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Autonomous vehicles are equipped with multiple sensors that allow perception of the road environment. However, there are
always challenges in terms of measurement accuracy, dynamics of the road driving conditions, and extended perception
availability. Vehicular communication technologies have already been extensively researched, and the IEEE 802.11p standard has
been approved. &erefore, communications could help in extending the perception of the autonomous vehicles if proper in-
formation transmission mechanisms are utilized. In fact, this paper proposes a novel and innovative design that will allow vehicles
to extend their perception by exchanging a smaller number of packets than needed and estimate the actual perception of the
environment. First, we propose a novel MAC layer that is compatible with the IEEE 802.11p standard that allows vehicles to
recover extra perceptional areas of the environment as they receive new packets. Second, we demonstrate that this approach will
result in a better utilization of the communication channel and acceptable perception accuracy of the environment, compared to
transmitting the complete information.

1. Introduction

It is forecasted that by 2025, autonomous cars will enter
several markets in North America and other developed
countries [1]. &e existence of autonomous cars might not
fully substitute the current model of human driving the car,
especially in environments that lack proper transportation
infrastructure. Each autonomous car has to rely mainly on
its set of sensors to gain perception on the environment.
Common sensors include cameras, liadars, and radars. It is
perhaps safe to consider these sensors to be reliable; how-
ever, autonomous cars should utilize all accessible in-
formation regarding the surrounding environment in order
to assure safety. Hence, comes the concept of extended
perception.

In the sequel, extended perception is the exchange of
perception information from one vehicle to another (as-
suming this other vehicle does not have access to the exact

information although this could be possible). Extended
perception can bring completely new information to the
vehicle such as in bringing attention to a new object on the
road, or can enhance the current information by providing
the same information with a better accuracy in terms of
detection, localization, or resolution. An example is pro-
viding better localization of an object using stereo matching.
Figure 1 provides an example in which vehicle A has good
perception of the roadsign, while other vehicles do not have
the complete perception of that sign. In this example, vehicle
A could transmit the information it has to other vehicles in
order to provide extended perception.

Autonomous vehicles would be able to exchange in-
formation using vehicular communications technology. &e
current standard allows vehicles to exchange messages over
the 5.9GHz spectrum frequency. However, there are two
obstacles for using the dedicated short range communication
(DSRC) spectrum [2, 3]. First, the channel capacity is
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limited, and hence, the number of packet collisions would be
large, resulting in channel congestion in certain scenarios
[4, 5]. Second, the amount of sensory information is large,
and hence, it would de�nitely cause congestion to �ood the
communication channel with all sensory information [6].
Hence, optimizing the data acquisition to be compatible
with the communications technology limitations is needed.
And, this must be performed with an innovative channel
congestion avoidance and environment perception method.

In this paper, we propose an extended perception
scheme that allows vehicles to sense the road environment
and exchange that information with their neighboring ve-
hicles. We focus on providing the sensing information to the
other vehicles with the best number of transmitted packets
that allow the communication channel to operate without
congestion. Moreover, each vehicle already senses the en-
vironment with its own sensors, and the extra information
can be used for enlarging the sensing capability of each
vehicle.

In this paper, we assume that extended perception is
required. �at is, we do not discuss the scenario where
vehicle A analyzes the environment and then transmits its
understanding of the information although that is possible.
However, we assume that extended perception can be used
for di�erent applications such as localization, collision
avoidance, and navigation. Moreover, due to the dynamics
of the vehicular environment, it is possible to generate
scenarios where extended perception can be useful, or
perhaps does not help at all.

�e rest of this paper is organized as follows: Section 3
describes the system model including the transmission
scheme and the object detection scheme. Section 4 shows the
performance evaluation of the proposed scheme. Section 5
concludes the paper.

