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Tis paper describes an optimization model for an irregular train schedule. Te aim is to optimize both the maximum train
loading rate and the average deviation of departure intervals under time-varying passenger transport demand for an urban rail
transit line in consideration of practical train operation constraints, i.e., headway, running time between stations, dwell time, and
capacity. A heuristic simulated-annealing algorithm is designed to solve the optimization model, and a case study of an urban rail
transit line is performed to assess its efcacy. Te results show that, compared with the current regular train schedule, the total
train dwell time under the optimized irregular schedule is reduced from 900 s to 848 s, and the reduction ratio for the maximum
train loading rate is from 1.2% to 3.6% for diferent stations. When the average train departure interval is allowed to vary from 120
to 170 s, the optimized irregular schedule decreases the maximum train loading rate of the collinear and noncollinear sections by
3.21%–4.82% and 2.52%–3.64%, respectively. Sensitivity analysis is performed for a nonnegative weight coefcient, average train
departure interval, and proportion of full-length and short-turn routings. Te proposed approach can be used to support capacity
improvement and schedule optimization for urban rail transit lines.

1. Introduction

Urban rail transit (URT) is very important for the stability,
efciency, and sustainability of public transportation. As
an important target of optimization in railway trans-
portation, train scheduling has received considerable at-
tention. Te models designed to generate or optimize train
schedules [1–7] can be divided into two diferent cate-
gories: regular and irregular. Unlike irregular train
schedules, regular ones are easy for travelers to remember
and can be computed with less efort by railway planners
[8]. Various optimization models for railway trans-
portation have been proposed to generate periodic time-
tables that minimize passenger waiting times [9–11]. Odijk

[12] used a particular mathematical model to generate
periodic timetables, while Liebchen [13] formulated a
periodic event-scheduling problem based on a well-
established graph model. Shafahi and Khani [14] presented
two models with constant headway for minimizing the
transfer waiting time in transit networks, and Li and Lo
[15] proposed an integrated energy-efcient operation
model that jointly optimizes train timetables and speed
profles, thus minimizing energy consumption. Aksu and
Akyol [16] proposed a heuristic genetic algorithm (GA)
that considers both the operational and transfer costs
when creating timetables with homogeneous headways.
Yang et al. [17] proposed a cooperative scheduling ap-
proach to optimize subway system timetables so that the
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recovery energy can be used directly and designed a GA
with binary encoding to solve the integer-programming
optimization model.

Regular train schedules with a constant headway be-
tween consecutive trains reduce passenger waiting times
under the condition that the passengers arrive at stations
following a uniform or Poisson process [18]. However,
regular train schedules may result in longer passenger
traveling and waiting times under time-varying passenger
transport demand (PTD). Nowadays, with the formation of
URT networks, PTD is increasing. When the passenger
arrival rate at URT stations is distributed unevenly, regular
train schedules are not conducive to matching transport
capacity with passenger fow demand, whereas irregular
schedules have substantial potential to reduce the total
passenger waiting time by matching the actual passenger
demand.Terefore, to provide amore efcient timetable that
can deal with variable passenger arrival rates, researchers
have begun to focus on generating nonfxed-headway train
schedules.

Assis et al. [19] proposed a linear-programming model
that efectively optimizes train schedules considering time-
varying PTD. Guihaire and Hao [20] discussed the sched-
uling problem in terms of passenger satisfaction and showed
that it would be preferable to obtain more detailed data for
real-world PTD. Albrecht [21] proposed a multilevel opti-
mization algorithm that produces fexible timetables for a
demand-oriented service. Hassannayebi et al. [22] proposed
a two-stage GA-based simulation optimization approach to
minimize passenger waiting cost for a single-loop URT line,
while Sun et al. [23] presented three optimization models for
demand-sensitive timetables and found that a dynamic
timetable built with capacity constraints ofers the greatest
ability to reduce the total waiting time. Niu et al. [24]
considered train scheduling under time-dependent PTD and
train skip-stop patterns and established a unifed quadratic
integer-programming model that minimizes the total pas-
senger waiting time. Wang et al. [25] proposed an iterative
convex programming approach for train scheduling based
on time-varying passenger fow, allowing both the total
energy consumption and passenger travel time to be min-
imized. Zhu et al. [26] proposed a bilevel programming
model for train-timetable optimization with full consider-
ation of PTD for a URT line. Shi et al. [27] proposed a joint
optimization model for collaboratively optimizing the train
timetable and passenger fow control strategy for an over-
saturated URT line, and Wang et al. [28] proposed three
approaches for solving a multiobjective mixed-integer
nonlinear programming model to deliver both an irregular
train schedule and a rolling-stock circulation plan under
time-varying PTD. Xie et al. [29] established a PTD-oriented
approach and stop-plan synchronization optimization
model that give an energy-saving and stable timetable,
whereas Huang et al. [30] developed nonlinear mixed-in-
teger programming models to reschedule trains during
disruption, with the purpose of alleviating passenger in-
convenience and regaining nominal train regularity. Yin
et al. [31] proposed an integrated approach for train
scheduling with dynamic PTD on a bidirectional URT line to

