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Today, whether in industry, research, or civil applications, there are many incentives to reduce the energy footprint of automated
systems. In multihop wireless networks, the main objective in that regard is usually to maximize the lifetime of the network by
distributing the load over all nodes. In this paper, we improve a solution that aggregates flows to optimize the number of nodes
that can be turned off. We introduce interference awareness in a routing metric designed to aggregate flows to avoid overloading
the network and to preserve the quality of service required by the flows. This way, it becomes possible to integrate this metric into
classical shortest path routing algorithms that do not consider interference. We also show that flow aggregation and overall energy

consumption are equivalent problems.

1. Introduction

For a long time, web services, social networking, mail, and
online shopping contributed to develop a kind of network
centralization. It is now common to see the application
layer of the network running on large data centers that
aggregate tons of data and provide services to users.
Moreover, the adoption of cellular phones, followed by
smartphones, has led to the deployment of wireless net-
work architectures based on wireless access points, cre-
ating fully centralized services from the user’s perspective
at the application and network layers. Although this type
of architecture can achieve high performance, its de-
ployment and maintenance can be very costly both fi-
nancially and in terms of energy. Indeed, if a network
provider wishes to cover a new area, for example, a large
number of antennas must be deployed. For each of them, it
must buy or rent a place, build the infrastructure to
support the antenna, wire it up to its backbone network,
and finally supply it. In addition, achieving full and ef-
fective coverage requires addressing spatial constraints
that can lead to many logistical, financial, or political
problems. Furthermore, we have seen an increasing

demand in terms of network capacity in recent years.
Mainly caused by HD video and audio streaming as well as
social networking applications that create a lot of data, it
has highlighted the limitations of such centralized archi-
tectures. Thus, recent work on edge computing [1] or fog
networking [2] tends to redistribute part of the network’s
resources and services as close as possible to end users in
order to increase the network’s performance and energy
efficiency.

Developed in parallel, multihop wireless (or ad hoc)
networks were mainly dedicated to specific applications such
as satellite systems, sensor networks, device-to-device
communications, or areas without infrastructure (e.g.,
military field, disaster recovery, and last mile) covering. The
low popularity of these networks is due to the extreme
difficulty in optimizing these distributed systems, which
leads to lower performance than centralized wireless net-
works. Nevertheless, multihop wireless networks have an
advantage in terms of flexibility that allows them to be
deployed almost anywhere, as long as there is a way to power
the nodes. Moreover, interest in these networks will certainly
increase in the coming years with the expansion of the
Internet of Things.
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In addition, since multihop wireless networks represent
an increasingly important part of our society’s total energy
consumption, a lot of work must be done to minimize it. In
the past, most of the work on energy efficiency in ad hoc
networks focused on wireless sensor networks and aimed at
maximizing their lifespan. Although perfectly legitimized by
energy constraints (e.g., battery-powered nodes), the pro-
posed solutions are based on the basic principle of uniformly
distributing the load over the entire network. In this context,
nodes reduce their energy supply at the same location.
However, this approach becomes less relevant when the
network is composed of more traditional nodes (or things)
that are not necessarily battery powered, such as in MESH
networks, and where radio components are not the most
consuming.

In the case of more complex wireless nodes (such as Wi-
Fi routers, connected vehicles, and urban equipment), a
static amount of energy is consumed by turning them on.
Hence, we proposed the use of flow aggregation, which
consists of routing flows along common paths to maximize
the number of nodes that can be turned off to minimize
overall energy consumption. This paradigm is based on the
observation that the energy cost of data transmission is lower
than the static energy cost required to have a node turned on.
It then becomes more interesting to make nodes process
more data and turn off others that can be unloaded.

In this paper, we confirm this observation by comparing
our flow aggregation routing with a routing solution that
minimizes the overall energy consumption of the network.
We also extend our Flow Aggregation MEtric [3] (FAME) so
that it considers interference and prevents excessive ag-
gregation. Our contributions are twofold:

(i) We show that the maximization of flow aggregation
and the minimization of overall energy consumption
are equivalent in the assumption that most of the
energy consumption is induced by the powering up
of the nodes. In the following, this part will be called
the static energy consumption of a node.

(ii) We extend our Flow Aggregation MEtric by taking
into account interference to avoid network overload.

