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Fault tolerance is an important aspect of network resilience. Fault-tolerance mechanisms are required to ensure high availability
and high reliability in different environments. +e beginning of software-defined networking (SDN) has both presented new
challenges and opened a new era to develop new strategies, standards, and architectures to support fault tolerance. In this paper, a
study of fault tolerance is performed for two architectures: (1) a single master with multiple slave controllers and (2) multiple slave
controllers. +e proposed model is called a Generic Controller Adaptive Load Balancing (GCALB) model for SDNs. GCALB
adapts the load among slave controllers based on a GCALB algorithm. Mininet simulation tool is utilized for the experimentation
phase. Controllers are implemented using floodlights. Experiment results were conducted using GCALB whenmaster controller is
taking the responsibility of distributing switches among four and five slave controllers as a case study. +roughput and response
time metrics are used to measure performance. GCALB is compared with two reference algorithms: (1) HyperFlow (Kreutz et al.,
2012), and (2) Enhanced Controller Fault Tolerant (ECFT) (Aly and Al-anazi, 2018). Results are promising as the performance of
GCALB increased by 15% and 12% when compared to HyperFlow and by 13% and 10% when compared to ECFT in terms of
throughput and response time.

1. Introduction

Today’s Internet suffers from not having software pro-
grammability, and hence, it is a challenging process to
update and program networks. In traditional networks,
there is not any underlying programming capability, and
hence, distributed algorithms cannot promise any consistent
behavior. In order to provide network programmability,
software-defined networks (SDN) separate data and control
planes. Although there is an amount of research conducted
in the area of SDN research, most of the research performed
so far focuses on exploring SDN as a programming-based
technology, rather than studying the fault-tolerance aspects
[1–4]. SDN is an interesting research topic, but there has
been always a confusion regarding many SDN concepts such
as SDN architecture, multiple SDN networking planes, and
interaction between layers through interfaces.

Figure 1 shows the SDN architecture which is composed
of several abstraction layers, interfaces, and well-defined
planes.

+e data plane layer is the layer that is responsible for
handling data packets sent by the end user through network
devices that are responsible for traffic forwarding. +e
forwarding table and medium access control are used for
routers and switches. IP forwarding for the unlabeled
packets is performed through the forwarding table in the
data plane [5].

+e control plane layer is the layer that is responsible for
deciding on the way packets should be handled and for-
warded at network devices to properly cross the network.
+e main purpose of the control plane is for synchroniza-
tion/update of forwarding tables.

+e application plane layer is the layer that is responsible
for network applications and services. In SDN architectures,
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controllers are centralized components. Controllers are
responsible for translating the SDN applications’ re-
quirements through Northbound Application Programming
Interfaces to the SDN data layers. Controllers also are re-
sponsible for managing the packet flow processes, which
facilitate programming capabilities of the network to be
centrally controlled. +is will ease the management of the
entire network and its devices efficiently regardless of the
complexity of the underlying infrastructure. SDN has a
powerful programming characteristic. +is eases the packet
forwarding capabilities based on the network needs [1].
Management of the communication between the controllers
and the switches is governed through OpenFlow standard
[6, 7, 8]. OpenFlow manages and controls the communi-
cation flow between the controller and network entities [9].
SDN has many multicontroller architectures. Bilal et al. [6]
described different types of SDN architecture and their
associated implementations. +e authors classify multi-
controller SDN architecture in two broad categories: (1)
logically centralized where there is a super controller and a
set of slave controllers and (2) logically distributed archi-
tectures where there is a set of slave controllers that com-
municate through message passing. +e authors did not
offer optimal solutions to the SDN fault tolerance.

+e SDN architectures have two main interfaces that use
either APIs and/or protocols to enable communication
among pairs of different SDN planes. +e APIs are the
Southbound and Northbound APIs [10]. +e Southbound
API is responsible for communication interfaces among data
and control planes. OpenFlow is considered the de facto
standard for this type of communication. +e Northbound
API is a communication interface between the control plane
and the application plane. +ere is no standard to handle the
Northbound API, and hence, the development of network
applications for SDN has not been developed [11]. Most of
the northbound implementations use REpresentational State
Transfer- (REST-) based API due to its powerful platform
efficient language [12]. Although a lot of research has been

developed for SDN network, fault tolerance is still a chal-
lenging problem and still open for future investigation. Fault
tolerance has been a very challenging problem, and having
an optimal solution is an NP problem.

