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Optical Burst Switching (OBS) paradigm coupled with DenseWavelength DivisionMultiplexing (DWDM) has become a practical
candidate solution for the next-generation optical backbone networks. In its practical deployment only the edge nodes are
provisioned with buffering capabilities, whereas all interior (core) nodes remain buffer-less. In that way the implementation
becomes quite simple as well as cost effective as there will be no need for optical buffers in the interior. However, the buffer-less
nature of the interior nodes makes such networks prone to data burst contention occurrences that lead to a degradation in overall
network performance as a result of sporadic heavy burst losses. Such drawbacks can be partly countered by appropriately
dimensioning available network resources and reactively by way of deflecting excess as well as contending data bursts to available
least-cost alternate paths. However, the deflected data bursts (traffic) must not cause network performance degradations in the
deflection routes. Because minimizing contention occurrences is key to provisioning a consistent Quality of Service (QoS), we
therefore in this paper propose and analyze a framework (scheme) that seeks to intelligently deflect traffic in the core network such
that QoS degradations caused by contention occurrences are minimized. +is is by way of regulated deflection routing (rDr) in
which neural network agents are utilized in reinforcing the deflection route choices at core nodes. +e framework primarily relies
on both reactive and proactive regulated deflection routing approaches in order to prevent or resolve data burst contentions.
Simulation results show that the scheme does effectively improve overall network performance when compared with existing
contention resolution approaches. Notably, the scheme minimizes burst losses, end-to-end delays, frequency of contention
occurrences, and burst deflections.

1. Introduction

Dense Wavelength Division Multiplexing (DWDM) does
support speeds in the terabit ranges in a single fiber; hence, it
can adequately handle the massive amounts of heteroge-
neous data in present and future service networks. +e
terabit range speeds are primarily achieved by way of in-
dividually modulating several wavelengths before multi-
plexing them into a single fiber. In order to match the
ultrahigh transmission speeds, the OBS paradigm was
proposed as a candidate solution. OBS generally combines as
well as represents a trade-off between other rival switching
paradigms such as Optical Circuit Switching (OCS) and
Optical Packet Switching (OPS). Whereas OCS may be

relatively easy to implement, it however has a disadvantage
of low network resources utilization and coarse granularity.
On the other hand, OPS generally features excellent re-
sources utilization as well as fine granularity even though it
would be too costly to implement [1].

+e edge (ingress and egress) nodes interface directly
with user networks such as subscriber access, individual
home metropolitan access rings, cloud centers, and smart
grids. Core and edge nodes are mesh interconnected via
DWDM links as illustrated in Figure 1. +e primary
functions of these two types of nodes are summarized in
Figure 2. In practical operation, an ingress (edge) node
assembles data packets destined for a common egress (edge)
node into data bursts. Upon completion of a data burst
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assembling, a signalling burst control packet (BCP) is
generated and dispatched with an offset time ahead of the
data burst. +is will be delivered to the next (intermediate)
node. +e set offset time is critical in ensuring that required
resources are configured at the next node prior to the data
burst’s arrival. Particularly, the offset timing is a time al-
lowance for processing of the BCP at the next and subsequent
nodes, reservation of a wavelength at the desired output port
link, and preconfiguring the switching network with respect
to the incoming and outgoing ports to be used [1]. +e data
burst later cuts through the node and shortly afterwards
resources previously reserved for its switching are freed so
that they can be utilized by other lightpath connection
demands. +e cut-through approach in handling the burst
alleviates the necessity for any node buffering as this would
otherwise escalate CAPEX/OPEX, as well as overall end-to-
end delays for the data bursts. +e momentary usage of
resources enhances utilization as well as improves adapt-
ability to highly heterogeneous traffic. When establishing an
end-to-end lightpath connection, it is important to carefully
select the set of candidate routing links as well as wave-
lengths at each ingress node so as to reduce the possibilities
of data burst contentions occurring at subsequent nodes as a
result of improper routing and wavelength assigning
(RWA). In order to resolve any possible contention oc-
currences, limited extra resources in the form of wavelength
converters (WCs) and optical (fiber) delay lines (FDLs) are
provided. Once a data burst has successfully traversed the

network, it will eventually be disassembled into individual
packets which are then routed to their respective final
destinations [1]. A key step in the design and deployment of
OBS backbone networks is to optimize the limited available
links as well as wavelengths such that a maximum possible
number of lightpath connections can be established si-
multaneously. In essence, the RWA problem centers on
establishing an end-to-end lightpath using a single wave-
length. In so doing, this wavelength continuity constraint
forbids the establishment of more than one lightpath using a
particular wavelength concurrently on the same fiber link.

As core nodes do not directly interface with access
networks, their primary functions are therefore restricted to
BCP processing, scheduling, and contention resolution. Its
functional components include input ports terminating each
incoming fiber, output ports feeding to outgoing fiber links,
a BCP processor, an optical cross-connect (OXC), wave-
length converters (WCs), and FDLs. BCPs from ingress
nodes are extracted at the input ports of intermediate nodes
along the routing path then processed electronically by BCP
processors. +e offset timing relationship between a data
burst and a BCP is illustrated as shown in Figure 3(a).

