputs of
service capability. It can be found that the quantity of the
service would be much higher in those scenarios where there
is a larger number of charging slots and demand.Tewaiting
time is inversely proportional to the number of charging
slots. Tis result suggests that operators can choose the
appropriate number of charging slots by making a trade-of
between cost and quality of service.

In the future, we can carry out research in two aspects.
(1) In terms of data, due to the platform’s competitiveness, it
is challenging to obtain takeaway orders and delivery tra-
jectories. If the data are available, the battery swap demand
can be simulated from the delivery chain, and the scale and
capacity of the BSS can be further optimized. (2) On the
operator side, putting too many BSSs can cover user de-
mand, but it will increase construction costs. Terefore, the
issue of pricing for battery swapping can be discussed.

Data Availability

Te [xlsx] data used to support the fndings of this study are
deposited in the GitHub repository (https://github.com/
codefsh941/Machine-Learning-simple.git).

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis research was funded by the National Natural Science
Foundation of China, grant no. 72171016, and Te Inter-
national Center for Informatics Research of Beijing Jiaotong
University.

References

[1] E. Arsenio, J. V. Dias, S. A. Lopes, and H. I. Pereira, “Assessing
the market potential of electric bicycles and ICT for low
carbon school travel: a case study in the Smart City of
AGUEDA,” European Transport Research Review, vol. 10,
no. 1, p. 13, 2018.

[2] Y. Liu, Y. Ji, Q. Liu, M. He, and X. Ma, “Investigating electric
bicycles as a travel mode choice for escorting children to
school A case study in kunming, China,” Transportation
Research Record, vol. 2634, no. 1, pp. 8–16, 2017.

[3] D. Pan, Y. Han, Q. Q. Jin, H.Wu, and H.W. Huang, “Study of
typical electric two-wheelers pre-crash scenarios using
K-medoids clusteringmethodology based on video recordings
in China,” Accident Analysis & Prevention, vol. 160, Article ID
106320, 2021.

[4] G. Q. Xue, Z. Wang, and G. Wang, “Optimization of rider
scheduling for a food delivery service in O2O business,”
Journal of Advanced Transportation, vol. 2021, Article ID
5515909, 15 pages, 2021.

[5] W. J. Wang, X. Xia, L. Xie, L. Jiang, and Y. Y. Song, “Research
on the O2O takeout orders merger and routing optimization,”
in Advances in Production Management Systems (APMS),
A. Dolgui, A. Bernard, D. Lemoine, G. Cieminski, and
D. Romero, Eds., pp. 290–298, Springer International Pub-
lishing, Berlin, Germany, 2021.

[6] B. Zhang, N. Niu, H. Li, Z. H.Wang, andW. J. He, “Could fast
battery charging efectively mitigate range anxiety in electric
vehicle usage?Evidence from large-scale data on travel and
charging in Beijing,” Transportation Research Part D:
Transport and Environment, vol. 95, Article ID 102840, 2021.

[7] J. M. F. Mendoza, A. Josa, J. Rieradevall, and X. Gabarrell,
“Environmental impact of public charging facilities for
electric two-wheelers,” Journal of Industrial Ecology, vol. 20,
no. 1, pp. 54–66, 2016.

[8] A. M. Vallera, P. M. Nunes, and M. C. Brito, “Why we need
battery swapping technology,” Energy Policy, vol. 157, Article
ID 112481, 2021.

[9] Y. Feng and X. Lu, “Construction planning and operation of
battery swapping stations for electric vehicles: a literature
review,” Energies, vol. 14, no. 24, p. 8202, 2021.

[10] B. Sun, X. Sun, D. H. K. Tsang, and W. Whitt, “Optimal
battery purchasing and charging strategy at electric vehicle
battery swap stations,” European Journal of Operational Re-
search, vol. 279, no. 2, pp. 524–539, 2019.

[11] F. Schneider, U. W. Tonemann, and D. Klabjan, “Optimi-
zation of battery charging and purchasing at electric vehicle
battery swap stations,” Transportation Science, vol. 52, no. 5,
pp. 1211–1234, 2018.

[12] L. Zhong and M. Pei, “Optimal design for a shared swap
charging system considering the electric vehicle battery
charging rate,” Energies, vol. 13, no. 5, p. 1213, 2020.