In this paper, a new fault tolerance algorithm is pro-
posed. +e algorithm is called Generic Controller Adaptive
Load Balancing (GCALB). GCALB is tested for two different
architectures. +e first architecture is based on super con-
troller and a set of slave controllers, and (2) the second
architecture is based on a set of slave controllers that
communicate through message passing. GCALB is com-
pared with two reference models.+e first reference model is
based on HyperFlow. HyperFlow [13] is an application
developed on the top of the NOX controller, to enable
logically centralized multicontroller architectures. +e
HyperFlow-based network contains three components: (1) a
control layer, (2) a forwarding layer, and (3) an application
layer. +e control layer contains multiple NOX controllers
that are working cooperatively. In the forwarding layer, the
switches are connected to the nearest controller. +e second
reference model has the Enhanced Controller Fault Tolerant
(ECFT) [14]. ECFT uses only delays among switches along
with their associated controllers in order to compute the
load for each neighbor controller.

+e paper is organized as follows: Section 2 has the fault-
tolerance literature review. Section 3 has the reference
models. Section 4 discusses the GCALB architecture. Section
6 has the conclusion and future work.

2. Fault-Tolerance Literature Review

+is section has a short SDN fault-tolerance literature survey
for different SDN architecture planes.+e section starts with
discussing fault tolerance for the data plane and then de-
scribing the fault tolerance for the control plane and then
finalizes by explaining the fault tolerance for the application
plane.

2.1. SDN Data Plane Fault Tolerance. SDN data plane fault
tolerance inherits problems that already exist in current
traditional network architectures. Due to the static nature
of traditional networks, these approaches can achieve ac-
cepted performance in cases of link and node failures. In
rapidly changing networks such as SDN, algorithms that
are responsible for detection and recovery are redesigned to
cope with the dynamic behavior of the SDNs. In the lit-
erature, fault-tolerance architectures are classified into (1)
reactive and (2) proactive approaches [15]. In the reactive
approaches, alternative paths are calculated after the fault
occurs. In the proactive approaches, resources and backup
paths are held in a programming fashion before the fault
happens. If the fault occurs, the programmed logic starts to
act immediately and recover the network. In case of ap-
proaches that deal with failure detection, the high avail-
ability of the data plane plays an essential role to maintain
the required communication from source to destination.
Resistance to failures is obtained in the data plane through
the design and analysis of the topology when failures occur.
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Figure 1: SDN architecture.
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+e design of an alternative path is performed. Failure
recovery requirement could be to guarantee a recovery
process within a certain amount of time [16]. Protection is a
reactive approach while restoration is a proactive approach.
In restoration, an alternative path is only established after
the failure occurrence. Resources are not allocated before the
occurrence of the failure, and the paths are dynamically
preassigned. Protection process guarantees alternative paths
and their allocation priori failure occurrence, which does not
add more processing to recover from failure. In the resto-
ration process, an additional processing is needed to recover
from failure, which makes it not scalable.

2.2. SDN Control Plane Fault Tolerance. Control plane re-
sistance to failure is a requirement for the proper oper-
ation of SDN. +e controller is a crucial component that
must be able to process all required traffic commands at all
times. +ere are many alternatives to enhance the control
plane in SDN control plane fault tolerance. An approach is
to duplicate a controller on a different network. In the case
of failure, the duplicated controller takes over to manage
the situation. Another approach is to provide controllers
with self-healing mechanism to immune controllers from
possible attacks. In this approach, self-heal time should be
relatively fast [17, 18]. +e controller channel must be
reliable at failures due to loss of switch connectivity, or
error due to the communication protocol among the
controller and the associated devices. In SDN networks,
these problems could affect the network and might lead to
several failures. In order to cope with these issues, con-
troller redundancy [19, 20] and path backup are required
to be utilized. Controller placement and assignment are
two major problems when it comes to controllers within
an SDN domain [21]. Improper controller assignment
might lead to two main problems: overutilization and
underutilization of controllers. Overutilization occurs
when a small number of controllers are utilized to handle a
higher volume of traffic compared to their capacities.
Controllers are hence overloaded, and an increase
downtime could occur that could affect the network
performance. Underutilization of controller problem
occurs when more controllers are available to deal with
less load. In this case, controllers are not sufficiently used.
Optimal controller placement algorithms are used to deal
with the controller placement issue [22]. To avoid a single
point of failure, multicontroller architecture approaches
are always recommended to increase resiliency [23].
Controllers’ resiliency should not conflict with control-
lers’ consistency [24].