As was mentioned earlier, core nodes (Figure 3(b)) do
not offer any buffering capabilities; thus, the data bursts cut
through such nodes wholly in the optical domain. A per-
formance drawback with regard to this being that some data
bursts may be lost whenever contention occurs. +e latter
will always occur whenever more than one data burst
destined for the same output port overlap in time and
frequency.

Contention is regarded as a significant hindrance to the
smooth operation of an OBS network as it often leads to
significant burst losses and consequently QoS degradation. It
arises when two or more data bursts utilizing an identical
wavelength and destined for the same output port partially
or wholly overlap in time. Both reactive and proactive
contention resolution approaches are being implemented.
Reactive contention resolution approaches attempt to re-
solve the contentions only after occurrence mainly in the
core network, whereas proactive schemes are designed to
avoid any contentions taking place in the network and ef-
fectively preventing any data burst losses.

Appropriate dimensioning of available network re-
sources is regarded as a proactive contention prevention
measure. Generally, it is relatively easier to implement
proactive approaches at the ingress nodes routing the data
on a carefully chosen optimal path to an intended desti-
nation coupled with optimal wavelength assigning to it.
Network level performance metrics such as burst loss
probability, end-to-end delays, and frequency of deflections
serve as measures of optimality in the path and wavelength
assigning.

Key reactive approaches include the use of limited
available buffering in the form of FDLs, converting one of
the contending data burst’s wavelengths to any other
available one using a WC, burst segmentation in which the
overlapping sections of contending data bursts are dis-
carded, or where one of the contending data bursts is
deflected to any other available output port.
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2. Related Work on Contention Resolution

Accurately dimensioning network resources in relation to
actual traffic volumes can be essential towards minimizing
contention. However, not much work has been done to-
wards accurately spelling out actual traffic flows throughout
a given network. +e authors in [2, 3] propose and evaluate
an algorithm for obtaining a detailed end-to-end traffic
matrix of a given network.+eir proposed algorithm is based
on fractal and cubic spline interpolation reconstruction
approaches. +e proposed algorithms will enable the at-
tainment of detailed information about traffic flows on all
active links of the network. However, both algorithms may
still generate errors and hence this leads to inaccuracies in
determining actual traffic flows. In a bid to further improve
the reconstruction accuracy, the authors go on to propose
the weighted geometric method whose simulation results [2]
show relatively better accuracy in determining the network
traffic flows. End-to-end traffic flow estimation based on
measured source-destination flows is also explored in [3].
+e proposed method herein, however, is deemed generally
costly in implementation even though its measurement
associated overheads are relatively low. In all cases, the
various proposed methods attempt to acquire a better global
view of the network’s traffic flows. +e traffic flow mea-
surements obtained will enable network designers to ac-
curately dimension all available network resources. In that
way they alleviate possible congestion and contention oc-
currences since more effective RWA problem can be better
resolved.

+e RWA problem constitutes simultaneously setting up
end-to-end lightpaths across the optical backbone transport
network as well as routing and assigning a unique wave-
length to each lightpath connection setup. In so doing, the
wavelength continuity constraint must be maintained and at
the same time designers are thriving to maximize the
number of simultaneous connections with minimal network
resources possible [4]. Once the network is operational,
contentions will always occur in the intermediate nodes
primarily because of their buffer-less nature. Extensive re-
search work is focusing on minimizing the frequency of
contention occurrences. +e authors in [5] proposed and

evaluated an algorithm that utilizes voids so as to minimize
contentions as well as burst losses in interior nodes. +e
algorithm initially identifies all possible candidate void
channels on which a data burst can be scheduled from before
finally selecting one that maximizes the void utilization
factor. Similarly, the authors in [6] propose a modified OBS
paradigm that adapts assembled data burst sizes as a
function of network traffic load. In this case when network
loads are high, longer data bursts are assembled by the
ingress nodes. Triangular estimator-based burst scheduling
algorithms are proposed in [7]. All sections of the network
that are currently prone to contention occurrences are
identified as well as avoided when scheduling bursts. +e
authors in [8] studied adverse effects of deflection routing
load balancing on general TCP performance. In their work,
they suggest source ordering as a means of improving TCP
throughput performance. Based on earlier findings, the
authors in [9] extended the work by proposing a modified
Horizon scheduling algorithm with minimum reordering
effects (MHS-MOE). Artificial intelligence techniques are
utilized to enhance the network’s routing decisions by the
authors in [10] who propose and analyze a Reinforcement
Learning-Based Deflection Routing Algorithm (RLDRA).
+eir aim was to reduce data loss probabilities when the rate
of contention occurrences at intermediate nodes surges
significantly as a result of deflection traffic. +eir scheme
tries to control the count of authorized deflections for each
burst to reduce the extra traffic generated by deflection
routing. It also does not generate significant amounts of
signalling and other computational overheads.

A multiclass preemptive scheduling-based scheme on
deflection paths (routes) is proposed in [11] in which an
attempt is made to improve general QoS of existing and
future connections by implementing preemption policies on
the onset of contention in the network. +e proposed
scheme’s complexity is in the involvement of multitudes of
parameters for determining and defining preemption
probabilities and policies. Deflection routing in an anycast-
based OBS grid is proposed by the authors in [12]. However,
the accompanying proposed enhanced deflection routing
algorithm does not appear to address or alleviate the con-
tention problem satisfactorily. Fairness and data burst loss
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owing to cascading constraint when bursts have longer hop
count value in OBS networks is explored in [13].+e authors
herein propose a preemptive scheduling technique for next-
generation OBS networks in which newly arriving bursts
with higher priority may preempt already scheduled ones
when contention occurs.