minimize operational costs and passenger waiting time.
Barrena et al. [32] proposed two nonlinear programming
formulations for optimizing a rapid-transit timetable under
dynamic PTD, with the objective of minimizing the average
passenger waiting time at stations. Canca et al. [33] pre-
sented a nonlinear integer-programming model for deter-
mining noncyclic railway timetables under dynamic PTD,
while Chen et al. [34] presented an energy-saving timetable
optimization model that minimizes the energy consumption
of train stops and the travel time of trains. Meng et al. [35]
presented an optimizationmodel and heuristic technique for
reallocating the time margins in train timetables so as to
minimize train delays under operational disturbances.
Barrena et al. [36] presented three linear formulations for
timetabling adapted to a dynamic PTD pattern, with the
objective of minimizing passenger average waiting time at
stations, and developed a branch-and-cut algorithm appli-
cable to all models. Yang et al. [37] presented an integrated
biobjective optimization model to generate an irregular
timetable, thus enabling the joint optimization of passenger
travel time and energy consumption. Dong et al. [38]
proposed an integrated optimization model that considers
both train stop plans and timetables under time-dependent
PTD and showed that the integrated model improved
passenger travel efciency and reduced train running times.

URT has become an important part of urban public
transport, ofering large-volume transport at fast speeds with
high levels of punctuality. Compared with other public
transport methods, URT is a closed operating environment
with high passenger density. Since the outbreak of COVID-
19, the difculties in controlling the spread of epidemics
have increased. To reduce the risk of epidemic transmission,
reducing the train loading rate is now required for epidemic
normalization and control in China. In this paper, under the
premise of a certain average train departure interval, the
capacities of irregular trains are accurately determined via an
optimized train schedule to reduce the maximum train
loading rate. Previous studies of irregular train timetables
have not accounted for the negative impact of unbalanced
train departure intervals on passengers. If the train departure
intervals are too uneven, there will be an excessive imbalance
in waiting times, which will make it difcult for passengers to
adapt and will increase the complexity of preparing and
operating train timetables. Terefore, this paper presents an
optimization model for an irregular train schedule during
peak hours. Te model achieves the cooperative optimiza-
tion of the maximum train loading rate and equilibrium of
train departure intervals, thus improving the passenger
experience.

Te remainder of this paper is structured as follows: in
Section 2, the problem and related assumptions are pre-
sented, and an optimization model for minimizing the
maximum train loading rate and the average deviation of
train departure intervals is described. In Section 3, the
solution approach for the optimization model is intro-
duced. Section 4 evaluates the performance of the pro-
posed model through a case study. Finally, the conclusions
to this study and directions for future research are given in
Section 5.
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2. ProblemDescription andModel Formulation

2.1. Problem Description. Considering the double-track
URT line shown in Figure 1, I platforms are set in each
direction, giving a total of 2I platforms. Both full-length
and short-turn routings are used for train operations, with
platform F used for the turn-back operation of short-turn
routing. Te train turns back before the initial station and
after the tail station.

For a traditional regular train schedule, the scheduled
running time and dwell time are confgured to have the same
values for each train. However, a fxed dwell time consumes
transport capacity for stations with small passenger fows
and often cannot meet the demand for boarding and
alighting passengers at stations with large passenger fows,
resulting in train delays. Tis paper correlates the train dwell
time with the number of boarding and alighting passengers;
see equation (5) in Section 2.5 for details.

As well as the loading rate of train services, passenger
satisfaction is infuenced by the deviation of train departure
intervals. Terefore, this paper constructs an irregular train-
scheduling optimization model that jointly optimizes the
maximum train loading rate and the average deviation of
train departure intervals so as to match passenger demands
more accurately.

2.2. Assumptions. Based on the practical operational situ-
ation of a URT line, the train-scheduling problem involves
the following assumptions:

(1) All the service trains are of the same type and
formation.

(2) Each train stops at each station, and there is no
overtaking along sections or at stations.

(3) Te origin-destination (O-D) matrix of passenger
fow demand comes from recent Automatic Fare
Collection System (AFC) data. Te passenger arrival
rate is obtained after sorting, screening, and other
related preprocessing.

(4) After all passengers disembark at the turn-back
platform, the train starts its turn-back operation.

(5) After each train completes one service in peak hours,
it immediately starts the next service rather than
returning to the depot.

2.3. Notation andVariables. Table 1 lists the parameters and
intermediate variables used in the model, and Table 2 lists
the decision variables.

2.4. Objective Function. Te optimization objective is to
minimize the maximum train loading rate and the average
deviation in the train departure interval. Te relevant
equations are as follows:

minf � 5λδmax +(1 − λ)hΔ, (1)

δmax � max δk,i􏽮 􏽯, ∀k ∈ K; ∀i ∈ Z, (2)

have �
􏽐

K
k�1􏽐

2I
i�1hk,i

K(2I − 2)
, (3)

hΔ �
􏽐

K
k�1􏽐

2I
i�1 hk,i − have

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

K(2I − 2)
. (4)

Equation (1) is the objective function, where λ is a
positive weight. In equation (2), δmax is the maximum
loading rate of all the trains passing through each station. In
equation (3), have is the average value of the departure in-
tervals of all adjacent trains passing through each station.
Equation (4) is the formula for the average deviation of the
train departure interval.