These contributions are evaluated by simulation using
CPLEX [4] and adopting the same methodology and pa-
rameters as in [3, 5]. To obtain our results, we first generate 5
random networks of 49 nodes. Then for each of these
networks, we create random sets of flows of different size.
For each identified size, we create 100 scenarios where we
insert those flows. For all of the available configurations, we
will route flows using the routing algorithms that will be
presented in this paper. Then we analytically calculate av-
erage values, with their 95% confidence interval, over all of
these simulated configurations. The parameters we will il-
lustrate in this paper are global energy consumption,
number of used (active) nodes, and network load.

The remainder of this paper is organized as follows. In
Section 2, we present the related work on energy saving in
multihop wireless networks at the routing layer. Section 3
defines the models and notations we use. Section 4 is
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dedicated to our solution minimizing the overall energy
consumption of the network. In Section 5, we extend our
heuristic solution to the flow aggregation problem to avoid
network congestion. We finally conclude and give future
works in Section 6.

2. Related Work

The state of the art defines two types of routing protocols:
reactive and proactive. In the former, a node calculates a
route to reach the destination when it has data to send. The
most common protocols in this family are Dynamic Source
Routing (DSR) [6] and Ad hoc On-Demand Distance Vector
(AODV) [7]. However, these two protocols do not integrate
any energy considerations. That is why extensions have been
proposed to make them more effective on this point. In [8],
the authors use the residual energy of nodes to define energy
states and adapt the behavior of the nodes. When the re-
sidual energy of a node is above a threshold, it is in a normal
state and performs AODV normally. When it is below a
threshold, the node is set in a warning state and will add a
delay before forwarding route request messages to reduce
the probability to be selected as a relay. Finally, when the
residual energy is below a critical threshold, the node stops
forwarding route request messages so that it no longer
becomes a relay. This solution gives good results in im-
proving the lifetime of the network but does not allow to
conclude on the overall energy consumption or to take into
account interference. Similarly, the authors in [9] propose to
insert a delay proportional to the missing residual energy
before forwarding a route response message. In this way, the
more a node has depleted its energy, the less likely it is to be
selected as a relay. The same comment applies here. Al-
though the lifetime of the network has been improved, no
conclusions have been drawn on the overall energy con-
sumption, except that it has been balanced on all nodes and
that interference is still not considered.

In proactive protocols, the Optimized Link State Routing
(OLSR) protocol [10] is the most popular for multihop
wireless networks. Like DSR and AODYV, the initial speci-
fication of OLSR does not take into account energy con-
sumption. In [11], the authors propose to use a metric based
on the residual energy and node consumption to select new
multipoint relays (MPRs), which are nodes basically selected
in the network to optimize flooding and forwarding pro-
cesses. The routing algorithm can also be modified in order
to use energy routing metrics such as Maximum Trans-
mission Power Routing [12], Max-Min Battery Cost Routing
[13], or Minimum Drain Rate [14]. Once again, this solution
improves results in terms of network lifetime but does not
focus on the overall energy consumption of the network.

Most of the work dealing with energy savings in mul-
tihop wireless networks tends to focus on wireless sensor
networks. Thus, considering that nodes are powered by
batteries, the problem is to improve the lifetime of the
network. However, multihop wireless networks can be
composed of other types of nodes. These nodes can have
generators to draw power from the environment or may be



Journal of Computer Networks and Communications

powered by a renewable energy source. This is the case for
mesh networks that have different energy constraints. Since
the nodes can be switched on continuously, the objective of
energy saving in mesh networks is to reduce the energy
footprint of the network globally. A solution based on in-
teger linear programming to route flows in order to max-
imize the number of nodes that can be turned off is proposed
in [15]. Nevertheless, this approach is designed for operator-
led networks and assumes that the destination nodes of the
flows are gateways that provide Internet access. Moreover,
this solution requires a global view of the network and the
optimal solution is obtained by solving the optimization
problem iteratively while increasing the constraint on the
number of nodes to be turned off until no solution can be
found.

In [5], we proposed a solution also based on integer
linear optimization to achieve this optimum in one iteration
for any set of source and destination nodes while main-
taining the quality of service (QoS) in terms of throughput.
However, this solution requires a lot of computing power to
reach the optimum, which makes it inapplicable to networks
with high flow fluctuations. We solved this problem in [3] by
developing a routing metric to allow the shortest path
routing algorithms to aggregate flows close to optimality,
increasing the number of nodes that can be turned off.
However, this work does not take into account interference,
which leads to overloading the network areas where flows
are aggregated. We propose a solution to this problem in
Section 5.2.