It is on the strength of the earlier cited weakness that in
this paper we propose a controllable deflection routing
scheme which couples with a simple wavelength and routing
assignment (WRA) algorithm to enhance overall network
performance, by way of minimizing contention, wavelength
congestion, and consequently bursts blocking probabilities.
+e scheme attempts as much as possible to deflect either of
the contending bursts to paths that have been chosen based
on the minimization of performance measures such as delay
and blocking. It aims at controlling deflection traffic by way
of selective path routing upon wavelength congestion onset.
It is backed by a very simplified distributed RWA approach
that ensures minimal contention in the primary (original)
chosen route(s).

Summarily, the paper’s contributions are as follows:
We propose a three-step approach to reducing con-

tention occurrences in the core OBS network: (1) offset time
regulation at burstification, (2) regulated deflection routing,
and (3) neural network-based robust network state updat-
ing. +erefore, in this regard, the following steps are carried
out:

(1) We describe a novel adjustable offset time coupled
with a segmented burst assembly algorithm that
regulates the offset timing such that extra delays are
not incurred by traffic in the network. +e algorithm
suits both delay and non-delay-sensitive applications
data.

(2) We develop a regulated deflection routing (rDr)
scheme that is primarily concerned with the selection
of the best-choice deflection routes at (from) each
node when contentions have occurred, and deflec-
tion is necessitated. It is a proactive multipath neural
network reinforced routing approach that seeks to
avoid contentions occurring, as well as maintain load
balancing in the overall network.

(3) For more accurate routing decision making by the
node, we propose that neural network (NN)-based
agents be incorporated to each routing node. +e
agents will form a distributed signalling network that
periodically updates the entire network resources to
routing tables. In that way, nodes can make better
routing decisions. Each agent has a simple archi-
tecture; namely, it utilizes a single hidden as well as
an associative learning algorithm to periodically
update others regarding the state of network re-
sources within the neighbourhood.

+e rest of the paper is organized as follows:
In Section 2, we provide a brief description of deflection

routing-based contention resolution in the core network.
We introduce an adjustable offset timing burst assembly
algorithm in Section 3. Neural network-based reinforcement

learning is reviewed in Section 4, and in Section 5, we in-
troduce a distributed regulated deflection routing frame-
work. +e same section discusses the NN-S algorithm.
Section 6 is dedicated to evaluation, discussions, and
conclusions.

3. Adjustable Offset Timing

Various traffic classes will always require some degree of
QoS guarantees. During data burst assembling, QoS pa-
rameters such as jitter, blocking probabilities, and end-to-
end delays can be minimized by reducing burstification
delays as well as adaptively regulating the offset time [13].
Generally, burst assembly algorithms strive to strike balances
between the rate at which BCPs are generated versus in-
dividual data burst sizes. +e two are complimentary for
moderate-to-high traffic loads in that maintaining huge data
burst sizes during the assembly process would result in lesser
numbers of BCPs generated per unit time. However,
maintaining huge burst sizes will also lead to increased
burstification delays when network traffic is low. +us, the
magnitude of offset timing chosen will directly influence
end-to-end delays. Fixed offset timing gives extra time al-
lowances for short data bursts but will be problematic for
huge-sized bursts. In this paper, we adopt an adjustable
offset timing algorithm during burst assembly whereby the
actual offset time assigned is set as a function of an estimate
of the current data burst size during its assembly [13, 14].

+e adjustable offset time algorithm assumes the seg-
mented burst assembly approach [15]. For a given source (s)
to destination (d) node pair, the total end-to-end delay (td,s)
is expressed as

td,s � tba + toffset + h × tproc + tprop􏼐 􏼑, (1)

where tba is the burst assembly time at the ingress node, h is
the hop count between s and d, tproc is the processing and
switching time at each node, and tprop is the propagation
time per hop distance.

Upon arrival of packets at an ingress node, the packets
are assembled into class segments [15]; the maximum time
delay tolerance of the packet class (tmax class) is set according
to its QoS requirements.

tmax_class ≥ td,s. (2)

If the tmax(app) is less than the end-to-end delay time, td,s,
then the offset time is calculated as

toffset � h × tprop + tproc􏼐 􏼑 − todv. (3)

From (3), todv is an offset-time deducted value which is
typically 90 nanoseconds [13].

+e next burst assembly time (tout) is computed from

tout � Δt, (4)

where

Δt � tmax class − td,s. (5)
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4. ANN Agents and Reinforcement Learning

Artificial Neural Networks (ANNs) are becoming a very
popular tool for solving issues at operational level in
networking.

+e primary challenge in the use of ANN agents in this
regard is for them to learn situation-to-action mappings in a
particular network scenario and once the learning is suc-
cessfully accomplished, the agent autonomously carries out
the task. By availing appropriate data, an agent will quickly
learn how to control a specific task in a networked envi-
ronment. By leveraging complex statistical as well as
mathematical tools, a given ANN set is capable of inde-
pendently performing complex tasks that traditionally could
only be solved by humans [16].

