
Research Article
Early Window Tailoring: A New Approach to Increase the
Number of TCP Connections Served

Marcos Talau , Mauro Fonseca , and Emilio C. G. Wille

Graduate Program, Electrical and Computer Engineering (CPGEI), Federal University of Technology—Paraná (UTFPR),
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In the absence of losses, TCP constantly increases the amount of data sent per instant of time. )is behavior leads to problems
that affect its performance, especially when multiple devices share the same gateway. Several studies have been done to
mitigate such problems, but many of them require TCP side changes or a meticulous configuration. Some studies have shown
promise, such as the use of gateway techniques to change the receiver’s advertised window of ACK segments based on the
amount of memory in the gateway; in this work, we use the term “network-return” to refer to these techniques. In this paper,
we present a new network-return technique called early window tailoring (EWT). For its use, it does not require any
modification in the TCP implementations at the sides and does not require that all routers in the path use the same congestion
control mechanism, and the use in the gateway is sufficient. With the use of the simulator ns-3 and following the rec-
ommendations of RFC 7928, the new approach was tested in multiple scenarios. )e EWT was compared to drop-tail, RED,
ARED, and the two network-return techniques—explicit window adaptation (EWA) and active window management
(AWM). In the results, it was observed that EWT was shown to be efficient in congestion control. Its use avoided losses of
segments, bringing expressive gains in the transfer latency and goodput andmaintaining fairness between the flows. However,
unlike other approaches, the most prominent feature of EWT is its ability to maintain a very high number of active flows at a
given level of segment loss rate. )e EWTallowed the existence of a number of flows, which is on average 49.3% better than its
best competitor and 75.8% better when no AQM scheme was used.

1. Introduction

)rough inference, the TCP protocol makes use of net-
work information in its congestion control [1]. Segments
are sent with an increasing and exponential rate with the
use of the algorithm slow-start. When the transmission
window exceeds a predefined level (ssthresh), TCP enters
the congestion-avoidance mode and the number of sent
segments is then increased linearly. )is process is done
until losses occur. In this case, TCP reduces the size of the
data burst and thus sends fewer segments. Losses are
detected with the use of timeouts and can also be predicted
by receiving a number of duplicate ACKs. In the first case,
the size of the burst is reduced to one segment. When a
sequence (usually three) of duplicate ACKs is received and
the timestamp of the corresponding segment has not been

expired, the TCP protocol uses the fast-retransmit/fast-
recovery mechanisms, thus halving the burst size. If out-
of-order segments arrive, TCP also sends duplicate ACKs,
which can lead to a size reduction of burst. In addition,
TCP only confirms the last segment received. If multiple
segment losses occur (in the burst), it will enter the slow-
start phase, thus reducing its transmission. In short, TCP
seeks to cause losses to infer the capacity of the network.

)is behavior leads to problems that affect the TCP
performance, especially when multiple devices share a
same gateway. Problems occur because of the constant
dispute over gateway resources, which leads to degra-
dation of throughput, fairness, and delays. In this context,
to improve TCP performance, several proposals have
been developed that can be grouped into active queue
management (AQM) [2–4], TCP side changes [5–7],
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AQM+TCP [8–11], and network-return techniques
[12–16].

)e use of active queue management is intended to
avoid the occurrence of congestion through drop/mark
(explicit congestion notification (ECN)) of segments be-
fore filling the gateway queue. Its use may be inefficient if
TCP sides do not use markup properly and also if they are
not perfectly configured for the desired scenario. However,
the side changes necessitate a change of TCP in the sides,
which makes their use impracticable. AQM+TCP makes
use of AQM with TCP side changes, so it goes through the
same problems. )ere are approaches performed at
gateways that change the TCP receiver’s advertised win-
dow of ACK segments based on the amount of memory in
the gateway; in this paper, we use the term “network-
return” to refer to these techniques. Using network-return
techniques is expected to make the TCP adjust its trans-
mission based on information about the usage of the
network.