2.5. Systematic Constraints. In this subsection, systematic
constraints are formulated regarding train operation regu-
lations and passenger capacity. In peak hours, the doors of a
train usually open and close many times at each station
because of excessive passenger fow, especially at transfer
stations, resulting in delays to this and subsequent trains.
Te delayed train further increases the number of passengers
gathered on the platform, putting additional pressure on the
crew and causing potential safety hazards. Herein, the train
dwell time is related to the number of passengers boarding
and alighting the train at a station. Te constraint on the
train dwell time tw

k,i is as follows:

t
w
k,i � β n

al
k,i + n

b
k,i􏼐 􏼑 + di, ∀k ∈ K; ∀i ∈ Z, (5)

which indicates that the dwell time of train service k at
station i is directly proportional to the total number of
passengers boarding and alighting the train.

Te train running time and interval constraints are as
follows:

t
d
k,i � t

a
k,i + t

w
k,i, ∀k ∈ K; ∀i ∈ Z, (6)

t
a
k,i+1 � t

d
k,i + t

r
k,i, ∀k ∈ K; ∀i ∈ Z, (7)

t
r
k,2I−1 � tturnback,1, ∀k ∈ K,

t
r
k,F � tturnback,F, ∀k ∈ K,

t
r
k,I � tturnback,I, ∀k ∈ K,

⎧⎪⎪⎨

⎪⎪⎩
(8)

t
r
i,min ≤ t

r
k,i ≤ t

r
i,max ∀k ∈ K; ∀i ∈ Z, (9)

hi,min ≤ hk,i ≤ hi,max, ∀k ∈ K; ∀i ∈ Z, (10)

hk,i � t
d
k+1,i − t

d
k,i, ∀k ∈ K; ∀i ∈ Z, (11)
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Figure 1: Schematic of the track layout of a URT line.

Table 1: Parameters and intermediate variables.

Notation Defnition
K Set of train services
Z Set of stations
T Set of operation periods
k Index of train services
i, r, j Index of stations
δk,i Train load factor between stations i and i+ 1 for train service k
tw
k,i Dwell time at station i for train service k

β Dwell-time coefcient
nal

k,i Number of passengers that alight train service k at station i
nb

k,i Number of passengers that board train service k at station i
di Minimal dwell time at station i
td
k,i Departure time of train service k at station i

ta
k,i Arrival time of train service k at station i

tr
i,min Minimal running time from station i to station i+ 1

tr
i,max Maximal running time from station i to station i+ 1

hi,min Minimal train departure interval at station i
hi,max Maximal train departure interval at station i
tk,r1 Train running time of full-length routing
tr1,min Minimal train running time of full-length routing
tr1,max Maximal train running time of full-length routing
tk,r2 Train running time of short-turn routing
tr2,min Minimal train running time of short-turn routing
tr2,max Maximal train running time of short-turn routing
tr1 Average train running time of full-length routing
tr2 Average train running time of short-turn routing
Nr1 Number of trains for full-length routing
Nr2 Number of trains for short-turn routing
N Number of trains available
η Train operation proportion of full-length and short-turn routings
hr1 Average train departure interval of full-length routing
hr2 Average train departure interval of short-turn routing
lk(td

k,i) Number of passengers onboard train service k at station i after the boarding process has completed
lk(ta

k,i) Number of passengers onboard train service k at station i before the start of the boarding process
nb

k,i,j Number of passengers onboard train service k at station i with destination station j
n

t1, t2
i,j Number of passengers arriving at station i with destination station j during time period [t1, t2]

tc
k,i Arrival time at station i of last passenger to board train service k

lk,i(t) Number of passengers onboard train service k at time t
δm Maximum allowable train loading factor
ck Capacity of trains in terms of maximum number of onboard passengers
n

t1, t2
i Number of passengers arriving at station i during time period [t1, t2]

τi,j(t) Passenger arrival rate at station i with destination station j at time t
n

p

i (td
k,i) Number of passengers waiting at station i after the boarding process has completed for train service k at station i

n
p
i,j(td

k,i)
Number of passengers waiting at station iwith destination station j after the boarding process has completed for train service k at

station i
tturnback,i Train turn-back time at reversal station
δmax Maximum loading rate of all the trains passing through each station
trk,i Running time from station i to station i+ 1 for train service k
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tk,r1 � 􏽘

2I−1

i�1
t
r
k,i + t

w
k,i􏼐 􏼑, ∀k ∈ K, (12)

tr1,min ≤ tk,r1 ≤ tr1,max, ∀k ∈ K, (13)

tk,r2 � 􏽘
F

i�1
t
r
k,i + t

w
k,i􏼐 􏼑 + 􏽘

2I−1

i�2I−F+1
t
r
k,i + t

w
k,i􏼐 􏼑, ∀k ∈ K, (14)

tr2,min ≤ tk,r2 ≤ tr2,max, ∀k ∈ K.

(15)

Equation (6) indicates that the time at which train service
k leaves station i is the time at which train service k arrives at
station i plus the dwell time at station i. Equation (7) in-
dicates that the time at which train service k arrives at station
i+ 1 is the time at which train service k leaves station i plus its
running time in section [i, i + 1]. Equation (8) defnes the
turn-back time as the train’s running time between the turn-
back station and the reversal track. Equation (9) is the train’s
running time constraint between stations, and Equation (10)
is the train departure interval constraint. Te departure
interval of adjacent trains at the same station must be greater
than theminimum train departure interval of the station and
less than the maximum train departure interval of the

station. Equation (11) is the formula for calculating the
departure interval of adjacent trains at station i. Equations
(12)–(15) are the running-time constraints of full-length and
short-turn routings.