2. Related Works

2.1. Vehicular Communication Network. In mobile net-
works, sensors can be ubiquitous, and a vehicular sensor
network (VSN) is a clear example of amobile sensor network

(MSN). Vehicular communication systems [4] and sensing
services [6] are the main framework a VSN works within.
First, the vehicular communication technology o�ered a
ground for di�erent applications, including enhancing road
safety, localization of vehicles, tra�c monitoring, trans-
portation management, multimedia streaming, and data
collection. �e majority of these applications require the
vehicle to act as a sensor––hence the name VSN.

A VSN is a vehicular network where sensors attached to
the vehicles sense the environment and transmit the sensed
data to a data center or to a destination vehicle for pro-
cessing. �ere are some serious projects that focus on
implementing the VSN in industry. However, most of the
current projects focus on V2V and V2I communication
modes according to the IEEE 802.11p WAVE protocol stack
of standards [2, 3]. In addition to several network man-
agement and security layers, WAVE includes the IEEE
802.11p in the MAC layer and the 1609.4 multichannel
coordination layer [2] which assumes that vehicles broadcast
beacons on the dedicated control channel (CCH) every
100ms and can communicate over the six available service
channels (SCHs) on the licensed band of the DSRC
spectrum.

DSRC-operated network raises awareness and provides
communication for vehicles excluding cyclists and pedes-
trians from the vehicular network. �erefore, an e�ective
vehicular communication system must include non-DSRC-
operated elements in the vehicular networks. D2D com-
munications provide a suitable communication platform to
�ll in the gap between vehicles, pedestrians, and cyclists.
However, multiple challenges in such a D2D communica-
tion system exist such as accurate localization of wireless
terminals, reliable and delay-sensitive communication,
multichannel operation, and energy conservation of
smartphones.

2.2.Machine Learning forObjectDetection. Before the rise of
deep learning in visual processing, one of the well-known
machine learning techniques that has been used to detect
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Figure 1: Illustration of the extended perception scenario.
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vehicles is the Haar-like Cascade detector with AdaBoosting
[7]. &e algorithm is very fast because it deals with the
integral image, and the learning process via AdaBoosting
selects a small number of critical features. Furthermore, the
Cascade procedure attempts to discard the background
regions of the image and focus more on object-like candidate
regions of the image. &e algorithm has been used to detect
vehicles in gas stations [8] with a detection rate of at least
90% and a false detection rate of at most 24.4%.

A similar classifier has been proposed using the vertical
and horizontal edges and the shadows under the vehicles to
provide a rough estimation of the vehicles in the image [9].
After that, the detection procedure involves a Histogram of
Oriented Gradient (HOG) transformation and an AdaBoost
classifier to optimize vehicle detection and eliminate
background. &ey also use the Harris corner detection to
estimate the tracking and distance the detected vehicle
moved. In [10], the Cascade detector is shown to detect both
the driving car ahead and the face of the driver residing in
the rear car with fine details such as the eyes locations. In
[11], the Cascade classifier is used similar to [12]. &e au-
thors suggested some preprocessing of the data such as
alignments of the vehicles and providing variations of each
image in the database.

&ere are other object detection algorithms other than
the Cascade classifier. A Canny edge detector with a tem-
poral difference is used to detect vehicles in [13]. &e results
show that multiple vehicles can be detected in one frame as
one segment, which is usually not desirable. An excellent
detection scheme is using the histograms of oriented gra-
dients, matching algorithms for deformable part-based
models, and discriminative learning with latent support
vector machines (SVM) [14]. It demonstrates excellent
detection rates for vehicles, pedestrians, and multiple ob-
jects, but it is not much slower compared to the Cascade
detector with integral images and AdaBoost [7]. In [15], a
robust client-server-based roadsign detector used cross-
correlation, achieved good sign detection, and estimated the
speed of the driving car.

&e recent breakthrough in deep neural networks leads
to excellent results in classifying images using convolutional
neural networks (CNN) [16, 17], detecting objects within
images using Region-based Convolutional Neural Networks
(R-CNN) [18].&e training of deep neural networks requires
significant computation. &e running of such networks
currently requires significant computation as well. In [19],
the proposed fast RNN running time is 2 seconds on a CPU,
but run at a faster rate of 17 frames per second on a GPU.