3. Models and Notations

3.1. Network Model. Usually, multihop wireless networks are
represented with a directed graph noted G = (V, E) where V
is the set of nodes and E is the set of links between these
nodes. We consider that a couple (i, j) belongs to E if node i
can send data to node j. This link is defined by a ranged
communication model, meaning that node j can receive data
from i if and only if the distance between them is less than or
equal to the transmission range of node i. In this paper, we
also consider that nodes share the same transmission range.
Thus, if a link (4, j) is in E, then link (j,1) is too.

3.2. Interference Model. Interference can be modeled using
two different methods [16]. A first one considers interference
as noise at the physical layer and its impact on the signal as
an interference ratio. However, since our work focuses on
the network layer, we use the second approach. Indeed, we
consider that any node j can successfully receive a trans-
mission from node i if the distance between them is lower
than the distance between j and any other node transmitting
at the same time. This model allows us to determine con-
flicting links in the network; they are links that cannot be
used at the same time as they interfere with each other. This
approach can be approximated using a k-hop interference
model, meaning that a node interferes with its neighborhood
up to a distance of k hops. In this paper, we set k to 2 as in
[17].

Then, we use the conflicts between the links to build a
conflict graph [18] and derive cliques [19] from it. These
cliques are sets of interfering links that cannot be used at the
same time in the network. Finally, we define the utilization
rate of a clique as the sum of the utilization rates of links that
compose it. A network is considered to be overloaded if there
exists a clique whose utilization rate is above 100%.

3.3. State Energy Model. To estimate the energy consump-
tion of the network, we use a state energy model [20, 21]. The
energy consumption of a node is calculated in function of
the time spent by the node in each state. A node can be in
four operating states, each one having a specific energy
consumption:

(i) Transmission mode (Tx), the most energy-con-
suming state. The node sends data by activating its
transceiver to emit radio signals that can be received
by every node in its transmission range.

(ii) Reception mode (Rx), using less energy than the
previous one. In this state, the node activates its
receiver to interpret incoming radio signals and
convert them into digital data before sending them
to the upper layer of the communication stack.

(iii) Idle mode, in which a node spends most of the time.
This is an intermediary state from which a node can
be set either in Tx mode or in Rx mode. Although a
node remains passive in this state, its ability to
detect the need to send or receive data means that
the idle mode consumes a comparable amount of
energy as the reception mode.

(iv) Sleep mode, where the node shuts down most of its
components, leading to a significant reduction in its
energy consumption. Thus, the node becomes un-
able to transmit or receive data. As it also makes the
node unable to detect network events, this state can
only be left through wuser or algorithmic
interruptions.

3.4. Notations. We present in Figure 1 below the notations
used in the rest of the paper.

4. Optimization of Overall
Energy Consumption

Integer Linear programming (ILP) is a powerful mathe-
matical tool used to study optimality in many areas of re-
search. In networking, it is typically used to solve network
provisioning, performance improvement, and routing
problems [23-25]. This approach has the advantage of being
extremely modular because a change in the properties of the
routing algorithm consists only in modifying all the con-
straints, and possibly the objective function, of the linear
program. We use I2ILP, denoted the shortest path in this
paper and defined in [17], as the basis for our formulation
that we extend to deliver a set of flows instead of a single flow



C: the set of cliques

F: the set of flows to route over the network

E: the set of links

V: the set of nodes

C‘,j: the capacity of link (i, )

d,;: the bit rate currently passing through link (i, /)

x/: a boolean equals to 1 if flow fis routed over link (i, /)

(Sf, Df): the source and destination nodes of flow f

d;: the bit rate requested by flow f

I%: the length of the path associated with flow f

W+ the weight (or length) of link (i, j )

x;: a boolean equals to 1 if node i is used to route a flow

E,T E?, E,I ElS the energy consumption of node i according to its state
(transmission, reception, idle, and sleep, respectively)

E", EX E', ES: constants representing the energy consumption of each
state a node may be in. They are defined in [20] and are the default
values used by the simulator NS3[22].

FiGure 1: Notations used throughout this paper.

on the shortest path. The resulting ILP model can be for-
mulated as depicted in Figure 2.

This formulation models a shortest path routing algo-
rithm. Here, the objective function minimizes the sum of the
paths’ lengths, which is calculated as the sum of the weight of
nodes that make the path, used to route a set of flows. The
first eight constraints are state-of-the-art constraints used to
model a routing algorithm and will be common to all the
solutions we will present later in this paper.