[13] F. H. Huang, “Understanding user acceptance of battery
swapping service of sustainable transport: an empirical study
of a battery swap station for electric scooters, Taiwan,” In-
ternational Journal of Sustainable Transportation, vol. 14,
no. 4, pp. 294–307, 2020.

[14] M. D. Lin, P. Y. Liu, M. D. Yang, and Y. H. Lin, “Optimized
allocation of scooter battery swapping station under demand
uncertainty,” Sustainable Cities and Society, vol. 71, Article ID
102963, 2021.

[15] F. H. Huang, Y. C. Lin, and T. T. Lv, “Evaluating usability of a
battery swap station for electric two wheelers: a case study,” in
Proceedings of the 18th International Conference on Human-
Computer Interaction (HCI International), pp. 491–496,
Springer International Publishing, Toronto, Canada, July,
2016.

[16] F. H. Huang, “Measuring user experience of using battery
swapping station,” in Advances in Usability and User Expe-
rience, T. Ahram and C. Falcao, Eds., vol. 607, pp. 656–664,
Springer, Berlin, Germany, 2018.

[17] H. H. Zhu and Z. Pei, “Data-driven layout design of regional
battery swapping stations for electric bicycles,” IFAC-
PapersOnLine, vol. 53, no. 5, pp. 13–18, 2020.

[18] S. Y. Yan, J. R. Lin, Y. C. Chen, and F. R. Xie, “Rental bike
location and allocation under stochastic demands,” Com-
puters & Industrial Engineering, vol. 107, pp. 1–11, 2017.

[19] S. Yan, C.-K. Lin, and Z.-Q. Kuo, “Optimally locating electric
scooter battery swapping stations and battery deployment,”
Engineering Optimization, vol. 53, no. 5, pp. 754–769, 2021.

[20] M. J. Hodgson, “A fow-capturing location-allocation model,”
Geographical Analysis, vol. 22, no. 3, pp. 270–279, 2010.

[21] J. Yang and H. Sun, “A hybrid genetic algorithm for battery
swap stations location and inventory problem,” International

20 Journal of Advanced Transportation

https://github.com/codefish941/Machine-Learning-simple.git
https://github.com/codefish941/Machine-Learning-simple.git


Journal of Shipping and Transport Logistics, vol. 7, no. 3,
pp. 246–265, 2015.

[22] K. An, W. Jing, and I. Kim, “Battery-swapping facility
planning for electric buses with local charging systems,” In-
ternational Journal of Sustainable Transportation, vol. 14,
no. 7, pp. 489–502, 2020.

[23] H. Sun, J. Yang, and C. Yang, “A robust optimization ap-
proach to multi-interval location-inventory and recharging
planning for electric vehicles,” Omega, vol. 86, pp. 59–75,
2019.

[24] J. Yang and H. Sun, “Battery swap station location-routing
problem with capacitated electric vehicles,” Computers &
Operations Research, vol. 55, pp. 217–232, 2015.

[25] J. Hof, M. Schneider, and D. Goeke, “Solving the battery swap
station location-routing problem with capacitated electric
vehicles using an AVNS algorithm for vehicle-routing
problems with intermediate stops,” Transportation Research
Part B: Methodological, vol. 97, pp. 102–112, 2017.

[26] S. Zhang, M. Z. Chen, and W. Y. Zhang, “A novel location-
routing problem in electric vehicle transportation with sto-
chastic demands,” Journal of Cleaner Production, vol. 221,
pp. 567–581, 2019.

[27] Y. Chen, D. Li, Z. Zhang, M. I. M. Wahab, and Y. Jiang,
“Solving the battery swap station location-routing problem
with a mixed feet of electric and conventional vehicles using a
heuristic branch-and-price algorithm with an adaptive se-
lection scheme,” Expert Systems with Applications, vol. 186,
Article ID 115683, 2021.

[28] M. Schifer and G. Walther, “An adaptive large neighborhood
search for the location-routing problem with intra-route fa-
cilities,” Transportation Science, vol. 52, no. 2, pp. 331–352,
2018.

[29] S. Wang, L. Yu, L. Wu, Y. Dong, and H. Wang, “An improved
diferential evolution algorithm for optimal location of battery
swapping stations considering multi-type electric vehicle scale
evolution,” IEEE Access, vol. 7, Article ID 73020, 2019.