3. System Model

We consider vehicles to operate according to the IEEE
802.11p standard [3]. Each vehicle has one radio interface
and operates over the CCH.&eCCH is used as the source of
transmission for any new safety information. Each vehicle
obtains its location via a GPS device every 100ms. Vehicles
operation is extended to multiple channels, during which the
nonsafety information is transmitted. Assume that after a
number of MAC layer frames N, there is a virtual super-

frame. During a super-frame, M samples are randomly
chosen from N to be transmitted to the MAC layer and M −

N are inactive transmissions. &is mechanism can be
thought of as a transmission rate reduction approach.
Ideally, the transmission frequency is decreased in order to
send a smaller number of packets to reduce congestion at the
communication channel. Similarly, one can think of the
proposed method as a congestion avoidance approach. At
each packet, we send the current information and a random
encoding of some previous information.

3.1. Network Transmission Model. Let wi be the L × S actual
image size at time i. Moreover, define xi to be an N × 1
vector where N � L × s at time i. Here, xi is a stack of
columns of the image wi as in Figure 2. We assume that
vehicles capture images at a specific frame rate resulting on
an interval of time [i, i + δ], where delta is the inverse of the
frame rate.

We assume that an image wi or the vector xi (we use the
words image or vector to refer to xi interchangeably as it
contains the same information in the image) can be rep-
resented in the discrete cosine transform (DCT) domain, and
the corresponding vector hi would be sparse. &is is normal
as images can be represented by the highest coefficients in
the DCT or Fourier domains. Hence, the image can be
represented by xi � Ψhi, where Ψ represents the basis at
which xi is sparse.

Consider that each image is captured by the camera of
the autonomous car, and then, before it is transmitted to the
neighboring vehicles, each image is multiplied by another
matrix:

yi � Φixi, (1)

whereΦi is a samplingmatrix of sizeM × N (where M≪N)
and subscript i indicates the vector of M linearly combined
measurements at time i corresponding to the vector xi. &e
sampling matrix, Φi, reduces the dimensionality of the
transmitted captured image vector from size N toM. &is is
illustrated in Figure 3.

It is crucial that M ≈ c log(N) holds, where c is a
constant, in order for the captured image to be recovered
with high probability [20, 21]. &e reduced image can then
be represented at the sparse domain as

yi � ΦiΨhi. (2)

In the sequel, we consider that M and the matrix Φi

satisfy sparse recovery problems due to the incoherence of
measurements and restricted isometry property (RIP).&at is,
the matrix Φi satisfies the (RIP) where there is a constant δ
such that

(1 − δ)‖x‖2 ≤ Φix
����

����2≤ (1 + δ)‖x‖2. (3)

In other words, the number of measurements should
satisfy

M> cK logN, (4)

where c is a constant [20, 21].
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3.2. Network Reception Model. We assume that each vehicle
will receive M measurements of an image after being
transmitted through the communication channel. It is im-
portant to note that as long as theM received measurements
satisfy the sparse recovery conditions, the original image can
be recovered with acceptable accuracy. Each vehicle then can
use ℓ1 norm minimization to recover the original captured
image. Or in other words, hi (the DCT coe�cient) can be
recovered with a high probability by applying

ĥi � argmin hi
����
����1,

subject to yi � ΦiΨhi.
(5)

�is is a standard basis pursuit optimization problem
[20, 21]. After that, the time domain image xi can be

obtained from the corresponding recovered coe�cients hi in
the DCTdomain by a straight forward application of inverse
cosine transform. �e use of basis pursuit is standard in
compression sensing, and many other alternative solvers can
be used as well.