Constraint (1) is the capacity constraint and is based on
the interference model described in Section 3.2. This con-
straint ensures that the utilization rate of any clique will
never be greater than 100% and then prevents to overload
some parts of the network. Constraint (2) models the flow
conservation rule. Constraints (3) and (4) guarantee that a
flow does not loop back to its source and that a source uses
one of its out links to send the flow. Similarly, constraints (5)
and (6) prevent a flow to leave its destination and make sure
it is received on one of the inlinks of its destination.
Constraint (7) is the QoS constraint and ensures that each
flow can send its traffic with the expected bit rate demand.
Constraint (8) models the single path routing, meaning that
a flow cannot be split into several paths. Finally, constraint
(9) calculates the length of the path used by each flow
according to links associated with it. For this purpose, all
links have a weight according to their length. If this function
gives a constant value to each link, the formulation is then
like routing a set of flows over the shortest paths in terms of
hops.

4.1. Minimizing the Energy Consumption. In this paper, we
aim at minimizing the overall energy consumption of the
network by allowing unused nodes to be turned off (or put
into sleep mode) instead of remaining in idle mode. We
model this behavior by a set of linear constraints that we
integrate into the previous ILP. Figure 3 shows the ILP
formulation that optimally routes a set of flows over the
network while minimizing the overall energy consumption.

In this formulation, we have modified the objective
function so that the program is now minimizing the overall
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FIGURre 2: Shortest path routing algorithm using integer linear
programming formulation.
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Figure 3: ILP formulation for minimal energy consumption
routing.

energy consumption of the network. The first unnumbered
constraints are the same as those seen above and are
mandatory to implement the routing algorithm regardless of
the objective function. Constraint (1) calculates the total
energy consumption of any node i, that is, E;, as the sum of
energy consumed when it is in transmission state E!, in
reception state EX, and in passive state EI (i.e., neither
transmitting or receiving), respectively. Constraints (2), (3),
(4), and (5) are about the energy consumption of a node
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when it is in the four different states. These values are
calculated according to the energy consumption related to
each state and the time spent in it. We consider that a node
always transmits at the highest available bit rate in order to
maximize the time spent in the passive mode, allowing to
save more energy [20]. Thus, we can deduct from the uti-
lization rates of the links the proportion of time a node
spends in transmission and reception modes. The reverse
proportion is then used as the time spent by the node in a
passive (idle or sleep) mode. Finally, to save energy, con-
straints (6.1) and (6.2) are used to determine if a node is used
and set its passive mode accordingly. We consider that any
node i is useful to the network if it is used as a relay to route
flows. This behavior is defined by constraints (7.1), (7.2), and
(7.3). Constraints (7.1) and (7.2) force the value of x; to 1 if
there is traffic going in or out of node i, which means that it is
used to route flows. Inversely, constraint (7.3) sets the value
to 0 if there is no traffic passing through the node. Then, if
variable x; is equal to 1, the solution selects the idle mode as
its passive mode. Otherwise, the node remains in sleep mode
at all times.

Figure 4(a) shows the overall energy consumption when
increasing the number of flows routed over the network. We
see that a significant part of energy can be saved by routing the
set of flows according to our optimal solution compared to
this using a shortest path algorithm. However, this solution is
not satisfactory enough because it uses the energy parameters
which are data from the physical layer. Figure 4(b) gives an
indication that could help us avoid having to rely on cross-
layer information. It indicates the number of nodes that
remain unused after all flows have been routed. These nodes
are the ones that have been turned off to save energy. We can
see that the difference in terms of the number of unused nodes
is as important as the difference we have in terms of energy
consumption. This leads to assume that this may be an ef-
fective criterion for designing a routing algorithm that can
minimize energy consumption based solely on information
available at the routing layer of the communication stack. We
have called this routing approach flow aggregation in a
preliminary study [5]. In the next subsection, we show that
flow aggregation routing is equivalent to our minimized
overall energy consumption solution.

4.2. Optimal Flow Aggregation. In our preliminary study [5],
we proposed RA (routing with aggregation), an optimal
routing algorithm implemented using ILP. This solution
aims at routing a set of flows while minimizing the number
of forwarding nodes. The key idea is to find the smallest set of
nodes capable of routing as many flows as possible while
respecting their required quality of service in terms of bit
rate, without overloading cliques, so that the remaining
nodes can be turned off to save energy. This is what we called
flow aggregation, routing flows together over common paths
so that we can maximize the number of nodes that can be
turned off. We remind the ILP formulation we proposed in
Figure 5.