2.3. SDN Application Plane Fault-Tolerance Support. +e
application plane is the layer that has the network appli-
cations and services as well to make requests for network
functions offered by both the control and the data planes. In
classical networks, application layer holds security, man-
agement, and monitoring facilities. +e application layer
allows commercial applications to modify/update the net-
work behavior to provide customer services. APIs are used

for third-party developers to use network applications for
network operator [25].

In order to develop reliable SDN applications, debugging
and testing tools help in fixing software bugs as service
evolves. To ensure the quality of software network trou-
bleshooting, debugging and testing are essential.

3. SDN Architecture Fault-Tolerance Issues

In this section, first, SDN fault-tolerance highlights and
issues are explored. State-of-the-art research efforts focusing
on such fault-tolerance issues in SDN is also provided.

3.1. OpenFlow Fault-Tolerance Support in SDN. OpenFlow
fault tolerance usually provides faster recovery when it
comes to service failure [9]. OpenFlow was developed to
support communication among forwarding tables. +e
OpenFlow protocol provides an abstraction of forwarding
tables through the OpenFlow group table concept. Open-
Flow protocol communicates with the controller, which
modifies packets forwarding policies that facilitate for-
warding table programmability. A proper controller func-
tionality manages the control logic of its associated switches.
+e latest versions of OpenFlow protocols support a master-
slave configuration at the control layer in order to increase
the overall resiliency [6, 7, 8].

3.2. Fault Tolerance in HyperFlow Reference Model. +e
research studies discussed by Amin and et al. [13, 26] use
HyperFlow to provide control plane resiliency. Hyper-
Flow is a distributed event-based control plane, which is
logically centralized but physically distributed. Hyper-
Flow enables scalability, and it ensures centralized net-
work control. Amin et al. argue that HyperFlow offers a
scalable solution for control plane resilience in SDN-
enabled network.

3.3. Fault Tolerance in ECFT Reference Model. Aly et al.
[27–29] proposed a feedback control theoretic techniques
and Petri net modeling to implement fault tolerance for
controllers. +e work gave promising results, but the
feedback control theoretic techniques have put extra burden
on the controllers. +e ECFT [14] introduced load balancing
at controller’s failure, and the proposed ECFTmodel focuses
on balancing the load among other neighboring controllers.
+e proposed ECFT uses only delay among switches and
their associated controllers in order to compute the load for
each neighbor controller and sort the slave controllers
accordingly.

4. Proposed Model Design

In this section, two architectures are discussed. +e first
architecture is based on a single master controller that
controls a set of subclusters. Each subcluster has a slave
controller where a set of switches are connected to it. +e
second architecture is group of peer controllers that com-
municate with each other through message passing. In this
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section, the proposed Generic Controller Adaptive Load
Balancing Technique for Fault Tolerance (GCALB) model is
discussed for both these architectures.

4.1. Master-Slave Controller Architecture. In the first ar-
chitecture, the GCALB aims at balancing the load among
multiple controllers in a multicontroller SDN paradigm
based on throughput and response time metrics. GCALB
takes into consideration different metrics such as data loss,
utilization, and delay among different slave controllers and
their associated switches in order to improve the overall
response time and throughput. In this architecture, GCALB
assumes that there is a master controller and n slave con-
trollers connected to it. As depicted in Figure 2, the master
controller is connected to three slave controllers where each
slave controller is connected to four switches.