3.3. Object Recognition at the Receiver. In our problem
formulation, we have a number of objects
xi, i ∈ 1, . . . , R{ }. �e object is captured by the camera and
becomes xci � xi + ni where ni is the noise a�ecting the
capturing process with respect to the surrounding envi-
ronment at time i. Now, we have three factors in our system,
namely, xi, which is the original image of the object, xci ,
representing a noisy version of the image of the object, and
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Figure 2: Illustration of converting an image into vector.

×
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N × 1 vector =
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Figure 3: Illustration of converting dimensionality reduction of a captured image.
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yi � Φix
c
i , (6)

representing the compressed sampling version of the image
of the object. With all these values being known at the
receiver, we recover an estimated version of the image using
􏽢hi in the DCT domain and its corresponding estimation in
the time domain is 􏽢xc

i . Hence, our object classifier is
matching and estimated value 􏽢xc

i to an image xi from the set
of images.

For classification, we used a convolutional neural net-
work and trained it on the dataset we have. We then used the
sparsely recovered samples as a testing set. &e following
section explains the exact procedure.

3.4. Network Transmission Model. In order to compare the
impact of our proposed scheme on the network perfor-
mance, we use a simple, but accurate model that represents
the transmission of the packets at the MAC layer of the
vehicular network.&e model has been used in the literature
[22, 23]. Based on [22], we define the probability of suc-
cessful reception of a packet at theMAC layer for vehicle v as

Ps(v) � 1 − 1 − p(1 − p)
n

( 􏼁
R
, (7)

where p is the probability of transmission at each timeslot, n is
the number of interfering nodes, and R is the MAC frame
length. Assume all the n nodes are using a standard MAC for
transmission.We consider the number of vehicles at the same
communication range to be n � a + b. Only a vehicles operate
normally, and b vehicles operate according to our proposed
information transmission scheme. &erefore, (7) becomes

Ps(v) � 1 − 1 − p(1 − p)
a
(1 − p)

b
􏼐 􏼑

R
. (8)

&e above equation means that all vehicles operate
normally as interferers to the transmitting vehicle. However,
in the proposed scheme, the number of interferers becomes
b � mM/L. Hence, (8) becomes

Ps(v) � 1 − 1 − p(1 − p)
a
(1 − p)

bM/R
􏼐 􏼑

R
. (9)

We will show in the next sections that as b increases and
a decreases, the probability of successful transmission for the
vehicles increase, and when a increases and b decreases, the
probability of successful transmission for the vehicles de-
crease. In the normal case of evaluation, a � 0 shows the
proposed scheme and b � 0 shows the original p-persistent
MAC.

4. Performance Evaluation

In this section, we describe the simulation experiment that
we used to evaluate the proposed scheme.

4.1. Performance Metrics. We use two performance metrics.
&e first one is the classification accuracy, which is a measure
of the accuracy of object detection. &e second performance
metric is the probability of successful transmission in the
network, which represents a normalized measure of the
successfully transmitted packets in a network MAC frame.

4.2. Dataset Preparation. For our sparse recovery and object
detection experiments, we used traffic signs as the main
objects from the BelgiumTS dataset [24]. We used 72 classes
from the dataset, and a sample of the data is shown in
Figure 4. Without loss of generality, any dataset can be used.
However, the level of sparsity in the images would result in
different values in the performance metrics.

We can observe from the figure that there are several traffic
signs that are very similar.&e similarity is crucial in our testing
as it shows that our classifier is able to classify similar objects
despite any noise. It is important for our sparse recovery
scheme to restore the image with the highest possible accuracy
in order for the object classifier to recognize the image.

In order to make the observation realistic, we add
Gaussian noise to each traffic sign image and generate 100
different variant images out of the original source image.
&ese images are then used for training the CNN classifier
along with the original source image. Adding noise makes
the input image harder to classify. Figure 5 shows samples of
one image affected by Gaussian noise. When an image is
captured, we assume the original traffic sign image as the

Figure 4: Sample of the dataset images.

Figure 5: Effect of Gaussian noise on the one image.
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input to the sparse recovery scheme. &en, the recovered
image is fed into the CNN classifier for recognition.