In this formulation, the objective function is changed so
that the program now minimizes the number of nodes used.

Again, we can see the unnumbered constraints that model
the routing algorithm. Constraints (9.*) are the constraints
(7.7) of the program presented in the previous subsection.
Finally, constraint (10) comes from the formulation of the
Traveling Salesman Problem (TSP) [26]. This constraint
solves a problem caused by the new objective function that
could allow flows to be routed on loops disconnected from
their main path.

In Figure 6, we compare our minimal energy con-
sumption routing (MinEnergy) introduced in this paper
with our previous optimal aggregation routing (RA) solu-
tion. We illustrate the relation between the global energy
consumption of the network and the number of nodes that
can be turned off. More precisely, we show that minimizing
energy consumption (MinEnergy) and maximizing the
number of unused nodes are equivalent problems. Indeed,
we can see in Figure 6(a) that the two plots overlap which
means that aggregating flows with RA allows to reach the
optimal energy consumption that we have with MinEnergy.
In the same way, Figure 6(b) shows that minimizing the
overall energy consumption with MinEnergy allows to reach
the minimal number of active nodes to route a set of flows.

Thus, by using flow aggregation, we can minimize the
global energy consumption of a multihop wireless network
while respecting the QoS, without requiring cross-layer
information (energy-related information). The only in-
formation we need is the set of flows, which can be de-
termined at the routing layer, and the links’ capacity which is
a constant that can be known. However, as optimal as ILP
can be, the complexity of the algorithms used to solve this
problem makes our solution inapplicable. Nevertheless, it
gives an optimal bound to which we can refer when eval-
uating the innovative solutions that will be described in the
next section.

5. Heuristic for Flow Aggregation

Solving the flow aggregation problem using integer linear
programming has two issues. Firstly, the complexity is very
high. Secondly, it requires that the routing problem be
solved with the same method. Thus, it becomes difficult to
distribute this solution and only routes between the sources
and their respective destinations can be found. If the set of
flows changes, all routes have to be recalculated through
integer linear programming. To deal with this, we have
proposed the Flow Aggregation MEtric (FAME) [3].

5.1. Flow Aggregation MEtric. FAME is a routing metric that
can be integrated into a classic shortest path routing algo-
rithm. Its purpose consists in routing flows according to a set
of attractive nodes. These nodes can be defined statically
when the network is deployed or dynamically when network
conditions change. We call them nodes of interest. Let NI be
the set of such nodes.

As we are using a shortest path routing algorithm, our
goal is to give a weight small enough to the nodes of interest
so that they naturally attract flows. In this way, the path they
are in is shorter and the routing algorithm can route flows
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over them and their close neighborhood, leading to ag-
gregation. NI can be determined in several ways using, for
example, a connected dominating set or a Steiner tree.
However, our results in [3] have showed that the use of
sources and destinations is the best choice. This can be
explained by the fact that these nodes have to be turned on
anyway to send and receive data. From this point of view, it
is more interesting to reuse them as relays for other flows.

We consider two cases to calculate the weight of a node:

(i) If the node does not belong to NI, its weight is a
function of the distance with its nearest node of
interest and the number of such nodes at this dis-
tance (in terms of hops)

(ii) The weights of the nodes in NI are set to the minimal
value that the other nodes can theoretically have

Hence, we determine the weight of any node i as follows:
1
vi-1
FAME, = (1)
dist,;,,
[NEI (i, dist,;, ) "\NI|

ifi € NI,

otherwise,

where NEI (v, d) represents the neighborhood of node v at
distance dist,;,, dist,,;, is the distance between node i and its
closest node of interest, and |V| is the number of nodes in the
network. This metric allows to route flows over NI, leading
to flow aggregation.

Figure 7 illustrates the performance of FAME in terms of
aggregation and compares it to these of our optimal solution
RA and a traditional shortest path routing. Here we can see
that, starting very close to our optimal solution, FAME does
not diverge from RA as much as the shortest path routing. In
[3], we depicted an experiment where we inserted up to 40
flows and show that when we increase the number of flows
inserted in the network, FAME approaches RA again to
eventually reach the same performances.