+e adoption of ANN techniques in network routing was
triggered by the unprecedented surge in network com-
plexity. +e large number of interdependent adjustable
network system parameters such as modulation formats,
coding schemes, routing configurations, and symbol rates
contributes to overall network complexity. Figure 4 illus-
trates the principles of applying artificial intelligence in an
OBS network. +e agent routinely monitors the network
(environment) for any state change(s) and actions to each of
them accordingly. For every agent’s action, the environment
reciprocates with a reward signal. +e agent in turn uses the
reward signal for self-performance as well as on improving
its subsequent decisions. For this reason, the agent requires a
learning algorithm to enhance its interactions with the
environment. It is expected to demonstrate intelligence
capabilities by way of incorporating planning, reasoning,
and knowledge. Because events in an OBS network are often
nondeterministic, an agent must operate robustly under
uncertainty. It should also make use of key decision-making
algorithms so that they can maximize the expected utility.
Practical OBS network environments mostly deal with
uncertainties and hence the precision of an agent will de-
pend on a multitude of interactions with the environment
rather than a single isolated one. Learning is also a key issue
that enables an agent to improve its accuracy on future
decisions, based on previous experience. Learning will also
help it to be adaptable to a changing environment. +e
learning phase is commonly referred to as machine learning
(ML). +e various learning algorithm categories include
supervised learning, unsupervised learning, hybrid learning,
and reinforced learning. In this section, we will elaborate
more on reinforcement learning. In this case, the agent
requires inputs such as jitter, tolerable network delays, and
loss probabilities of various output ports (links) from the
OBS network environment before responding accordingly
with the most optimal link (path) choice towards a particular
destination. +e network eventually sends a positive or
negative evaluative reinforcement feedback signal to the
agent. +e latter signal will be used by the agent to adjust its
parameters accordingly so that it could improve on its future
decisions regarding the same network aspect [17]. +e re-
inforcement learning system also requires a strict policy so
that the agent’s behaviour can be regulated. It will also utilize
reward function maps on each state–action pair of the

environment to a numerical value which indicates the de-
sirability of that state or the desirability of an action at that
state [17, 18].

4.1. Extreme Learning Algorithm. In this subsection, we
summarily describe an example ANN set learning algorithm
called the extreme learning algorithm [10]. It facilitates the
following key steps in order to arrive at a decision.

(i) Each ANN set accepts an input signal from its
environment (the OBS network).

(ii) +e input data set now traverses the entire set (via
the hidden layer) and is eventually mapped to the
output layer as an action.

(iii) +e output of the ANN set is fed to the environment
where the latter will evaluate it before subsequently
responding to the NN set with a reinforcement
signal r.

(iv) +e NN set uses r to further improve on future
decisions. +is is achieved by modifying its weights
accordingly.

We hereby take an example of estimating the blocking
probability in an OBS network [19].

+ training set can be represented by a vector:

D � xk, pk( 􏼁: xk ∈ R
d
, pk ∈ R, k � 1, . . . , N􏽮 􏽯, (6)

where xk is the ANN input vector and yk is a targeted output
vector of kth sample.

By assuming the ANN set comprises a single hidden
layer, then

fn(x) � 􏽘
n

i�1
βigi(x), (7)

where gi denotes the ith hidden node’s output, whereas βi is
the weight between the ith hidden node and the output node.

+e output function gi(x) of the ith hidden node can
thus be defined as

gi(x) �
1

1 + e− aT
i

x+bi( )
, (8)

where ai is ith hidden layer’s input weight vector and βi is the
corresponding bias term.

If n hidden nodes are used for the approximation, then
the mean square error (MSE) is

ε � 􏽘
N

k�1
pk − 􏽘

n

i�1
βigi xk( 􏼁⎡⎣ ⎤⎦

2

� p − 􏽘
n

i�1
βigi

���������

���������

2

2

. (9)

In the above, p � [p1, . . . , pN]T and gi � [gi(xi),

. . . , gi(xN)]T. At the nth step, the training error is

εn � p − 􏽘
n

i�1
β2i gi

���������

���������

2

2

� en− 1 − βngn

����
����
2
2, (10)

where en− 1 � p − 􏽐
n− 1
i�1 βigi.

+e output weight can thus be minimized using
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βn �
eT

n− 1gn

gn

����
����
2
2

. (11)

5. Node-Regulated Deflection
Routing Framework

We describe our proposed scheme as follows. Firstly, we
discuss its principles followed by the learning scheme that
would be used by the incorporated agent at a node in making
key routing decisions.+e ultimate objective of the scheme is
to find an optimal route to deflect a contending burst if
deflection routing is the only contention resolution scheme
implemented in the particular network. +e scheme thrives
to ensure that each core node where contention is likely to
occur learns to select an optimal deflection routing link(s) in
terms of minimal blocking and delay with respect to the
original route. In so doing, it thrives to minimize both
signalling and computational overheads.

5.1.,eProposedScheme. +e proposed scheme’s focus is on
regulating selection of a deflection output port such that the
chosen deflection route does not degrade the QoS of both the
deflected bursts and existing traffic on the deflection link/
path. We assume that should any two data bursts destined
contend for the same output port, only one of them will be
routed on the original path and the other will be deflected
onto a selected least-cost deflection route. +is is further
illustrated by the queuingmodel in Figure 5(a). As defined in
[20], deflection path server #1 queue represents a deflection
path that offers a QoS nearing that of the original path.