Another problem, not specific to TCP, is bufferbloat
[17]. Bufferbloat is an unwanted latency that can occur
when network equipment (typically a router or switch) has
a high memory capacity. When using large memory,
segments are lost less often, but high memory usage
generates latency, which affects system performance.
Network-return techniques, while being used in the
context of AQM, are not intended to address bufferbloat
but rather to control the transmission rate of TCP flows
based on available gateway memory; but if adapted, they
can easily be used. Also in this sense, TCP congestion
control on the Internet operates largely at endpoints, and
congestion control algorithms are used on clients and
servers. On Windows systems, the use of compound TCP
[18, 19] predominates, and on Linux systems, CUBIC TCP
predominates [20, 21]. Network-return techniques are
independent of the congestion control algorithm used (this
is discussed at the end of Section 4), as they act directly on
the receiver’s advertised window, which is respected by any
TCP implementation.

Several authors [2, 13, 22–25] reported that the most
effective detection of congestion can occur in the gateway. It
is in this context that the network-return techniques act. )e
use of these techniques has the following advantages: it does
not require any modification in the TCP implementation at
the sides and does not have to be present in routers in the
end-to-end path, and its installation in the gateway is suf-
ficient. )e use of network-return techniques has been
shown to be promising in the control of congestion, as
verified in several papers [12–16, 26–28]. However, a large
part of the published studies was limited to a few experi-
ments. Another negative point is the complexity of the
methods, where many of them need to know the number of
active flows. In order to fill these gaps, early window tai-
loring (EWT) was developed.

)e EWT is based on early congestion control (ECC)
[27] and acts on gateways by changing the value contained in
the receiver’s advertised window (Wr) of the TCP ACK
segments. )e change is made in proportion to the memory
space available in the gateway. Like other network-return

techniques, the EWT does not require any modification in
the TCP implementations at the sides, and for its operation,
only the gateway installation is sufficient.

)e contributions of this paper are as follows:

(i) A new network-return approach, called EWT, is
proposed and evaluated

(ii) Simulations are done, with the use of ns-3 [29], by
applying the EWT in multiple scenarios, following
the recommendations of RFC 7928 [30]

(iii) )e EWT is compared with the main network-
return techniques, such as the explicit window
adaptation (EWA) [12] and active window man-
agement (AWM) [13]

)e remainder of this paper is organized as follows: In
Section 2, some TCP problems are described and illustrated
in an internetwork environment. Section 3 presents themain
network-return techniques in the literature. )e EWT is
presented and detailed in Section 4. In Section 5, the EWT is
evaluated by computer simulations. Finally, conclusions and
future work are drawn in Section 6.

2. Motivation

Disregarding the problem of misleading reduction, where
losses in the physical layer cause TCP to reduce its trans-
mission rate improperly, there are problems that occur in an
internetwork environment.

When TCP is used in an internetwork environment, it is
necessary to have memories in the routers to enable the
routing of multiple segments.)ememory of these is used in
the form of a queue, traditionally managed by a technique
called drop-tail or tail drop. In order to perform the input
and output of segments, drop-tail follows the first-in-first-
out (FIFO) model, and segments are discarded when the
queue reaches its maximum size [31, 32].

)e drop-tail method presents the following problems:
(1) When the queue is full, multiple losses can occur in one
flow or losses in different flows at the same time. In the first
case, TCP will enter the slow-start phase and its transmission
rate will be reduced to one segment. In the second case, a loss
synchronization can occur, where multiple connections
reduce their transmission rate. (2) One or more connections
may monopolize the queue space [32].

In order to illustrate some TCP problems in an inter-
network environment, a dumbbell topology with tree nodes
on each side was used, where sources S [1–3] transmit data
simultaneously to receivers D [1–3] in a way to use the
memory of router R1 to its limit.

Figure 1 shows the congestion windows (Wc) of the three
connections. It is observed that all three have a similar initial
behavior up to the moment when the memory of router R1
becomes full, causing segment losses in the three connec-
tions; with a loss sequence, the connections can enter the
slow-start phase and set the congestion window to the size of
one segment. )en, another behavior is observed: the S3D3
connection monopolizes the use of the router’s memory
since its value increases continuously, while the other two
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connections are synchronized between the sending of few
segments and the occurrence of losses.

As illustrated, resource contention causes TCP to
present problems in the internetwork environment. Tech-
niques of network-return have already been proved effective
inmitigating such problems. In Section 3, themain network-
return techniques present in the literature are reviewed.

3. Related Works

)e network-return techniques are characterized by
inserting/changing values in the header of the IP/TCP
segments in order to make TCP clients adjust their trans-
mission based on network information. To make this paper
as self-contained as possible, we now present succinct survey
works that have addressed network-return techniques.