In the following, equation (16) is the constraint for the
number of trains required, and equations (17)–(19) are
constraints on the average train departure interval for full-
length and short-turn routings:

Nr1 + Nr2 ≤N, (16)

hr1 �
tr1

Nr1
, (17)

hr2 �
tr2

Nr2
, (18)

hr2

hr1
� η. (19)

Te constraints in equations (20)–(28) are related to the
train loading rate and passenger capacity, and when pas-
senger demand exceeds the maximum loading capacity of
the train, passengers will be unable to board the arriving
train and will have to wait for subsequent trains:

lk t
d
k,i􏼐 􏼑 � lk t

a
k,i􏼐 􏼑 − n

al
k,i + n

b
k,i, ∀k ∈ K; ∀i ∈ Z, (20)

n
b
k,i � 􏽘

2I

j�i+1
n

b
k,i,j � 􏽘

2I

j�i+1
n

tc
k−1,i,

tc
k,i

i,j , ∀k ∈ K; ∀i ∈ Z, (21)

t
c
k,i � min t

d
k,i, max t|lk,i(t)< δmaxck ≤ lk,i(t) + n

t,t+1
i􏽮 􏽯􏽮 􏽯, ∀k ∈ K; ∀i ∈ Z; ∀t ∈ T, (22)

n
t,t+1
i � 􏽘

2I

j�i+1
n

t,t+1
i,j , ∀i ∈ Z; ∀t ∈ T, (23)

n
t1,t2
i � 􏽘

2I

j�i+1
n

t1,t2
i,j � 􏽘

2I

j�i+1
􏽚

t2

t1

τi,j(t)dt, ∀i ∈ Z; ∀t1,t2 ∈ T, (24)

n
al
k,i � 􏽘

i−1

r�1
n

b
k,r,i, ∀k ∈ K; ∀i ∈ Z, (25)

n
p

i t
d
k,i􏼐 􏼑 � n

p

i t
d
k−1,i􏼐 􏼑 + n

td
k−1,i

,td
k,i

i − n
b
k,i � 􏽘

2I

j�i+1
n

p

i,j t
d
k−1,i􏼐 􏼑 + n

td
k−1,i

,td
k,i

i,j − n
b
k,i,j􏼔 􏼕, ∀k ∈ K; ∀i ∈ Z, (26)

Table 2: Decision variables.

Notation Defnition
hk,i Train departure interval at station i between train services k and k+ 1
tr
k,i Running time of train service k from station i to station i+ 1
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n
p
I t

d
k,I􏼐 􏼑 � n

p
F t

d
k,F􏼐 􏼑 � 0, ∀k ∈ K, (27)

δk,i �
lk t

d
k,i􏼐 􏼑

ck ≤ δm

, ∀k ∈ K; ∀i ∈ Z. (28)

Equation (20) indicates that the number of passengers
onboard train service k at station i after the boarding
process has been completed is related to the number of
passengers onboard train service k when it arrives at
station i and the number of passengers boarding and
alighting at station i. Equation (21) is the formula for the
number of passengers boarding train service k at station i.
Equations (22) and (23) show that, under the condition of
passenger fow saturation, only some of the passengers on
the platform can board the train because of the limited
train capacity; the other passengers have to wait for the
next train, where tck,i is the arrival time at station i of the
last passenger to board train service k, tc

k,i ∈ (tc
k−1,i, td

k,i).
Equation (24) indicates that the number of passengers
arriving at station i is the total number of passengers
starting of at station i within the corresponding time
range. Equation (25) specifes that the number of pas-
sengers alighting train service k at station i comprises the
number of passengers boarding at all stations prior to
station i with station i as the destination. Equation (26)
indicates that the number of passengers waiting at station
i after the boarding process has been completed for train
service k at station i is related to the number of passengers
waiting at station i when the previous train left station i,
the number of passengers arriving at station i before train
service k departs station i, and the number of passengers
boarding at station i. Equation (27) specifes that all
passengers alight at turn-back platforms I and F, and no
passengers board the train. Equation (28) is the constraint
for the maximum loading rate of the train.

3. Solution Approach

In essence, this problem is a large-scale combinatorial
optimization problem. Simulated-annealing algorithms
are efective for solving such problems, ofering satis-
factory solutions in a reasonable time. Herein, a heuristic
simulated-annealing algorithm is designed to solve the
model.

3.1. Simulated-Annealing Algorithm. Te current regular
schedule is used as the initial solution. Te O-D time-
varying passenger fow is distributed to each scheduled
train service, and the simulated-annealing algorithm is
iterated to approach the minimum value of the objective
function. Figure 2 shows a fowchart of the simulated-
annealing algorithm. Te solution steps are as follows:

Step 1. We initialize the algorithm parameters, in-
cluding the initial temperature ts, termination tem-
perature te, temperature attenuation coefcient a,
Markov chain length m l, current iteration number Ite,

total number of individuals M, and current solved
individual m.
Step 2. We take the current regular train operation
scheme s0 as the initial train operation scheme and
calculate the initial objective function value as f(s0).
Te current global optimal objective function value is
f(smin) � f(s0), and the individual optimal objective
function value is f(s) � f(s0).
Step 3. For individual m and the corresponding op-
eration plan, a new operation plan snew is generated
using the multineighborhoodmoving criterion, and the
objective function value is f(snew).
Step 4. If f(snew)>f(s), we accept the neighborhood
solution Snew according to the Metropolis criterion; if
f(snew)≤f(s), we record the neighborhood solution
Snew as the optimal solution for individual m.
Step 5. If all individuals have been traversed, we select
the optimal solution from the M individuals and re-
cord it as the global optimal objective value f(smin),
then set m = 1; otherwise, we return to step 3 and set
m =m + 1.
Step 6. We set t � at. If t< te, we terminate the algo-
rithm; otherwise, we return to step 3.