A data burst will be deflected to path server #1 only if the
controller buffer’s capacity exceeds a threshold state q1;
otherwise, it will always be routed on the original path.
Similarly, path server #2 would be the next-choice deflection
route after the threshold exceeds q2. Otherwise, in the ab-
sence of contention, the original path will always be pre-
ferred. +e overall performance of a given link is time
dependent; hence, Figure 5(b) illustrates these state changes
for the two selected deflection paths. When busy, a selected
deflection path exits the projected performance bounds at a
rate αj and conversely its performance improves at a rate βj.

Summarily, the key steps are as follows:

(i) Sending node dispatches a BCP whose offset time is
calculated according to (3) to the next intermediate
node.

(ii) +e BCP is processed upon its arrival at the next
intermediate node. If desired primary route’s output
port and link wavelength are available, the burst will
be accepted.

(iii) However, if contention or its imminence is detected,
then the contention is resolved before the data
bursts arrive as follows:

(a) If the current node is the ingress, its BCP is
dropped and retransmission attempted at a later
time.

(b) +e other burst(s) can be either routed via the
primary route, deflected to an alternate path, or
worst case be discarded. +is is done according
to the set of rules in step iv as follows:

(iv) Data burst assigned to the original path: there are
two or more contending bursts that have arrived
and are all in transit. +e controller buffer is in state
q< q1, and there are enough free wavelengths to
accommodate all the contending bursts. Note that a
link may have more than one fiber.

(a) deflected to path #1: the controller buffer is in state

q
∗
1 ≤ q≤ q

∗
2 , (12)

(b) deflected to path #2: the controller buffer is in state

q
∗
2 ≤ q≤ qN, (13)

where qN is the maximum possible aggregated deflection
capacity on the two links.

Note that the threshold values q∗1 and q∗2 are set by taking
into the key QoS metrics such as end-to-end delay and
blocking.

5.2. Reinforcement Learning. We assume that the routing
decisions pertaining to which deflection paths are deter-
mined by a routing agent. +e Q-learning algorithm [21, 22]
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is adopted for this scheme. +e Q-learning agent will
gradually learn the best deflection route choice given a
particular network state (s) after several trials of all possible
actions (a) and by evaluating the corresponding reward
Qπ(s, a). +e algorithm can be summarized in equation
form as follows:

Q
π

st, at( 􏼁⟵Q
π

st, at( 􏼁 + α rt+1􏼂

+ cat+1
maxQ

π
st+1, at+1( 􏼁 − Q

π
st, at􏽩,

(14)

where r is the discount rate, α is the learning speed, and st, at,
and rt are the state, action, and reward at a given time t,
respectively.

Each core node’s incorporated agent always learns the
states of all links connected to the node and updates this
information in the node’s routing tables. In so doing, it
stores Q-values for each outgoing/incoming link, each
represented by a vector with entries such as blocking
probability (Pb) and hop count (h). In addition, each entry is
further indexed by the (destination, neighbouring node);
(d, k), where d is the destination and k is the neighbouring
node.

When it is desired to deflect a burst to a particular
destination, the node will choose a link with the highest Q.;
that is,

y � argmax
z∈N(x),z≠p

Q
π
x d, k, h, Pb( 􏼁, (15)

where Qπ
x(d, k, h, Pb) is the Q-values associated with

neighbouring node z with respect to the destination (d) and
N(x) is the set of nodes (links) neighbouring x.

Subsequently, the node controller chooses the best two
performing links to a particular destination, path #1, (Qπ

1x)
and path#2, (Qπ

2x), where Qπ
1x ≥Qπ

2x. It then sets their
threshold buffers q1 and q2.

After node x successfully deflects a data burst to a
neighbouring node y, its agent receives a feedback signal
Qπ

y(d, z, h, Pb) that it uses to compute a reinforcement
numerical as

fyx � Q
π
y d, z, h, Pb( 􏼁 × Q

π
x d, z, h, Pb( 􏼁. (16)

Node x uses this value to update its deflection tables as

Q
π
x(d,y)⟵Q

π
y(d,y) �

αfyx 1 − Bxy􏼐 􏼑

Dx(d,y)
− Q

π
x(d,y), (17)

where Bxy is the burst lost probability along link x⟷y;

Bxy �

Ndropxy

sentxy + Ndropxy

, if sentxy + Ndropxy
> 0,

0, if sentxy + Ndropxy
� 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(18)

In (18), Ndropxy
is the total number of dropped bursts,

while sentxy is the total number of successfully transmitted
bursts on the given link.

+e deflection path loss probability from the point of
deflection to destination d is

Pxp � 1 − 􏽙
1≤i≤|P|− 1

1 − Bh,h+1
􏼐 􏼑, (19)

where h1,...,h|p| is the number of remaining hops to the
intended egress node.