3.1. Explicit Window Adaptation (EWA). EWA [12] is
designed to work on ATM networks. )e method acts on
gateways by monitoring the usage of their memory. In the
presence of segments inmemory, the EWA reduces the value
contained in the receiver’s advertised window (Wr) of the
TCP ACK segment header. )e change of the value of Wr is
made using the following equations:

Be(t) � B − Q(t),

Wr′(t) � min Wr(t), max f Be(t)( 􏼁,MSS( 􏼁( 􏼁,
(1)

where B is the total amount of memory, Q(t) is the occu-
pation of memory at time t, Be(t) indicates the amount of
memory available at time t, MSS is the maximum size of a
segment, and f(Be(t)) is a function defined by

f Be(t)( 􏼁 � α log2 Be(t). (2)

)e parameter α is dynamically updated based on the
average memory size (Qt):

Qt � (1 − g)Q(t − 1) + gQ(t), (3)

where Q(t − 1) is the last average memory size and g is set to
1/128. Twomarks (threshold) are defined around Q(t). If the
average memory size is less than the lower mark (Tl), then α
is incremented by an amount Wup in every Tseconds; if the
average occupation is greater than the upper mark (Th), then
α is reduced by Wdown:

α �
α + Wup, if Q(t)<Tl,

α − Wdown, if Q(t)>Th,

⎧⎨

⎩ (4)

where Wup, Wdown, and T are user-set parameters.
Results in [12] indicated that EWA was effective in

controlling the use of the gateway memory obtaining an
improvement over random early detection (RED) [2] in
reducing losses, fairness, and throughput.

3.2. Smart Access Point with Limited Advertised Window
(SAP-LAW). )is method is designed to work with UDP
and TCP traffic [14]. Just like others, it changes the value
contained in the receiver’s advertised window of ACK
segments. )e change is made according to the following
equation:

max TCPrate(t) �
(C − UDPtraffic(t))

#TCPflows(t)
, (5)

where C is the capacity of the bottleneck link, UDPtraffic(t)

represents the total UDP traffic at time t, and #TCPflows(t)

indicates the number of active TCP flows at time t. After
calculating maxTCPrate(t), its value is entered in Wr of the
header of the ACK segments. Although the equation is
simple, the method is costly to implement since it requires
every moment (t) to compute the total UDP traffic as well as
the number of TCP flows. Simulations were done in [14]
where the performance of SAP-LAW and TCP Vegas was
compared on a wireless network. )e results indicated that
the methods had similar results, where both improved
network performance. Recently, in [26], SAP-LAW was
compared to RED and ECN. In the results, obtained in
simulations with constant TCP traffic in the presence of low
UDP traffic, SAP-LAW brought an improvement in
throughput.

3.3. Active Window Management (AWM). AWM [13] also
acts on the gateway and changes the value of the receiver’s
advertised window of the ACKs. )e change is made only if
the window value is larger than swnd (suggested window),
when it is, the value is set to swndswnd.

)e swnd variable is updated when a segment enters or
leaves the gateway memory. )e update is done using the
following equation:

swndt � max swndt− 1 + DQt + DTt,MSS( 􏼁, (6)

where t is the actual time instant and MSS is the maximum
segment size. )e term DQt is defined by

DQt �
1
N

qt− 1 − qt( 􏼁, (7)
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Figure 1: TCP congestion window obtained in simulation of
motivation.
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where N is the estimated number of flows and qt is the
amount of memory in use. Finally, DTt is defined by

DTt � α target − qt( 􏼁, (8)

where α and target are user-defined parameters.
Results in [13], comparing AWM with drop-tail and

RED, indicated constant memory usage with few variations
and a reduction in the number of losses.

3.4. Proactive INjection into acK (PINK). PINK [15, 16] is
another method that acts on gateways by changing the value
of Wr of ACK segments. To operate, the method requires
the number of active flows, the RTT of each one, and the
transmission channel bandwidth. Because of this, it is the
network-return technique that most needs information to
operate, and some of them are expensive to maintain (like
the number of active flows and the RTT of each). For this
reason, the method was not considered in the simulations
performed in this work.

4. Early Window Tailoring (EWT)

)e EWT brings to TCP an additional control in its
transmission by forwarding gateway information that will be
used in the TCP transmission equation. )is information is
indirectly used by TCP because it is in your window field
which is read by the TCP transmitter, and the EWT in-
stallation at the gateway is sufficient to provide the addi-
tional control. )is control is done by updating the value
contained in the receiver’s advertised window (Wr) of TCP
ACK segments based on the number of bytes available in the
gateway’s memory.