Figure 3 shows a master-slave architecture with three
slave controllers. Master controller is connected to four slave
controllers. Each slave controller has a set of switches as-
sociated with it. Each controller within a cluster has a unique
ID called CTRL_ID. +e controller with CTRL_ID� 0 is
considered the master controller. +e master controller is
responsible for updates the switch-controller forwarding
table located at the master controller, routes incoming
packets, periodically collects the load of each controller at
the cluster, and assigns the failed controller’s switches to a
suitable backup controller. Each controller within a cluster
updates the master controller current load, and the number
switches associated with the salve controller. +e master
controller decides where the switch is assigned based on
GCALB strategy.

4.2. Slave-Slave Controller Architecture. In the second ar-
chitecture, there is no master controller. Only slave con-
trollers are there to conduct message passing to send and
receive information about their current load and utilization
in addition to data loss.

Figure 4 has three slave controllers in a slave-slave con-
troller architecture. Each slave controller has four switches
allocated to it.

Figure 5 has four slave controllers connected to each
other in a slave-slave architecture. Each controller is as-
sumed to have four switches connected to it. In the proposed
GCALB model, slave controllers have the capability to pe-
riodically monitor the master controller to make sure that
the master controller is still alive. If a slave controller senses
that the master controller is down, then a slave controller is
elected from the list of tentative master controller list. +e
master controller tentative list is sorted based on the slave
controller current status metric. In the GCALB, the current
status metric measured at each slave controller is defined by
the current remaining capacity and rate of data losses.
Figure 6 contains the GCALB algorithm. +e GCALB al-
gorithm does the following operations: (1) computes the
summation of the overload load, (2) gets the desired ratio for
each available slave controller choice, and (3) computes the
minimum of the difference between computed current load
ratio and the desired load ratio for every slave controller.+e

slave controller that is corresponding to the minimum value
is chosen to associate the switch load to it. +is process is
repeated for the overall switch allocation procedure.

5. Simulation Testbed and Results

+e simulation testbed used is as follows:

(i) Simulator: Mininet version 2.2.2
(ii) Controller: Floodlight version 1.2
(iii) Switch: OpenFlow version 2.0.2
(iv) OS: Ubuntu version 14.04
(v) RAM: 32GB
(vi) Processor: Intel® Core™ i7 5500U CPU 2.4GHz
(vii) Traffic: hping3

Simulation is conducted to test two different scenarios
using the GCALB algorithm discussed in Figure 6. (1) +e
first scenario uses the custom topology depicted in where
there are four controllers in different domains: master-
controller domain and slave-slave domain as shown in
Figures 2 and 4. (2)+e second scenario uses similar fashion
to the first scenario but in five slave controllers’ context as
shown in Figures 3 and 5.

5.1. GCALBDistributing among Four Slave Controllers. A set
of experiments has been conducted for distributing the load
among four slave controllers (shown in Figures 2 and 4) with
various possible required ratios as shown in Table 1.

Four switches are allocated to each slave controller. It is
assumed that there is one host allocated for each switch.
Switches form a network of connectively. All the slave
controllers are connected to all other switches. Master
controller provides fault tolerance to the control plane. +at
is it, when the current master controller fails, it synchronizes
the state among the slave controllers through allowing all of
them to access updates published by all other modules in the
controller efficiently. +is is implemented through accessing
the next master controller.

In addition, it runs a master controller election process,
in order to enable modules to perform role-based pro-
gramming in a distributed system with multiple controllers.
Simulation is used to compare the GCALB model with the
HyperFlow [26] reference model. +e HyperFlow fault
tolerance technique directs the failed controller switches to
the closest controller without considering the controller’s
current workload. +is leads to different network problems
such as the cascading failure problem, packet loss, and
packet delay. +e proposed GCALB reduces the effect of
these problems by distributing the controller’s load among
other controllers whenever a failure occurs. +e super
controller considers a controllers’ capacity before assigning
the switches to it to avoid a cascading failure. Four different
floodlight controllers are utilized in four terminal windows
with the same IP address and different ports on port no 6000,
6001, 6002, and 6003. Default master controller will be
CTRL_ID� 1 but after starting 2 slave controllers. While
performing experiments, we tested floodlight controller by
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varying the number of controller nodes and packet arrival
rates.

Floodlight is tested in both the mode of cbench through
the throughput and latency as well to get throughput and
response time, respectively. Figures 7–11 show the results of
applying GCALB load distribution algorithm that is used by
the master controller through assigning workload to slave
controllers with different ratios.