[30] J. C. Paz, M. Granada-Echeverri, and J. Willmer Escobar, “Te
multi-depot electric vehicle location routing problem with
time windows,” International Journal of Industrial Engi-
neering Computations, vol. 9, no. 1, pp. 123–136, 2018.

[31] B. M. O. Portela, H. S. Bernardino, L. B. Goncalves, and
S. Soares, “Cheapest insertion and disruption of routes op-
erators for solving multi-depot electric vehicle location
routing problem with time windows and battery swapping via
GRASP and RVND,” in Proceedings of the IEEE congress on
evolutionary computation (IEEE CEC), pp. 2133–2140, IEEE,
Kraków, Poland, July, 2021.

[32] J. Yang, F. Guo, and M. Zhang, “Optimal planning of
swapping/charging station network with customer satisfac-
tion,” Transportation Research Part E: Logistics and Trans-
portation Review, vol. 103, pp. 174–197, 2017.

[33] I. Pavic, N. Holjevac, M. Zidar, I. Kuzle, and A. Neskovic,
“Transportation and power system interdependency for urban
fast charging and battery swapping stations in Croatia,” in
Proceedings of the 40th International Convention on Infor-
mation and Communication Technology, Electronics and
Microelectronics (MIPRO), pp. 1465–1470, Opatija, Croatia,
May, 2017.

[34] A. Rezaee Jordehi, M. S. Javadi, and J. P S Catalão, “Optimal
placement of battery swap stations in microgrids with micro
pumped hydro storage systems, photovoltaic, wind and
geothermal distributed generators,” International Journal of
Electrical Power & Energy Systems, vol. 125, Article ID 106483,
2021.

[35] J. X. Zhang, J. Chen, and S. X. Duan, “Optimal siting of
distributed battery swapping station based on clustering
analysis under o2o service model,” in Proceedings of the 2017
IEEE Conference on Energy Internet and Energy System In-
tegration (EI2), pp. 486–491, Beijing, China, November, 2017.

[36] M. Zeng, Y. Pan, D. Zhang, Z. Lu, and Y. Li, “Data-driven
location selection for battery swapping stations,” IEEE Access,
vol. 7, Article ID 133760, 2019.

[37] Y. Z. Yang, “Location of logistic distribution center supported
by ArcGIS,” in Proceedings of the 2nd International Confer-
ence on Civil Engineering, Architecture and Building Materials
(CEABM 2012), pp. 2633–2636, Yantai, China, May, 2012.

[38] O. Kaya, K. D. Alemdar, A. Atalay, M. Y. Codur, and
A. Tortum, “Electric car sharing stations site selection from
the perspective of sustainability: a GIS-based multi-criteria
decision making approach,” Sustainable Energy Technologies
and Assessments, vol. 52, Article ID 102026, 2022.

[39] G. Nagababu, H. Puppala, K. Pritam, and M. P. Kantipudi,
“Two-stage GIS-MCDM based algorithm to identify plausible
regions at micro level to install wind farms: a case study of
India,” Energy, vol. 248, Article ID 123594, 2022.

[40] M. Wang, Y. Wang, B. Li, Z. Cai, and M. Kang, “A population
spatialization model at the building scale using random
forest,” Remote Sensing, vol. 14, no. 8, p. 1811, 2022.

[41] Q. Lin, K. Liu, B. Hong, X. D. Xu, J. Y. Chen, andW.Wang, “A
data-driven framework for abnormally high building energy
demand detection with weather and block morphology at
community scale,” Journal of Cleaner Production, vol. 354,
Article ID 131602, 2022.

[42] S. Chen, S. Cao, and Y. Sun, “Resolution-oriented weighted
stacking algorithm,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 60, pp. 1–7, 2022.

[43] X. H. Zhang, Y. C. Wang, X. L. He et al., “Prediction of vehicle
driver’s facial air temperature with SVR, ANN, and GRU,”
IEEE Access, vol. 10, pp. 20212–20222, 2022.

[44] Y. Wang, J. J. Liu, and Y. M. Han, “Production capacity
prediction of hydropower industries for energy optimization:
evidence based on novel extreme learning machine inte-
grating Monte Carlo,” Journal of Cleaner Production, vol. 272,
Article ID 122824, 2020.

Journal of Advanced Transportation 21