)e receiver’s window will be updated by EWT if its new
value is larger than the maximum segment size (MSS);
otherwise, the value will be adjusted to one MSS. During the
processing of the ACKs, it is not considered which flow they
belong to; in this way, all are treated in the same way and
receive the same update (proportional to the size of its
window field). By simply changing the value of the receiver’s
advertised window, the EWT is compatible with the default
TCP implementation and does not require protocol changes
because the receiver’s window is naturally used by the
transmitter to limit its transmission. Figure 2 illustrates the
main parameters of the EWT.

)e return provided by the EWT is based on the number
of available bytes (Ba) in the gateway memory. Ba is defined
by

Ba � B − U, (9)

where B is the total amount of memory and U indicates the
current occupancy level of the memory. If flows meet this
amount, there are hardly any losses.

New flows tend to have their congestion window low, so
the return of the EWT would not have an immediate effect;
to mitigate this and to save resources of the gateway when
the memory usage is low, the parameter St is used to define
the start-up point of the method. With this, EWT will only
work when the memory usage is greater than St. When this

occurs, the EWTchanges the window value of the segments
proportionally to Ba. Considering Wewt as the return value of
the EWT, we can write

Wewt �
Ba

B
· Wr,

Wr′ � max Wewt,MSS( 􏼁,

(10)

where Wr is the value of the receiver’s advertised window
and Wr′ is the new value of Wr calculated by EWT.

Using these equations, the EWT will reduce the Wr
proportionally to the available space in the gateway memory;
that is, the value of windows decreases as memory usage
increases. We design the EWT in this way to control the rate
of all TCP flows based on the memory usage of the gateway;
with this, we try to avoid losses due to memory full while
maintaining fairness between the flows.

)e most appropriate place to use EWT is at the gateway
(but it can also be used at the routers), where the contention
for resources is greater. In order to use the additional control
provided by the EWT, no changes are necessary for the TCP
protocol, so it can be used with any TCP like congestion
control algorithm. In TCP, the equation min(Wc, Wr) is
respected, so the EWT becomes effective when the con-
gestion window (Wc) is greater than Wr. Related to this,
three main cases can occur: (1) no congestion: Wc is high and
the memory occupancy reaches a certain level. )e EWTwill
reduce Wr, and with this, the flow will reduce its rate of
transmission because Wc will probably be larger than Wr; (2)
congestion: the TCP transmits data using Wc, but if the
congestion is high, theWr calculated by EWTmay be smaller
and the data burst will be reduced; and (3) congestion re-
covery: Wc is used in the transmission, but Wr can also be
used if the memory has a considerable occupancy level. With
the use of the EWT, it is expected to avoid the occurrence of
congestion in the gateway; for this reason, cases 2 and 3 tend
to occur only by traffic bursts or losses in the physical layer.

4.1. Pseudocode. )e EWT operates on gateways bringing a
return of memory state to TCP. Gateways make use of AQM
methods for memory management. Such methods are mod-
ular; that is, a router can support a number of methods, but the
router administrator chooses which will be used. Considering
this, the EWT was implemented in the form of AQM.

)e implementation of the EWTas AQM has the basis of
drop-tail operation, inserting and removing segments of a
queue using the FIFO policy, and rejecting them when the
queue becomes full.

B 0U

Ba

St

Figure 2: Key parameters used by the EWT shown in a memory
size of B.
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Algorithm 1 shows the EWT implementation as AQM.
)e EWT goes into operation after the queue segment

exits. In line 2, we obtain the segment that is in the first
position of the queue, after which it is passed as a parameter
to the function ewt. In the function, it is checked whether the
segment is of TCP ACK type; otherwise, the function will
terminate. It is then checked if the memory usage has
exceeded the start point of the EWT; if the level St has not
been reached, the function is terminated. After this, the value
of the receiver window (Wr) and the size of the gateway
memory and its use are obtained. Next, the amount of
available memory (Ba) is calculated based on B and the EWT
window (Wewt) is calculated. Finally, the segment window is
changed to the maximum value between Wewt and MSS.

4.2. Example ofOperation. For a better understanding of the
operation of the EWT, we present some numerical examples.
Considering the values B � 100 kB, St � 30 kB, and
Wr � 60 kB, we show in Table 1 the values of Wewt in
function of the occupation level U.