Figure 8 shows the impact of flow aggregation on net-
work load. It can be seen that flow aggregation increases the
load of the network, which has an impact on its capacity. It
represents the cost of energy savings. Figure 8(a) illustrates
the average load of the network. We can see that when using
RA, the load of the network increases the most. This can be
explained by the way flows are routed by giving priority to
common nodes. Indeed, such an approach leads to an in-
crease in the average length of the flows, which implies a
greater number of transmissions. Figure 8(b) shows the
utilization rate of the most loaded area of the network, dense
areas being mainly those in which flows are aggregated. As
expected, the aggregation of flows over a small number of
nodes significantly increases the load of the area covered by
these nodes.

Once again, we can notice from these figures that FAME
approximates very well our optimal aggregation solution.
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However, to avoid that our results are biased by the
implementation of routing algorithms, we have introduced
our metric into the shortest path ILP formulation. This
means we were able to benefit from the centralized in-
terference model defined by the cliques. Thus, we need to go
a step further in order to consider a fully distributed
algorithm.

5.2. Adaptive Flow Aggregation MEtric. Our metric FAME
allows shortest path routing algorithms to aggregate flows
close to an optimal level. Nevertheless, if this is done without
consideration of interference, the network may quickly
become overloaded. To overcome this difficulty, we propose
the Adaptive Flow Aggregation MEtric (A-FAME). This
takes into account the network load. More precisely, when it
is low, the metric routes flow almost optimally, in the same
way as FAME. When it is high, the weights of nodes are
calculated so that flows are routed according to the shortest
path, by releasing the attraction of nodes of interest. To
achieve this, we first need to simplify our interference model.

We now consider interference between nodes instead of
links. This allows us to move from the determination of
cliques, which is complex, to neighborhoods. Based on the
same principle of the previous model, we calculate the
transmission rate of nodes (out rate of nodes divided by the
capacity of the wireless transmission medium) to evaluate
the utilization rate of a neighborhood. As with cliques, it can
be interpreted as the load of a neighborhood and is calcu-
lated as the sum of the transmission rates of the nodes that
compose it:

d; ;
WeV,NL,= Y Y - (2)

ieNEI(v,2) (i,j)eE Ci,j

where NL, is the load of the neighborhood of node v. As we
are considering a 2-hop interference model, this value is
calculated using the 2-hop neighborhood of the node. The
loads of neighborhood are used the same way as cliques.
They model local loads of the network. When their value is
higher than 1, it means that this area of the network is
overloaded. To use it in our A-FAME, we set a threshold. If
the load of the neighborhood of a node is below, its weight is
the same as this given by FAME. Otherwise, its weight will be
adjusted around the average FAME weight of all nodes in the
network, as follows:

1
A-FAME, = a, - FAME, + (1 - ocv)m Y FAME;, (3)

jev

where a, is the aggregation force of node v, that is the ability
to attract flows. When it is equal to 1 (i.e., 100% aggregation),
the weight of the node is given by FAME. When it is 0, this
weight is the average value of the FAME weights of all nodes.
In this way, the node stays neutral by not attracting or
rejecting flows. If all nodes have such an average weight, the
routing algorithm will behave as a shortest path in terms of
number of hops.

To implement A-FAME, two parameters need to be set.
The first one is the reduction threshold Rt. It is used to
evaluate the load of the node’s neighborhood. If the load is
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above Rt, we consider that the neighborhood of the node is
overloaded and thus activate the A-FAME. Otherwise, we
use the FAME one. The second parameter is the starting
value of the aggregation force Ba. It represents the maximum
aggregation force that a node can have when the A-FAME is
activated. Using these two parameters and the neighborhood
load NL of any node v, the aggregation force of a node can be
calculated as follows:

if NL, < Sr,
VveV.

1
o, =
! { max (0,Ba— (NL, - Sr)) otherwise,

(4)

The aggregation force of a node, when its neighborhood
load is greater than the reduction threshold, is calculated by
subtracting the excess from the Ba threshold. Thus, the more
the load in the neighborhood of a node exceeds the
threshold, the more its aggregation force is reduced.

Finding the optimal value for these parameters is still an
open question and will remain out of the scope of this paper.
However, interested readers may investigate multiobjective
optimization [27] in the area of operational research to
address this question. Another approach we identified to
find the optimal values for these parameters involves ma-
chine learning. Indeed, interesting works have been con-
ducted for wireless networks using reinforcement learning
[28] and deep learning [29].