3.2. Adaptive Large Neighborhood Search Metaheuristic.
An adaptive large neighborhood search (ALNS) meta-
heuristic is now proposed to search neighboring solutions
efciently and reasonably. Te operators are chosen via the
roulette-wheel mechanism at each iteration, with a proba-
bility that depends on their former performance. For a
detailed formulation, see equation (29), in which pi rep-
resents the probability of operator i being selected, κi rep-
resents the weight of operator i and has an initial value of 1,
and Nd represents the total number of operators that can be
selected.

pi �
κi

􏽐
Nd

j�1 κj

, ∀i, j≤N. (29)

Each search process is divided into segments of ψ it-
erations. Each operator i is assigned a score πi, with the
initial score set to 0. After each iteration, the score of the
selected operator increases by c1 if a new best solution is
found, increases by c2 if a solution better than the previous
one but worse than the best one is found, and increases by c3
if the solution is worse than the previous one but still ac-
cepted via the simulated-annealing acceptance criterion. At
the end of each segment, the weights of the selected oper-
ators are calculated by considering the scores obtained in the
last ψ iterations according to
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κi �

κi, if nij � 0,

(1 − ω)κi +
ωπi

nij

, if nij ≠ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(30)

where ω represents the weight reaction index, which
controls the efect of past performance, and nij represents
the number of times operator i has been used in segment
j. At the end of each segment, the scores of all operators
are reset to 0. In the proposed implementation, the length
of segment ψ is set to 100, the weight reaction index ω is
set to 0.8, and c1, c2, and c3 are set to 10, 6, and 3,
respectively.

As the train headway hk,i and train running time between
stations tr

k,i are decision variables in the proposed model,
their output datasets O(hk,i) and O(tr

k,i) constitute the so-
lution of the model. Te expressions of O(hk,i) and O(tr

k,i)

are of the form

O hk,i􏼐 􏼑 �

h1,1 h1,2 h1,3 ... h1,2I−1

h2,1 h2,2 h2,3 ... h2,2I−1

⋮ ⋮ ⋮ ⋱ ⋮

hk−1,1 hk−1,2 hk−1,3 ... hk−1,2I−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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.

(31)

As shown in equation (32), the operators Δhk,i and Δtr
k,i

denote the ofsets of train headway and running time, re-
spectively. Te values of these operators should be small
enough to guarantee that the generated neighbors are fea-
sible solutions. Tus, each Δhk,i and Δtr

k,i are randomly
defned as −1, 0, or 1; O(Δhk,i) and O(Δtr

k,i) are datasets of
Δhk,i and Δtr

k,i, respectively.
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Figure 2: Flowchart of the parallel-simulated-annealing algorithm.
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.

(32)

A new neighbor snew is generated via equation (33). If the
generated neighbor is not a feasible solution, it is ignored,
and a new neighbor is generated according to the previously
mentioned rules.

O hk,i􏼐 􏼑new � O hk,i􏼐 􏼑 + O Δhk,i􏼐 􏼑,

O t
r
k,i􏼐 􏼑new � O t

r
k,i􏼐 􏼑 + O Δtr

k,i􏼐 􏼑,

⎧⎪⎨

⎪⎩
(33)

3.3. Solution Procedure. Te detailed procedure of the
simulated-annealing algorithmwith the ALNSmetaheuristic
is as follows:

(1) Initialize: we generate a regular schedule and take it
as initial solution s0 with object function value
f(s0).

(2) For each operator, we set weight� 1 and score� 0.
(3) smin←s←s0, t←ts.
(4) We initialize the number of individuals 1←m.
(5) We initialize the number of iterations 1←Ite.
(6) We select operators O(Δhk,i) and O(Δtr

k,i) via the
roulette-wheel mechanism at each iteration based
on their current weights and apply the operators to
solution s to generate a neighbor solution snew
according to equation (33).

(7) We check the feasibility of neighbor solution snew
according to equations (5)–(28). If the neighbor
solution is not feasible, we ignore it and return to
step 6 to generate a new neighbor.

(8) We calculate the object value f(snew) for neighbor
solution snew.

(9) If f(snew)≤f(s)≤f(smin), we go to step 10; oth-
erwise, go to step 11.

(10) smin←s←snew, we update the score for the selected
operator with c1.

(11) If f(smin)≤f(snew)≤f(s), we go to step 12; oth-
erwise, go to step 13.

(12) s←snew, we update the score for the selected op-
erator with c2.

(13) If f(snew)>f(s) but snew is accepted by the sim-
ulated-annealing criterion, we go to step 14.

(14) s←snew, we update the score for the selected op-
erator with c3.

(15) Ite � Ite + 1, m � m + 1.
(16) If Ite≤ψ, go to step 6.
(17) If Ite has reached the defned length of segment ψ

(Ite>ψ), we go to step 18.
(18) We update the weights for all involved operators

according to equation (30), reset score� 0 for all
operators.

(19) If m≤M, we go to step 5.
(20) If m>M, we go to step 21.
(21) t←at.
(22) If (t≥ te), we go to step 4.
(23) If (t< te), we go to step 24.
(24) We return smin and the corresponding object

function value, end.