)e first row shows the casewhere 20%of the queue is being
used; in this case, U< St, and the windows will not change. It
may be considered that, in this case, Wewt � Wr � 60 kB.

)e second row considers average queue usage. As
U> St, EWT will operate, producing Wewt � 30 kB. )e last
example case corresponds to when there is a high use of the
queue, so the EWTforces a bigger reduction in the windows
because Wewt � 12 kB.

5. Evaluation Setup

)is section presents the evaluation of EWT using the ns-3
software package. Simulation results in multiple scenarios
are analyzed.

5.1.ns-3SimulationEnvironment. To test and evaluate EWT,
ns-3 [29] was used. For the EWT operation, its imple-
mentation was done together with themodule Traffic-control
[33]. In this module, a new class was created by inheritance
of class QueueDisc. In the new class, the structure of the
drop-tail technique was followed, and in the output of the
segment of the queue, it was passed to the EWT.

5.2. EWT and Queue Management. First, we present a
simulation to show the ability of EWT to control the use of
the queue in a gateway. In Figure 3, the use of a gateway
memory of a bottleneck with four TCP flows is shown.
Without AQM (using drop-tail), a significant variation of
values is observed.When the EWTadjustment policy is used,
the flows transmit data with a smaller variation.

It can be observed that when drop-tail is used, there is a
high variation in the memory usage of the gateway, and that
with the application of the EWT, the memory usage becomes
constant and unchanged.

5.3. Testbed Environment. To test the method, a topology
widely used in the literature was adopted: the dumbbell. )is

topology has already been recommended in [30, 34, 35]. It
consists of n × n hosts and two routers (R1 and R2). In this
case, n hosts are directly connected to the router R1, and the
other n hosts are connected to the router R2. Finally, R1 is
connected to R2, forming a bottleneck. Figure 4 illustrates
this topology. )e characteristics of the links depend on the
simulation scenarios.

In the executed simulations, the leftmost hosts of R1 have
been configured to be TCP sources, having as receptors the
hosts to the right of R2. At the beginning of the simulations,
each source, in random time (from one to eight seconds),
establishes a connection with the respective receiver and
transfers a 5Mb file. Simulations end when all sources
complete the transmission of their files.

During the simulations, the number of sources/receivers
is equal to the number of flows; that is, each source/receiver
creates a single flow. To define the ideal number of flows to
be used in the experiments, the RFC 7928 standard [30] was
used, which defines three levels of congestion: mild, me-
dium, and heavy. )e mild level is characterized by a loss (of
segments) of about 0.1%, medium by 0.5%, and heavy by 1%.
To find these levels, preliminary simulations were made for
each scenario used. In this case, the drop-tail method was
used with i (≥1) flows, and it was verified at the end of the
simulation if the percentage of losses fell into any of the three
categories. Until not finding an i number, for each category, i
was incremented by one unit and the process was repeated.
At the end of this process, there were three values for i, one
for each level of congestion. For our simulations, the number
of flows for each scenario is presented in Table 2.

For performance evaluation, the following metrics were
calculated, some of which are recommended by RFC 7928:

(i) TCP efficiency: this metric was extracted from the
study in [36] and represents the percentage of data (in
bytes) that were not retransmitted. It is defined by

transmitted bytes − retransmitted bytes
transmitted bytes

× 100. (11)

In the presentation of the results, the average value
of the calculated metric from the efficiency pre-
sented by each flow was displayed.

(ii) File transfer latency: this indicates how many sec-
onds are spent for a file to be transmitted suc-
cessfully. )e results show the average of this time
calculated from the times presented by the flow.

(iii) Goodput: this is defined as the amount of data
received by the application, over a period. )e re-
sults show the average value of the goodput (per
second) of the flows in Mbits/sec. )is metric does
not count incoming segments already received
(duplicates), unlike throughput.

(iv) Goodput fairness: Jain et al.’s index [37] was applied
to the goodput (gp) obtained by the n flows of the
simulation, in order to verify the fairness between
the flows. )e equation used for this is
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􏽐
n
n�1gp( 􏼁

2

n · 􏽐
n
n�1gp2

. (12)

(v) Mean loss ratio: this value represents the average
percentage of segment loss during the simulation. It
is calculated using the following equation:

total lost segments
total segments received + total lost segments

× 100.