In this paper, we expect that if the reduction threshold is
high, we may not be able to detect network overload,
resulting in underutilization of the A-FAME. Indeed, the
higher the threshold is, the less the impact of the excess is on
the aggregation force. On the other hand, a low threshold
can activate the A-FAME mechanism more often with a
potentially greater excess, resulting in a lower aggregation
force. With regard to the initial value of the aggregation
force, a high value can limit the range of the force of a node,
which can reduce the adaptability of the metric. However, a

Unused nodes

15 1 1 1 1 1 1 1 1
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—— Shortest path A-FAME (50-80)
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% FAME (without cliques) ~e- A-FAME (50-50)
A-FAME (80-80)

FIGURE 9: Number of unused nodes with various parameters for the
A-FAME.

low value may reduce excessively the aggregation, resulting
in an oscillation problem where each metric (FAME and
A-FAME) is used in turn.

In Figures 9 and 10, we compare our solution to the
following references:

(i) FAME (without cliques), a specific application of
FAME in a routing algorithm that does not take
interference into account. This reference is added
only as an indication to show that FAME is not an
acceptable solution to aggregate flows if the routing
algorithm does not consider interference. Indeed,
although Figure 9 shows that this solution is able to
turn off more nodes than FAME (applied with an
interference aware routing algorithm), Figure 10(b)
indicates that it tends to overload the network as
flows are inserted into the network.
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(ii) FAME, the reference we want to approach. The
purpose of this is to emphasize the effectiveness of
A-FAME when interference is taken into account.

(iii) Shortest path, which represents our lower bound
reference and our worst-case scenario in terms of
aggregation.

(iv) A-FAME (x-y), our solution applied in a routing
algorithm that did not take into account in-
terference, where x and y are the parameters of the
metric.

Figure 9 indicates that when A-FAME is used with two
high parameters (Bs = 80% and Sr = 80%), its performance
in terms of aggregation is very close to that of FAME. This
can be explained by the fact that these high parameters avoid
significantly reducing aggregation. Then, when the base
value is reduced for the aggregation force (Ba), the per-
formance of A-FAME decreases. Finally, lowering the re-
duction threshold (Th) also leads to limit aggregation.
Indeed, with such a low threshold, the A-FAME is triggered
more often and the amplitude of the excess increases.

Figures 10(a) and 10(b) show the impact of the pa-
rameters of A-FAME on the network load. It behaves in the
same way as in the previous figure. Thus, as the parameters
improve aggregation performance, the network load in-
creases to approach that of FAME. Figure 10(b) also illus-
trates that A-FAME follows FAME when there are not much
flows in the network. As soon as more flows are added,
increasing the network load, the two solutions diverge. This
difference appears at different levels, which depend mainly
on the reduction threshold.

6. Conclusion and Perspectives

Our work focused on aggregating flows in multihop wireless
networks to minimize overall energy consumption, while

maintaining the quality of service offered in terms of
throughput. In this paper, we have shown that maximizing
energy savings and maximizing the number of nodes that
can be turned off are equivalent problems. Then, we have
improved our previous solution [3, 5], where our Flow
Aggregation MEtric (FAME) tends to overload some parts of
the network. To do so, an adaptive metric (A-FAME) has
been proposed, taking interference into account in order to
adjust the aggregation force of the nodes in loaded areas. The
performance of our solution has been evaluated by simu-
lation. The results have illustrated the interest and effec-
tiveness of our approach.

Future work should focus on finding an effective way to
implement flow aggregation in current applications. To do
this, we need to disseminate two pieces of information: the
network topology which is necessary to determine the
routes and the nature of nodes of interest. Our first studies
on the adaptation of the OLSR protocol [10] seem very
promising. Another interesting research topic would be to
investigate whether the results of this work can now be used
to improve duty-cycle solutions. More precisely, a fun-
damental question is how long a node can be turned oft
without hindering network responsiveness. Our next work
will therefore focus on the extinction time of a node
according to the dynamicity of the network, based on
robust programming.

Data Availability

The raw data used to support the findings of this study have
not been made available because of the large amount of
memory space it takes. The tools’ source code used to
generate the raw data used to support the findings of this
study is  available at  https://www.lri.fr/~laube/
flow_aggregation/flow_aggregation_tool.tar.gz or from the
corresponding author upon request.
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