In this section, a discussion about distributing the load
among five slave controllers for the topologies discussed in

Figures 3 and 5. Another set of experiments is conducted for
distributing load among three controllers as shown in
Table 2.

Results are promising since the required goal is achieved
to obtain the ratios requested by the master controller.
Results for the second scenario implementing GCALB al-
gorithm are shown in Figures 12–16.

Concerning the throughput, packets are sent by varying
packet arrival rate and CIDs from 1 to 4 in one set of ex-
periments and then the other set of experiments using
CTRL_ID from 1 to 5. GCALB is compared with two ref-
erence algorithms, the HyperFlow algorithm and the ECFT.

Slave controller 

Switch

Master controller 

Switch Slave
controller 

Master controller

Switch

Switch

Switch

Slave
controller 

Switch Switch

Switch

Switch

Cluster 1 Cluster 2 

Switch Slave
controller 

Switch

Switch

Switch

Cluster 4 

Switch

Slave
controller 

Switch Switch

Switch

Cluster 3 

Figure 2: Four slave controllers connected to a master controller in a master-slave architecture.

Slave controller 

Switch

Master controller 

Switch Slave
controller 

Master controller

Switch

Switch

Switch

Slave
controller 

Switch Switch

Switch

Switch

Cluster 5 

Cluster 1 

Switch Slave
controller 

Switch

Switch

Switch

Switch

Slave
controller 

Switch Switch

Switch

Cluster 2 Cluster 3

Switch Slave
controller 

Switch

Switch

Switch

Cluster 4 

Figure 3: Five slave controllers connected to a master controller in
a master-slave architecture.

Controller

Switch

Switch Controller

Switch

Switch Switch Controller

Switch

Switch

Switch

Switch

Cluster 2 Cluster 3 

Switch

Switch

Switch

Switch

Cluster 1

Switch

Switch

Switch

Switch

Cluster 4 

Slave
controller 

Slave
controller 

Figure 4: Four slave controllers connected in slave-slave
architecture.

Journal of Computer Networks and Communications 5



GCALB outperforms the reference algorithms by 15% when
it was compared to the HyperFlow reference model and by
13% when it was compared to ECFT reference model in
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Figure 5: Five slave controllers connected in slave-slave
architecture.

int GCALBN (int N)
{

//Assume N is the total number of
available choices 

TotalRatio=∑N
i CurrentRatioi

for (i=0; i<choices; i++)
{

DesiredRatioi=Ratioi/TotalRatio

ComputedRatioi=
[CurrentRatioi+1]/[TotalRatio+1]

For each available choice “i”,
compute the minimum “Value” for

Value=ComputedRatioi–DesiredRatioi

}
Choice=i;//i that gave the min Value
return Choice;

}

Figure 6: GCALB load distribution algorithm.

Table 1: Experiments among four controllers.

Exp X Y Z W
1 1 2 3 4
2 1 3 5 7
3 1 4 7 9
4 2 4 6 8
5 3 6 9 12
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Figure 7: Load balancing for four slave controllers with ratios 1 : 2 :
3 : 4.
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Figure 8: Load balancing for four slave controllers with ratios 1 : 3 :
5 : 7.
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Figure 9: Load balancing for four slave controllers with ratios 1 : 4 :
7 : 9.
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Figure 10: Load balancing for four slave controllers with ratios 2 :
4 : 6 : 8.
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terms of throughput in four slave controller scenario as
depicted in Figure 17 and five slave controller scenario in
Figure 18.

Concerning the response time, packets are sent to
floodlight controllers by varying its packet arrival rates from
200 packets/sec to 5000 packets/sec. Packet arrival rate is
observed to increase while a decrease in the response time
was observed. +e overall response time for the GCALB is
outperforming the response time for the HyperFlow by 10%
as depicted in Figure 19, and the GCALB outperformed the
ECFT by 12% as depicted in Figure 20.

Table 2: Experiments among five controllers.