(13)

In order to obtain the metrics, the FlowMonitor [38]
method is used, present in the simulator ns-3. In the
evaluation of EWT performance, simulations were per-
formed and the results were compared to those of drop-tail,
RED, adaptive RED (ARED), EWA, and AWM approaches.
For each of the methods, 30 rounds with different seeds of
random numbers were executed. A 95% confidence interval
was considered. )e parameters of RED were adjusted
according to the standard found in the Linux kernel, and
EWA and AWM parameters were adjusted according to the
authors’ recommendation in [12, 13]. )e other simulation
configurations considered important are presented in
Table 3.

)e results presented below make use of the settings
described here, varying the RTT and the capacities of the
dumbbell topology links (Figure 4).

5.4. Scenario 1. )is scenario is used in the works [15, 16].
)is has an RTT value in the bottleneck characteristic of
distant networks or satellite communications. )e settings
used in the topology are shown in Table 4.

5.4.1. Results

(1) TCP Efficiency. )e results are presented in Figure 5.
Drop-tail, RED, and ARED methods have seen a gradual
drop in efficiency. )e EWA method showed a drop in
efficiency from the mild level. )e EWT has remained ef-
ficient regardless of the level of congestion.

(2) File Transfer Latency. Figure 6 displays the results. At the
mild congestion level, the EWTpresented a transfer latency
lower than drop-tail, RED, ARED, and EWA. With medium
congestion, the methods had an increase in transfer latency,

procedure DEQUEUE
seg⟵ queue.get first()

ewt(seg)

return seg
end procedure
procedure EWT(seg)

if segment_type !�TCP_ACK then
return

end if
U⟵ queue.use

if St <U then
return

end if
Wr⟵ seg.window

B⟵ queue.size

Ba⟵B − U

Wewt⟵Ba /B∗Wr
seg.window⟵max (Wewt, MSS)

end procedure

ALGORITHM 1: EWT implementation as AQM.

Table 1: Wewt in function of the occupation level U.

U (kB) Ba (kB) Wewt (kB)
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Figure 3: Memory usage of the gateway with drop-tail and EWT.
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Figure 4: Dumbbell topology.

Table 2: Number of flows used in the simulation for each level of
congestion.

Mild Medium Heavy
Scenario 1 8 17 24
Scenario 2 13 24 31
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and the EWT registered the shortest time. Also with heavy
traffic, the EWTpresented the shortest time. EWTandAWM
presented similar results.

(3) Goodput. )e results are shown in Figure 7. In the
presence of mild traffic, the EWT had a goodput higher than
drop-tail, RED, ARED, and EWA.Withmedium traffic, with
more flows, there was a drop in the average goodput, but
EWT maintained its performance over other methods. Fi-
nally, with heavy traffic, the EWT continued to register the
highest goodput.)e AWM followed the EWTin the results.

(4) Goodput Fairness. Figure 8 displays the results. Drop-tail
was the most unfair method in goodput. Considering the
confidence interval, the RED, ARED, AWM, and EWT
methods had similar fairness.

(5) Mean Loss Ratio. )e results are presented in Figure 9.
)e largest percentage of loss occurred with the RED and
ARED methods, followed by the drop-tail method. )e
EWA presented losses at the medium and heavy levels, with
the AWM only at the heavy level. In the EWT, the per-
centage was zero, regardless of the level of congestion.

5.4.2. Result Analysis. )is scenario presented a long delay
in the bottleneck, which affected the performance of TCP
with traditional methods. EWT has been proven to be ef-
ficient in this scenario, significantly reducing congestion,
bringing significant gains in transfer latency and goodput,
and maintaining fairness between flows. No losses were
recorded, so the TCP efficiency was maintained. AWM was
the method that most approached the results obtained by
EWT, but the AWM presented losses.

Table 3: Simulation parameters.

Parameter Value
Memory size 97 kB
minth (RED) memory_size/12
maxth (RED) memory_size/4
Qw (RED) 0.002
maxp (RED) 0.02
St (EWT) 29 kB
TCP segment size 1458 bytes
TCP CUBIC

Table 4: Parameters of Scenario 1.