In total, we had 7, 171 labeled images for transfer
learning of the CNN. &e CNN that we used is the standard
AlexNet [16]. Our testing was on 6 classes of the dataset.
However, using these different parameters and experiments,
we estimate 1, 278 images in total. &at is, we estimate each
image 213 times using different parameters and experiments.

4.3. Evaluation Results. In Figure 6, we show how the sparse
recovery algorithm performs given different sampling rates
of the transmitted images. &e figure shows that as the

sampling rate increases, the clarity of the transmitted image
increases, which is expected. However, we do not know how
much the distortion will affect the object detection. It is clear
that more transmitted samples will cause network conges-
tion as the number of transmitting vehicles increases;
however, we should evaluate the object detection rate for
different sampling rates of the transmitted image, which is
shown in Figure 7.

In Figure 7, we use deep CNN to detect the object using
the proposed training and testing dataset.We can see from the
figure that as the number of samples increases (or the per-
centage of transmitted samples (M/N)), the classification
accuracy increases. One of the reasons that calcification

(a) (b)

(c) (d)

Figure 6: Illustration of the sparse recovery algorithms using different sampling rates. Reconstructed images using sparse recovery for the
transmitted samples at (a) 20%, (b) 30%, (c) 40%, and (d) 50% of the original image size.
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accuracy does not reach 100% is the fact that several roadsign
images have similar design/shape and similar colors. &is
makes it harder for the classifier to detect the object.

Finally, we evaluate the impact of using our proposed
scheme on the network performance in Figures 8 and 9.
Figure 8 shows the probability of successful reception of a
packet for different transmission rates.&is figure shows that
the probability of success increases using our proposed
scheme even when we transmit 60% of the samples. As the
number of samples increases in the proposed scheme, the
probability of successful reception at the MAC layer de-
creases; however, as we discussed before, the detection ac-
curacy increases, which is a trade-off between two metrics.

In Figure 9, we fix the number of transmitted samples
and we change the number of communicating vehicles for
the proposed scheme. As the number of communicating
vehicles increases, the proposed scheme becomes more

congested and the probability of successful transmission
decreases. However, even when the number of vehicles is
tripled, and usingM� 30 samples, the proposed scheme still
outperforms the normal p-persistent MAC in terms of
probability of success.

5. Conclusion

&is paper proposes an innovative solution to extend the
perception of the vehicular networks while minimizing the
overhead on the communication channel. &e methodology
used is that vehicles with good perception will capture the
information and use a minimalist version as an extended
vision for the vehicles which cannot clearly sense the object.
We use sparse recovery mechanisms in order to transmit the
extended vision component to the vehicles. We show that
with the proposed sparse recovery model, we can transmit
packets and provide extended vision to vehicles and provide
higher probability of successful transmission for each packet
compared to a standard p-persistent MAC. Moreover, we
show that the object detection is enhanced whenever more
samples are collected. &e powerfulness of compressive
sensing is that as new packets arrive, a more accurate de-
tection can be performed.

&is paper focuses on image perception where images
are captured and transmitted using the proposed MAC
scheme. It is possible to extend this paper to consider the
captured data as video, which will make the problem in-
teresting by encoding the input data over time to a reference
frame. However, this is out of the scope of this paper.

Data Availability

&e data used in this paper are open source data that are
available online (https://btsd.ethz.ch/shareddata/; accessed
from November 1, 2019) and are cited at relevant places
within the text as references.
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transmission load for different values of M while V is fixed.

Number of transmitted samples, m = 30

p-persistent MAC, V = 200
Proposed, V = 200
Proposed, V = 600

0.050.040.02 0.030.010
Transmission rate of each vehicle (p)

0

0.1

0.05

0.15

0.2

0.25

0.3

0.35

0.4

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

fu
l t

ra
ns

m
iss

io
n

at
 ea

ch
 fr

am
e

Figure 9: Probability of successful reception of a packet versus the
transmission load for different values of V while M is fixed.
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