Exp X Y Z W Q
1 1 2 3 4 5
2 1 3 5 7 9
3 2 4 6 8 10
4 1 4 7 10 13
5 1 5 8 14 19
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Figure 11: Load balancing for four slave controllers with ratios 3 :
6 : 9 :12.
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Figure 12: Load balancing for five slave controllers with ratios: 1 :
2 : 3 : 4 : 5.
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Figure 13: Load balancing for five slave controllers with ratios 1 : 3 :
5 : 7 : 9.
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Figure 14: Load balancing for five slave controllers with ratios 2 : 4 :
6 : 8 :10.

N
um

be
r o

f s
w

itc
he

s a
llo

ca
te

d
pe

r c
on

tro
lle

r

X
Y
Z

W
Q

Load balancing ratio 1:4:7:10:13

0

200

400

600

800

1000

1200

1 37 73 10
9

14
5

18
1

21
7

25
3

28
9

32
5

36
1

39
7

43
3

46
9

50
5

54
1

57
7

61
3

64
9

68
5

72
1

75
7

79
3

82
9

86
5

90
1

93
7

97
3

Total number of switches

Figure 15: Load balancing for five slave controllers with ratios 1 : 4 :
7 :10 :13.
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Figure 16: Load balancing for five slave controllers with ratios 1 : 5 :
9 :14 :19.
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6. Conclusion and Future Work

+epaper proposes a generic controller adaptive based on load
balancing mode. +e proposed model is called a Generic
Controller Adaptive Load Balancing (GCALB) model for

SDNs. In the proposed GCALB model, there are two main
operations. (1) +e first operation is that the slave controllers
have the capability to periodically monitor the master con-
troller to make sure that the master controller is still alive. If a
slave controller senses that the master controller is down, then
a slave controller is elected from the list of tentative master
controller list. +e master controller tentative list is sorted
based on the slave controller current status metric. In the
GCALB, the current status metric measured at each slave
controller is defined by the current remaining capacity and
rate of data losses. (2) +e second operation is to maintain a
fault-tolerance mechanism. Two architectures were studied:
(1) a single master with multiple slave controllers and (2)
multiple slave controllers. GCALB adapts the load among slave
controllers based on a GCALB algorithm. Mininet simulation
tool is utilized for the experimentation phase. Experiment
results were conducted using GCALB when master controller
is taking the responsibility of distributing switches among four
and five slave controllers as two case studies. +roughput and
response time metrics are used to measure performance.
GCALB is compared with two reference algorithms: (1)
HyperFlow [13] and (2) Enhanced Controller Fault Tolerant
(ECFT) [14]. Results are very promising as the performance of
GCALB increased by 15% and 12% when compared to
HyperFlow and by 13% and 10% when compared to ECFT in
terms of throughput and response time.
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+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e author declares that there are no conflicts of interest
regarding the publication of this paper.

References

[1] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka,
and T. Turletti, “A survey of software-defined networking:

Average throughout

0

5000

10000

15000

20000

25000

30000

35000

40000

GCALB ECFT HyperFlow

Controller 1
Controller 2

Controller 3
Controller 4

Figure 17: Comparison among average throughputs for GCALB,
ECFT, and HyperFlow for four slave controller model.

Average throughout

0

5000

10000

15000

20000

25000

30000

35000

40000

GCALB ECFT HyperFlow

Controller 1
Controller 2
Controller 3

Controller 4
Controller 5

Figure 18: Comparison among average throughputs for GCALB,
ECFT, and HyperFlow for five slave controller model.

Response time

0

5000

10000

15000

20000

25000

30000

GCALB ECFT HyperFlow

Controller 1
Controller 2

Controller 3
Controller 4

Figure 19: Average response time for GCALB, ECFT, and
HyperFlow among four controllers.

Response time

0

5000

10000

15000

20000

25000

30000

35000

GCALB ECFT HyperFlow

Controller 1
Controller 2
Controller 3

Controller 4
Controller 5

Figure 20: Average response time for GCALB, ECFT, and
HyperFlow among five controllers.

8 Journal of Computer Networks and Communications



past, present, and future of programmable networks,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 3,
pp. 1617–1634, 2014.

[2] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve
Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined
networking: a comprehensive survey,” Proceedings of the
IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[3] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined
network and openflow: from concept to implementation,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 4,
pp. 2181–2206, 2014.

[4] T. Bakhshi, “State of the art and recent research advances in
software defined networking,” Wireless Communications and
Mobile Computing, vol. 2017, Article ID 7191647, 35 pages,
2017.