Parameter Value
Link capacity (sources) 4Mb
RTT (sources) 5ms
Link capacity (R1-R2) 4Mb
RTT (R1-R2) 360ms
Link capacity (receptors) 4Mb
RTT (receptors) 5ms
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Figure 5: TCP efficiency: Scenario 1.
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Figure 7: Average goodput: Scenario 1.
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Based on this simulation, the good behavior of the EWT
was verified in networks with high delay. Its window ad-
justment mechanism brought gains to TCP. In this scenario,
the traditional methods, such as RED, presented a low
performance when compared to EWT. )e main reason for
this is the incorrect adjustment of the congestion window,
which causes the flows to send few segments. )is can be
seen in Figure 10. In order to produce the graph, the effective
transmission window (min(Wr, Wcwnd)) of one flow was
registered. Analyzing the figure, it can be observed that the
RED caused the TCP to present a high oscillation in the
transmission window, while the EWT kept the window
balanced without reaching low values.

5.5. Scenario 2. )is scenario was designed to verify the
efficiency of the EWT in the presence of UDP traffic. )e
dumbbell topology (Figure 4) was used with the settings
shown in Table 5.

Simulations were performed by varying the number of
TCP flows in the presence of concurrent UDP traffic. UDP
traffic was transmitted at the rate of 13.35Mbps (30% of link
capacity) using segments with a size of 1400 bytes. For this, a
UDP client was installed on the first node on the left side of
R1 which transmits data to a UDP receiver located on the
first node on the right side of R2.

5.5.1. Results

(1) TCP Efficiency.)e results are presented in Figure 11.)e
efficiency of the drop-tail, RED, and ARED methods was
similar, with a small difference in medium and heavy
congestion. )e EWA and AWM had a small loss of effi-
ciency with heavy congestion.)e EWTmaintained the TCP
efficient at the three levels of congestion.

(2) UDP Efficiency. As this scenario presented UDP traffic,
the UDP efficiency (calculated using the same TCP efficiency
equation) was also calculated. In Figure 12 the results are
shown. With low traffic, the efficiency of the methods was
similar. At the midlevel congestion, the drop-tail, RED, and
ARED approaches had lost efficiency, and with heavy traffic,
there was an even higher drop. In general, the network-
return techniques kept the UDP efficient.

(3) File Transfer Latency. Figure 13 displays the results. )e
EWT obtained a shorter transfer latency for the three levels
of congestion. With medium and heavy traffic, considering
the confidence interval, the drop-tail, RED, and ARED
methods had the same transfer latency. )e EWA method
presented the worst transfer latency. )e AWM presented
similar results to the EWT.

(4) Goodput. )e results are shown in Figure 14. At the mild
congestion level, the EWT registered the highest goodput.
When the traffic was moderated considering the confidence
interval, the drop-tail, RED, and AREDmethods showed the
same goodput. With heavy traffic, the same occurred. )e
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EWA showed the lowest goodput. )e AWM presented
results similar to those of the EWT at medium and heavy
traffic levels.

(5) Goodput Fairness. Figure 15 displays the results. At
different levels of congestion, the drop-tail method was the
most unfair method. )e EWA remained fair at the medium
level; after this, it had a loss of fairness. At the medium and

heavy levels, considering the confidence interval, the RED,
ARED, AWM, and EWT methods had the same fairness.

(6) Mean Loss Ratio. Since there were TCP traffic and UDP
traffic in this scenario, the results are presented in Table 6.
)e average percentage of loss grew as congestion increased,
with the RED registering the highest percentage. )e EWA
and AWMmethods showed losses at the medium and heavy
levels. )e EWT presented no losses at any level.

5.5.2. Result Analysis. )e presence of UDP traffic had no
negative influence on the performance of the EWT. In most
of the metrics, the EWT obtained better results than other
methods, with emphasis on the increase in goodput, de-
crease of the average transfer latency of files up to 35%, and
the absence of losses. )e EWT fairness with medium and
heavy traffic was preserved, but with low traffic, it was
somewhat lower (1.40%) than AWM fairness.

Table 5: Parameters of Scenario 2.