5.3. Nodal Agent. In this section, we assume a feedforward
single hidden ANN set for deflection routing. Its structure is
shown in Figure 6.
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Figure 5: (a) Proposed scheme queuing model. (b) QoS state transitions. (c) Routing tables.
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It relies on its look-up table to store Q-values repre-
senting the states of all output links at a node to a particular
egress node. +is Q entry takes into account QoS metrics
such as burst loss probability and remaining hope count as in
(15). When a node receives BCPs and detects contention, its
controller deflects one of the contending bursts to a
neighbouring node with the highest Q-value with respect to
intended destination. +e agent has three layers, namely
input, middle, and output layers. We assume that the OBS
node has n outgoing ports.+e input layer has two sublayers;
namely,

Il
� x

l
1, . . . , x

l
n􏽨 􏽩,

Ιd � x
l
d, ..., x

d
n􏽨 􏽩.

(20)

If a port is blocked, then it is set to 1; otherwise, it is
always set to 0.

+e Il input section’s weights to the output layer can be
expressed as a n × n matrix as follows:

W
lo

�

wlo
11 0 . . . 0

0 wlo
22 . . . 0

⋮ ⋮

0 0 wlo
nm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

If Zm � [zm
1 , . . . , zm

n ] is a binary vector representing the
middle layer, then it maps the input and the output layers
using the matrix

W
dm

�

ωdm
11 ωdm

12 . . . ωdm
1n

ωdm
21 ωdm

22 . . . ωdm
2n

⋮ ⋮ ⋮

ωdm
n1 ωdm

n2 ωdm
nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)

W
mo

�

ωmo
11 ωmo

12 . . . ωmo
1n

ωmo
21 ωmo

22 . . . ωmo
2n

⋮ ⋮ ⋮
ωmo

n1 ωmo
n2 ωmo

nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (23)

+e matrices given in (21) and (22) reflect deflection
route preferences and are continuously updated and new
reinforcement signals are received from the OBS network
(environment).

+erefore, for any given h × k matrix Q, a Bernoulli
semilinear operator Φ(Q) can be defined as

Φ(Q) �

1
1 + eq11

. . .
1

1 + eq1k

⋮ ⋮ ⋮

1
1 + eqh1

. . .
1

1 + eqhk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

In each decision making, a probability vector
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Pm
� pm

1 . . . pm
n􏼄 􏼅, (25)

is computed using the Bernoulli semilinear operator as

Pm
� Φ Id

× Wmo
􏼐 􏼑. (26)

Each element xm
k ∈ Z

m is calculated as follows:

x
m
k �

0, if pm
k < 0.5,

U(0, 1), if pm
k � 0.5,

1, if pm
k > 0.5,

⎧⎪⎪⎨

⎪⎪⎩
(27)

where U(0, 1) assumes 0 or 1 from a uniform distribution.
We further let 1 × 2n row vector Io � [IlZm] represent an

input to the output layer Zo.
+e n × 2n matrix Wo � WloWmo􏽪 􏽫 represents the

weight matrix of the output layer Zo. +e probability vector
is calculated as

Po
� p

0
1, . . . , p

0
n􏽪 􏽫 � Φ Io

× Wo
( 􏼁

T
􏼐 􏼑. (28)

Finally, the binary output vector Zo � [zo
1, . . . , z0

n] can
now be calculated. Indices of 1s appearing in the output
vector indicate availability of that output for deflection.

6. Simulation Results and Analysis

In this section, we evaluate the performance of the proposed
rDr scheme by way of simulation. +e simulation focuses on
QoS metrics such as loss probability, frequency of conten-
tions occurring, number of deflections, mean burst end-to-
end latencies, number of deflections, and deflection path
lengths (measured in hops).

Our simulations are carried out on an online NS-2
simulator [23], together with OBS modules that are
implementable in the same simulator [24]. Only the 15-node
mesh topology network shown in Figure 7 was considered
for the simulations. Each fiber link terminates with a
standard port on either end and is bidirectional and all fibers
have equal numbers of wavelengths. Only the edge nodes on
the network can be ingress (source) and egress (destination)
points for the traffic, while the rest route traffic. +e sources
and destination pairs are randomly chosen from among the
designated edge nodes. +e traffic load normalized to the
maximum link capacities, i.e., the ratio of incident traffic to a
node and the aggregated capacities of all the wavelengths
constituting the link.

+e dynamic segmented burst assembly approach cou-
pled with adjustable offset timing algorithm as described in
Section 2 is assumed. For the sake clarity, the dynamic
segmented burst assembly algorithm’s model is illustrated in
Figure 8, which is presented in detail in [15]. Two traffic type
streams whose arrival rates are λ1 (high priority) and λ2 (low
priority) are considered. +e assembly approach is sum-
marized as follows:

(i) +e buffer sizes are H1 (high priority) and H2 (low
priority)

(ii) A newHP segment arrival will always be accepted in
the HP buffer provided it is not full; otherwise, it is
discarded

(iii) If upon arrival of a new LP segment, the total
number of segments in the LP buffer is i, i<H2 and
the number of segments in the HP buffer is j, j<H1,
the LP segment jumps to the HP buffer with
probability pi(j) and will now be served as a HP
segment; as such an arriving LP segment joins the
LP buffer with probability 1 − pi(j)

(iv) A new LP segment arrival will be discarded if the HP
and LP buffers are in states H1 and H2, respectively

(v) A new LP segment arrival finding the LP buffer in
state (H2), but the HP buffer in state j, j<H1 will be
admitted to the latter with probability pH2

(j), or
else be discarded with probability 1 − pH2

(j)

In our performance evaluations, we use both delay-
sensitive and non-delay-sensitive sources. Since all networks
that employ (adopt) deflection routing may suffer from
insufficient offset timing problem, we first simulate the end-
to-end delays as well as burst loss ratios of the proposed
adjustable offset timing scheme coupled with segmented
burstification. Here we restrict ourselves to the HP class
(delay-sensitive traffic type) as the two QoS parameters
(blocking and end-to-end delay) are relatively critical to this
class than the LP one. Note that when LP segments (bursts)
are lost, they can always be retransmitted.