4. Case Study

We consider a URT line of length 45.34 km with 25 stations.
In total, 50 platforms are set for the up and down directions,
and platform 19 is a turn-back platform for short-turn
routing. All trains are six-car marshaling type-B trains. Te
trains turn back before the initial station and after the tail
station. Figure 3 shows the passenger numbers during peak
hours. Because the passenger fow on each section of the line
is unbalanced, long-length and short-turn routings with a 2 :
1 train operation proportion (η� 2) are used.

Te proposed algorithm was programmed in MATLAB
R2019b on a personal computer with an Intel® Core™
i3–9100 3.60GHz CPU with 8.00GB of memory and the
Windows 10 64-bit operating system. Te current regular
train operation plan was used as the initial solution, with a
train operation proportion of 2 :1 for full-length and short-
turn routings (η= 2). Te weight coefcient of the objective
function was set to λ � 0.5. Te average train departure
interval of adjacent trains have was set to 120–170 s, i.e., a
fxed value for have is taken in equation (3) as a constraint.
For each given average train departure interval have, the
initial temperature ts was set to 500, the termination tem-
perature te was set to 1, the temperature attenuation coef-
fcient a was set to 0.85, and the Markov chain length m l

was set to 1000.

4.1. Results and Discussion. Te simulated-annealing algo-
rithm process terminated after running for 546 s, and the
algorithm converged rapidly and tended to stabilize for the
optimal solution after 3800 iterations. Tis indicates that the
convergence behavior of the algorithm is good.

Te minimum value of the objective function minf �

4.02 with an average train departure interval of have � 120 s
gives a maximum train loading rate of δmax � 0.844 and an
average deviation of hΔ � 3.82 s in the train departure in-
terval. Table 3 presents a detailed comparison of the opti-
mized irregular schedule and the regular schedule.
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Figure 3: Number of passengers during peak hours.

Table 3: Comparison of values under an optimized irregular schedule and the current regular schedule.

Station index Length (m) DT1 (s) DT2 (s) Gap1 (%) LR1 LR2 Gap3 (%)
1 657 40 38 −5.0 0.173 0.171 −1.2
2 1361 30 28 −6.7 0.380 0.375 −1.3
3 857 35 32 −8.6 0.506 0.498 −1.6
4 1425 35 34 −2.9 0.578 0.561 −2.9
5 1602 55 58 +5.5 0.872 0.844 −3.2
6 1744 30 29 −3.3 0.818 0.789 −3.5
7 1146 50 48 −4.0 0.802 0.775 −3.4
8 1074 30 26 −13.3 0.774 0.746 −3.6
9 1303 35 33 −5.7 0.749 0.725 −3.2
10 1587 45 42 −6.7 0.647 0.629 −2.8
11 1183 30 29 −3.3 0.632 0.613 −3.0
12 1085 30 28 −6.7 0.625 0.606 −3.0
13 874 30 30 0 0.588 0.569 −3.2
14 1199 45 41 −8.9 0.605 0.587 −3.0
15 860 30 29 −3.3 0.593 0.574 −3.2
16 1023 30 28 −6.7 0.560 0.541 −3.4
17 1435 40 37 −7.5 0.541 0.523 −3.3
18 1908 30 27 −10.0 0.487 0.472 −3.1
19 6924 50 46 −8.0 0.629 0.611 −2.9
20 1784 35 33 −5.7 0.507 0.489 −3.6
21 3361 25 23 −8.0 0.455 0.440 −3.3
22 1894 30 29 −3.3 0.401 0.389 −3.0
23 1540 40 35 −12.5 0.329 0.319 −3.0
24 5895 30 28 −6.7 0.186 0.181 −2.7
25 437 40 37 −7.5 — — —
SUM 44158 900 848 −5.8 — — —
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In Table 3, DT1 refers to the train dwell time at diferent
stations under the regular train schedule, while DT2 refers to
that under the optimized irregular train schedule. As in-
dicated in equation (5), the train dwell time under the
optimization model is related to the number of passengers
boarding and alighting this train at the station. Figure 4
shows that the up-track train dwell time under the optimized
irregular schedule is lower than that under the regular
schedule at most stations, although the dwell time at station
5 has increased. Te reason for this increase is that station 5
is a transfer station and has the largest passenger fow over
the whole line (as shown in Figure 3).Te current dwell time
of 55 s does not meet the passengers’ needs for boarding and
alighting, whereas the optimized dwell time of 58 s accu-
rately matches passenger demand. Table 3 indicates that the
total train dwell time from station 1 to station 25 decreases

from 900 s to 848 s under the optimized irregular schedule,
thus reducing passenger travel times and improving oper-
ational efciency.

We now investigate the average waiting time and average
travel time of passengers under the optimized schedule. Te
average waiting time Tave_wait and average travel time Tave_tra
are calculated according to equations (34) and (35), re-
spectively, where Twait is the total waiting time of all pas-
sengers, Ttra_train is the total travel time of passengers within
the train, and Np is the total number of passengers. As
shown in equation (36), the total waiting time of passengers
Twait consists of the waiting time of passengers boarding the
current train and the waiting time of passengers who remain
on the platform. Ttra_train and Np are calculated according to
equations (37) and (38), respectively.