Parameter Value
Link capacity (sources) 100Mb
RTT (sources) 2ms
Link capacity (R1-R2) 45Mb
RTT (R1-R2) 80ms
Link capacity (receptors) 100Mb
RTT (receptors) 2ms
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Figure 11: TCP efficiency: Scenario 2.
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Although the EWT is designed to act on TCP congestion
control, it operated satisfactorily in the presence of UDP
traffic. )e EWTmaintained the absence of losses; this was
due to its mechanism of adjustment of windows that realizes
the calculation based on the number of bytes available in the
memory of the gateway, also considering the TCP traffic. Of
course, if there is excessive UDP traffic, losses will occur. But
the EWT performance in conjunction with the congestion
control present in TCP will quickly cause the flows to adjust
the size of the burst to mitigate the congestion since the
return of the EWT is smaller than an RTT because it acts
directly on the TCP ACK segments that pass through the
gateway. Another interesting point of the EWTapplication is
that the UDP ends up becoming a priority because TCP is
controlled and UDP maintains its rate. As UDP flows
normally transmit data in real time, this behavior can be
desired.

5.6. Increasing the Number of Served TCP Flows. )e RFC
7928 defines three levels of congestion based on the
segment loss rate. In the simulations performed, the
levels were found by increasing the number of TCP flows
until the loss rate of each level was reached. As RFC
indicates, no AQM scheme was used in this step. In this
section, we use the RED, ARED, EWA, AWM, and EWT
methods to find the three levels of congestion that the

RFC suggests. )is was done with the objective of finding
the number of flows that each method can handle at each
level of congestion.

)e results are shown in Figures 16 and 17. )e method
that reached the greatest number of flows for each level of
congestion was the EWT. )e method allowed the existence
of a number of flows which is on average 49.3% better than
its best competitor and 75.8% better when no AQM scheme
was used. )e EWT algorithm that reduces the Wr in
proportion to the level of memory utilization of the gateway
was responsible for this good result. With the reduction of
Wr of ACK segments, fewer segments were sent when
the number of flows increases; because of this, the queue
will be filled and losses will occur mainly when
􏽐

nf

f�0fi × MSS> queueSize (where nf is the total number of
flows) or when any traffic other than TCP exists.
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Figure 15: Goodput fairness: Scenario 2.

Table 6: Mean loss ratio of TCP and UDP: Scenario 2.

Mild Medium Heavy
TCP UDP TCP UDP TCP UDP

Drop-tail 0.07 0.029 0.31 0.31 0.52 0.43
RED 0.11 0.07 0.54 0.37 0.83 0.62
ARED 0.09 0.05 0.41 0.29 0.62 0.50
EWA 0 0 0.07 0.02 0.19 0.05
AWM 0 0 0 0 0.04 0.02
EWT 0 0 0 0 0 0
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Figure 16: Number of flows needed to meet RFC 7928 in
Scenario 1.
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6. Conclusion and Future Work

In this paper, we presented a new network-return technique
called early window tailoring (EWT). )e approach was
applied in multiple scenarios. Following the recommenda-
tions of RFC 7928 and with the use of ns-3, several simu-
lations were performed. )e EWT was compared to drop-
tail, RED, ARED, and the two network-return techni-
ques—explicit window adaptation (EWA) and active win-
dow management (AWM). In the results, it was observed
that the EWT was proved to be efficient in congestion
control, avoiding losses. In the first scenario, consisting of a
delayed bottleneck characteristic of distant networks or
satellite communications, the EWT was proved to be effi-
cient, significantly reducing congestion, bringing significant
gains in transfer latency and goodput, while maintaining the
fairness between flows.)e second scenario used UDP traffic
to check its influence on the method. )e presence of UDP
traffic had no influence on EWT behavior. At the end, we
used the two scenarios to find the number of flows that each
method can handle at each of the three levels of congestion
as suggested by RFC 7928. However, unlike other ap-
proaches, the most prominent feature of EWT is its ability to
maintain a very high number of active flows at a given level
of segment loss rate. )e EWT allowed the existence of a
number of flows which is on average 49.3% better than its
best competitor and 75.8% better when no AQM scheme was
used. In most of the metrics, the EWTobtained better results
than the other methods, highlighting the increase in goodput
and a decrease in the average transfer latency up to 35%.
Compared to other methods, AWM obtained good results;
however, unlike the EWT, it presented losses, and for its use,
it is necessary to have knowledge on the number of active
flows. In simulations, this is easy to obtain; however, in a real
network, this is a problem, and in addition, the AWM re-
quires fine tuning of its two parameters. Finally, because the
EWT seeks to avoid losses, the more expensive the
retransmission, the greater the advantage of using the
method.

Future work includes the analysis of EWT in wireless
networks as well as the use of EWT in order to address the
bufferbloat problem [17].
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