[5] G. Warnock and A. Nathoo, Alcatel-Lucent Network Routing
Specialist II (NRS II) Self-Study Guide: Preparing for the NRS II
Certification Exams, John Wiley & Sons, Hoboken, NJ, USA,
2011.

[6] O. Bilal, M. B. Mamoun, and R. Benaini, “An overview on
SDN architectures with multiple controllers,” Computer
Networks and Communications Journal, vol. 2016, Article ID
9396525, 8 pages, 2016.

[7] N. McKeown, T. Anderson, H. Balakrishnan et al., “Open-
Flow,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[8] W. Braun andM.Menth, “Software-defined networking using
openflow: protocols, applications and architectural design
choices,” Future Internet, vol. 6, no. 2, pp. 302–336, 2014.

[9] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and
P. Demeester, “Openflow: meeting carrier-grade recovery
requirements,” Computer Communications, vol. 36, no. 6,
pp. 656–665, 2013.

[10] E. Haleplidis, J. H. Salim, J. M. Halpern et al., “Network
programmability with forces,” IEEE Communications Surveys
& Tutorials, vol. 17, no. 3, pp. 1423–1440, 2015.

[11] R. Jain and S. Paul, “Network virtualization and software
defined networking for cloud computing: a survey,” IEEE
Communications Magazine, vol. 51, no. 11, pp. 24–31, 2013.

[12] W. Stallings, Foundations of Modern Networking: SDN, NFV,
QoE, IoT, and Cloud, Addison-Wesley Professional, Boston,
MA, USA, 1st edition, 2015.

[13] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scal-
ability of software-defined networking,” IEEE Communica-
tions Magazine, vol. 51, no. 2, pp. 136–141, February 2013.

[14] W. H. F. Aly and A. M. A. Al-anazi, “Enhanced CON-
TROLLER Fault Tolerant (ECFT) model for software defined
networking,” in Proceedings of the 5th IEEE International
Conference on Software Defined Systems (SDS), Barcelona,
Spain, April 2018.

[15] J. Chen, J. Chen, F. Xu, M. Yin, and W. Zhang, “When
software defined networks meet fault tolerance: a survey,” in
Algorithms and Architectures for Parallel Processing, G. Wang,
A. Zomaya, G. Martinez et al., Eds., pp. 351–368, Springer
International Publishing, Cham, Switzerland, 2015.

[16] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and
P. Demeester, “Software defined networking: meeting carrier
grade requirements,” in Proceedings of the 2011 18th IEEE
Workshop on Local Metropolitan Area Networks (LANMAN),
pp. 1–6, Chapel Hill, NC, USA, October 2011.

[17] A. U. Rehman, R. L. Aguiar, and J. P. Barraca, “A proposal for
fault tolerant and self-healing hybrid SDN control network,”
in Proceedings of the 23rd Annual Conference on Professional

Information Resources, pp. 47–52, Prague, Czech Republic,
May 2017.

[18] C.-Y. Hong, S. Kandula, R. Mahajan et al., “Achieving high
utilization with software-driven wan,” in Proceedings of the
ACM SIGCOMM Computer Communication Review, vol. 43,
pp. 15–26, ACM, Hong Kong, China, August 2013.

[19] L. Sidki, Y. Ben-Shimol, and A. Sadovski, “Fault tolerant
mechanisms for SDN controllers,” in Proceedings of the 2016
IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), pp. 173–178, Palo
Alto, CA, USA, November 2016.

[20] K. Kuroki, N. Matsumoto, and M. Hayashi, “Scalable open-
flow controller redundancy tackling local and global re-
coveries,” in Proceedings of the Fifth International Conference
on Advances in Future Internet, pp. 25–31, Barcelona, Spain,
2013.

[21] T. Yuan, X. Huang, M. Ma, and J. Yuan, “Balance-based sdn
controller placement and assignment with minimum weight
matching,” in Proceedings of the 2018 IEEE International
Conference on Communications (ICC), pp. 1–6, Anchorage,
Alaska, USA, May 2018.

[22] Y. Jiménez, C. Cervelló-Pastor, and A. J. Garćıa, “On the
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