Each link has one GHz bandwidth and BCP processing
time at each intermediate node is 1.5 μ secs. +e propagation
delay averages 1 μ sec on each hop. Each segment size is 50
packets and that of the segmented burst is 4000 kB. Only HP
class data segments are generated and their arrival at the
burstification buffers follows a Poisson distribution. We also
set three different values for the maximum burst transfer
delay (td,s) to 90 μ secs, 120 μ secs, and 135 μ secs. +e traffic
intensities will be varied from low to high. Shown in Figure 9
are the average end-to-end delays for the high-class seg-
ments (or packets) for three different values of maximum
burst transfer delay limits. In this case, the offset time is
computed according to (3) subject to (2).

Core node

Edge node

Figure 7: NSFNET topology network.
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As can be observed for low traffic levels, the average
delay is determined by the preset maximum burst transfer
delay values which are 90, 120, and 130 microseconds, re-
spectively. +e plotted results overall demonstrate that the
Segmented Burst assembly approach coupled with the offset
time approach will significantly reduce the end-to-end de-
lays incurred by the HP traffic. It is also observed that for low
traffic intensities, setting the maximum end-to-end delay
(td,s) to a low value yields overall less delays. +is is because
the segmented bursts are dispatched for scheduling without
waiting for the completion of burst aggregation. At high
traffic intensities, the aggregation time is still less than the
maximum delay.

We now turn to the burst loss ratio, in which we compare
the proposed adjustable offset time scheme to the conven-
tional OBS (where the offset time is fixed). +e simulation
results are shown in Figure 10. For traffic intensities ranging
from zero to about 0.5, the two approaches perform com-
parably the same. However, the proposed adjustable offset
approach still performs relatively better at peak traffic in-
tensities. +is is because as traffic increases, the conventional
offset time scheme generates more bursts and this leads to

more contentions (leading to burst losses). On the other
hand, the proposed scheme generates relatively fewer but
longer bursts and this coupled with adjustable offset timing
still results in fewer contentions as well as sufficient burst
processing times.

We further evaluate the performance of the proposed
rDr scheme with respect to the number of deflections, burst
loss probabilities, and average end-to-end delays. In so
doing, we compare the scheme to existing similar schemes
such as the following:

(i) Shortest Path Deflection Routing (SPDR) which was
proposed in [25] is generally considered as the
conventional OBS deflection scheme. We however
place a restriction on the number of deflections by a
single burst to three. +is is to prevent endless
looping in the OBS network which otherwise may
lead to more contentions as well as other network
performance degradations.

(ii) +e Reinforcement Learning-Based Alternative
approach (RLAR) which is analysed in [25] is ba-
sically based on Q− reinforcement learning NN
nodes at each core node, and it allows data bursts to
be routed on any available link rather than on a
shortest path link from source to intended desti-
nation. It resolves contention by merely discarding
one of the contending data bursts.

(iii) +e Reinforced Learning-Based Deflection Routing
Scheme (RLDRS) proposed in [26] is a proactive-
based algorithm that capitalizes on what a NN set
has learnt from the network by choosing a link with
maximum Q in the deflection routing table to
forward an incident contending burst.

Our blocking probability ranges are from Pb � 1 × 10− 6

to about Pb � 1 × 10− 3 and so our training data set is
generated according to these desired ranges. Similarly, the
same was done for the end-to-end delays which should be
within the desired QoS ranges.

In our simulation, arrival processes of data bursts to a
node are assumed to be Poisson-distributed, and hence
service times are exponentially distributed. Listed in
Table 1 are some of the key parameters for the simulation
as well as training model. +e data sets used are provided
in Table 2.

During the actual training phase, the NN set was learned
as outlined in IV; that is, initially we set the residual error
value e0 � p. We also set the number of hidden nodes to
zero, i.e., n � 0. Further, we define the termination condition
e. We then progressively increase the number of hidden
nodes n as long as the following conditions are not violated:

n≤ nmax and ((εn− 1 − εn)/εn− 1)> 0. Further, we go on to
add an additional gn(.) hidden to the network where,(an, bn)

are randomly generated. We then compute the new weight
βn.

βn �
eT

n− 1en

gn

����
����
2
2

, (29)

and further,

12H1 . . .

12H2 . . .