Tave wait �
Twait

Np

, (34)

Tave tra �
Twait + Ttra train

Np

, (35)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Tr
ai

n 
dw

el
l t

im
e (

s)

Station number

Train dwell time under current regular schedule (s)
Train dwell time under optimized irregular schedule (s)

0

10

20

30

40

50

60

Figure 4: Train dwell times under optimized irregular schedule and current regular schedule.
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2I
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􏽚

td
k,i

td
k−1,i

τi,j(t)dt. (38)

Te reductions in train dwell time and running time
between stations mean that the average waiting time of
passengers after optimization is 2.8 s less than that before
optimization, an optimization ratio of 4.3%. Te average
travel time of passengers after optimization is reduced by
42 s, an optimization ratio of 5.7%, which shows that the
optimization model established in this paper has a positive
efect on improving travel efciency.

In Table 3, LR1 refers to the maximum train loading rate
at diferent stations under the regular schedule, while LR2
refers to that under the optimized irregular schedule. Fig-
ure 5 shows that, through accurate matching of the train
timetable with the passenger fow under the optimized ir-
regular schedule, the maximum train loading rate at each
station has been reduced to varying degrees compared with

the current regular schedule. Table 3 illustrates that the
reduction ratio of the maximum train loading rate ranges
from 1.2% to 3.6%.

According to Table 3, the maximum train loading rate is
0.844 at station 5 after optimization, with an optimization
ratio of 3.2% compared with that before optimization. To
clarify the root cause for this optimization, Figure 6 shows
the train departure intervals under both the original and
optimized schedules.

Forty-fve trains are dispatched from station 5 under
both the current regular schedule and the optimized ir-
regular schedule in the peak hours between 07:00 and 08:30,
with the same average departure interval of 120 s. As shown
in Figure 6, the train departure interval under the current
regular schedule is fxed at 120 s, whereas it ranges from 115
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to 131 s under the optimized irregular schedule. Te opti-
mized train headway is relatively dense in the middle of the
peak period and relatively sparse in other periods. Te
optimized train departure intervals gradually decrease from
131 s to 120 s between 07:00:00 and 07:23:54 and remain
below 120 s from 07:23:55 to 08:06:47, with minimum de-
parture intervals of 115 s between 07:43:28 and 07:49:13. Te
optimized train departure intervals then increase from 120 s
to 128 s between 08:06:48 and 08:30:00.

According to the passenger fow statistics, the passenger
arrival rate at each station during peak hours does not obey
a uniform or Poisson distribution. Te passenger arrival at
station 5 is concentrated between 07:25 and 08:05, reaching
a maximum at 07:48. Te passenger arrival rate increases
gradually before this time and decreases gradually there-
after. Te changes in the train departure interval and
passenger arrival rate are clearly consistent with each other
under the optimized irregular schedule. Tus, it can be
concluded that the basic reason for the optimization of the
maximum train loading rate is that the train departure
intervals decrease during the period of maximum pas-
senger arrival, but the total number of train services does
not increase.

Figure 7 compares the optimized irregular schedule with
the regular schedule under diferent average departure in-
tervals have. Under the same have, the optimized irregular
schedule reduces the maximum train loading rate

signifcantly. Compared with the regular schedule, the
maximum train loading rate of the collinear and noncol-
linear sections decreases by 3.21%–4.82% and 2.52%–3.64%,
respectively, when have is set as 120–170 s. Te optimization
range of the maximum train loading rate of the collinear
section is slightly higher than that of the noncollinear
section. Tis is because the passenger fow of the collinear
section is higher than that of the noncollinear section, while
the optimization objective is the maximum train loading rate
of each section.

At present, train schedule no. 92 is used for daily op-
eration, with a regular interval of 170 s, a maximum train
loading rate of δmax � 123.8%, and an average train loading
rate of δave � 82.3%. Te optimized irregular train schedule
gives the lowest train loading rate when the average de-
parture interval have is set to 120 s; in this case, the maximum
train loading rate δmax is 84.4% and the average train loading
rate δave is 53.7%, reduction ratios of 31.8% and 34.8%,
respectively, compared with regular train schedule no. 92.

4.2. Sensitivity Analysis

4.2.1. Impact of Nonnegative Weight Coefcient λ.
Figures 8 and 9 show that as the coefcient weight λ in-
creases from 0 to 1.0, the maximum train loading rate δmax
gradually decreases from 0.872 to 0.809, and the average
deviation in the train departure interval hΔ gradually
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increases from 0 s to 5.173 s.Tis is obviously consistent with
the actual situation. In particular, when λ� 0, we have
minf � 5λδmax + (1 − λ)hΔ � 0, in which case the opti-
mized train schedule corresponds to the regular-interval
schedule with a maximum loading rate of δmax � 0.872.

4.2.2. Impact of the Average Train Departure Interval have.
As shown in Figure 7, under the optimized irregular
schedule, a smaller average train departure interval have
produces a smaller maximum train loading rate δmax and
average deviation in the train departure interval hΔ.
Terefore, compressing the train departure interval is an
important means of improving passenger comfort.

Table 4 and Figure 7 show that when the average train
departure interval have is reduced from 170 s to 120 s, the
maximum train loading rate of the whole line δmax de-
creases from 119.7% to 84.4%, that of the noncollinear
section δmax_non−co decreases from 86.6% to 61.1%, and the
average deviation of the train departure interval hΔ de-
creases from 6.45 s to 3.82 s. Table 4 also illustrates that a
shorter average train departure interval have gives a

smaller average train loading rate and requires more
trains. When have is reduced from 170 s to 120 s, the av-
erage train loading rate of the whole line δave decreases
from 76.9% to 53.7%, that of the noncollinear section
δave_non−co decreases from 57.4% to 40.5%, and the number
of trains required Nrequire increases from 40 to 56.
Equation (39) gives the average train loading rate of the
whole line, and equation (40) gives that for the noncol-
linear section:

δave �
􏽐

K
k�1 􏽐

2I
i�1δk,i

K(2I − 2)
, (39)

δave non−co �
􏽐

K
k�1 􏽐

2I−F
i�F+1δk,i

K(2I − 2F − 1)
. (40)

4.2.3. Impact of Train Operation Proportion of Full-Length
and Short-Turn Routings η. As shown in Figure 10, the
proportion of full-length and short-turn routings η has a
signifcant impact on the required number of trains Nrequire
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and the average train loading rate of the whole line δave. A
reduction in η reduces Nrequire under the same average train
departure interval but increases the average train loading
rate δave. Figure 10 shows that when the average train de-
parture interval have is 120 s and η is 2 : 1, Nrequire � 56 and
δave � 53.7%, whereas when η is 1 :1, Nrequire decreases to 53
and δave increases to 57.7%.

Under an average train departure interval have of
120 s, when the train operation proportion of full-length
and short-turn routings η is reduced from 2 : 1 to 1 : 1, the
average train loading rate at noncollinear sections
δave non−co increases from 40.5% to 54.2%, and the

maximum train loading rate at noncollinear sections
δmax non−co increases from 61.1% to 81.5%. Terefore,
compared with η� 2 : 1, η� 1 : 1 improves the equilibrium
of the train loading rate between collinear and noncol-
linear sections. If η is reduced further (e.g., 1 : 2), the
maximum train loading rate at noncollinear sections
δmax non−co becomes too high and passenger comfort is
afected, which is not recommended.

Te previously mentioned sensitivity analysis results are
consistent with expectations, which proves that the model in
this paper has good usability and reliability, and can be
applied to URT train schedule optimization.
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5. Conclusions and Future Research

Taking the maximum train loading rate and average de-
viation in the departure interval as the cooperative op-
timization objectives, this paper has established an

optimization model for an irregular train schedule that
operates over peak hours to improve the passenger ex-
perience. A case study showed that, under the optimized
irregular schedule, the train capacity can be better
matched with the passenger fow. Te minimum value of
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Figure 10: Optimization results for an irregular schedule with diferent train operation proportions.

Table 4: Optimization results with 2 :1 train operation proportion of full-length and short-turn routings.

have (s)
Number of trains

Nrequire

Number of trains required Max. loading rate
(%)

Average loading
rate (%) hΔ (s)

Full-length routing Nr1 Short-turn routing Nr2 δmax δmax_non−co δave δave_non−co

170 40 30 10 119.7 86.6 76.9 57.4 6.45
165 41 31 10 116.2 84.1 74.6 55.6 6.14
160 42 32 10 112.5 81.2 72.2 54.2 5.86
155 44 33 11 109.1 78.9 70.1 52.3 5.61
150 45 34 11 105.2 76.4 67.9 50.4 5.35
145 47 35 12 102.1 73.6 65.2 48.9 5.12
140 48 36 12 98.6 71.3 63.2 47.3 4.83
135 50 38 12 95.3 68.8 60.1 45.6 4.64
130 52 39 13 91.5 66.1 57.8 43.8 4.33
125 54 41 13 88.1 63.7 55.2 42.1 4.04
120 56 42 14 84.4 61.1 53.7 40.5 3.82
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the objective function is obtained with an average train
departure interval of 120 s. Te total train dwell time from
stations 1–25 decreases from 900 s under the existing
regular schedule to 848 s under the optimized irregular
schedule, and the maximum train loading rate decreases
by 1.2%–3.6% at the various stations. Compared with the
regular schedule, the maximum train loading rate of the
collinear and noncollinear sections decreases by 3.21%–
4.82% and 2.52%–3.64%, respectively, when have is set as
120–170 s.

Sensitivity analysis was considered for the nonnega-
tive weight coefcient λ, average train departure interval
have, and proportion of full-length and short-turn rout-
ings η. Increasing λ from 0 to 1.0 produces a gradual
decrease in δmax from 0.872 to 0.809, while hΔ gradually
increases from 0 s to 5.173 s. When have is reduced from
170 s to 120 s, the maximum train loading rate decreases
from 119.7% to 84.4%, the average train loading rate
decreases from 76.9% to 53.7%, and the average deviation
in the train departure interval decreases from 6.45 s to
3.82 s. Te proportion of full-length and short-turn
routings η has a signifcant impact on the number of
trains required and the equilibrium of the train loading
rate. Reducing η from 2 : 1 to 1 : 1 reduces the number of
trains required by three for have � 120 s and improves the
equilibrium of the train loading rate between collinear
and noncollinear sections to make the capacity confg-
uration more reasonable.

Te research object in this study was train-scheduling
optimization for URT. It was assumed that all trains enter
the next service after completing their turn-back operation,
without considering the situation of trains entering and
leaving the depot. To consider train scheduling for the whole
day, it will be necessary to consider the train connection plan
and carry out collaborative optimization of the train
schedule and turnover plan.
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