HP data segments

LP data segments

Discarded HP data segment(s)

Discarded LP data segment(s)
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segmented

burst

Burst
assembler
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Figure 8: Dynamic segmented burst assembly approach.
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en � en− 1 − βgn

n . (30)

Once training is accomplished, simulations of various
OBS network QoS metrics are obtained. In all cases, several
random assignments of node destination pairs are assigned
and then results obtained are averaged. Figure 11 shows the
overall mean end-to-end delays experienced by the data
bursts as they traverse the network. As can be observed in
this figure, the SPDR outperforms all other algorithms since
it is solely based on establishing shortest path deflection
routes to an intended destination. +e rDr is outperformed
by the other three since it does not necessarily utilize the
shortest paths and the burstification approach does regulate
the magnitude of the offset times.

+e end-to-end delay is acceptable for medium-sized
networks as well as for most application types that do not
impose stringent delay requirements. Because unresolved

contentions may lead to burst losses, we proceed to
compare the four schemes’ performance with regard to
blocking.
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Figure 10: Burst loss ratio due to contentions.

Table 1: Input parameters to the NN set.

Parameter Definition
Nλ Capacity of link in, i.e., number of wavelengths
ρs,d Average normalized traffic load in s, d pair
Δρd,s Difference between maximum and minimum traffic loads on a s, d pair and is uniformly distributed
h Mean path length
CR Route traffic concentration
α NN set learning rate

Table 2: Data sets.

Class
Lower bound Upper bound

Pb td,s(μs) Pb td,s(μs)

I 1 × 10− 6 750 1 × 10− 4 1000
II 1 × 10− 4 1001 5×10− 5 2000
III 5 × 10− 2 2001 0.25 5000
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Figure 11: Average end-to-end burst delays.
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Shown in Figure 12 are the results obtained when the
traffic load was varied from low to moderate and eventually
to high (100% loading). It can be deduced from the graph
that the rDr appears to be outperforming the other three
algorithms at all levels of traffic in terms of burst blocking.
+is is partly attributed to the fact that the deflection paths in
rDr are chosen from among the best two candidate routes
and this still leaves the rest of the network unaffected by
deflection traffic. +e careful choice of deflection routes in
rDr implies that any adverse effects of deflection routing are
minimized. +is can be easily observed in Figure 13 where
we plot the mean number of deflections as the network load
is increased gradually to maximum.

It is noted that for the proposed scheme, the number of
deflections only starts to surge when the network load ex-
ceeds 0.77.

+e BRITE network topology generator [27] is further
used to generate network topologies with varying numbers
of nodes up to a maximum of 1000. With this generator, an
edge that connects nodes v and u exists with probability:

Prob( v, u{ }) � βe
− (d(v,u)/Lδ)

. (31)

In (28), d(u, v) is the distance between nodes v and u; L is
the maximum link distance between two nodes, whereas β
and δ are parameters that take values in the range [0, 1].

Figure 14 shows the performance of the 4 algorithms in
terms of deflections. +e rDr outperforms the rest as the
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Figure 12: Blocking probability versus traffic load.
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network is expanded to a maximum of 1000 nodes. How-
ever, even though the blocking probabilities of the rDr al-
gorithm is lower since the bursts are deflected less
frequently, this is at the expense of having to incur larger
end-to-end delays as the algorithm tends to select longer
paths as indicated by the results plotted in Figure 15. RLDRS
and the SPDR algorithms always opt for the shortest paths
when deflecting contending bursts. However, the probability
of further encountering both contentions as well as con-
gestion is relatively higher because the majority of current
day routing protocols always choose to route data via shorter
routes.

Note that even though reduced burst deflection reduces
the burst-loss probability, it still introduces excess traffic
load in the network sections previously underloaded. We
further extended our study to investigating the effects of
increasing the number of wavelengths on the end-to-end
delays. We had to fix the traffic load to about 60% and varied
the traffic number of active wavelengths on each link from 4
to about 25.

It is observed from Figure 16 that rDr, RLDRS, and
RLAR algorithms reduced blocking probabilities as the
number of wavelengths is increased. However, this leads to
increases in end-to-end delays.

7. Conclusions

Deflection routing being a key contention resolution scheme
in present day OBS network motivated us into proposing
and analysing a reinforcement learning-based regulated
deflection routing (rDr) scheme. For periodic updating of
the entire network resources, we propose an artificial neural
network signalling algorithm (ANN-S) that utilizes a single
hidden layer as well as an associative learning algorithm to
periodically update routing tables so that nodes can make
better routing decisions. Furthermore, we proposed

coupling the use of the adjustable offset timing approach
with segmented burst assembling to enhance QoS perfor-
mance of the overall network, in particular, with regard to
accommodating delay-sensitive applications. +e reinforced
learning is implemented in the NS-3 platform available
online. We tested reinforcement learning-based regulated
deflection routing algorithm on the same platform. We also
utilized the National Science Foundation (NSF) network
topology and random graphs that consisted in varying the
number of nodes up to a maximum of 1000 for further
simulations. Ultimately, we compared the rDr scheme to
existing similar OBS deflection schemes such as Shortest
Path Deflection Routing (SPDR), the Reinforcement
Learning-Based Alternative Approach (RLAR) [19], and the
Reinforced Learning-Based Deflection Routing Scheme
(RLDRS) proposed in [20]. Key notable QoS metrics of
interest during the simulations were burst loss probabilities,
end-to-end delays, and the number and frequency of
deflections.

Our simulation results showed that overall the rDr
scheme by comparison significantly and effectively reduces
loss probability even though at a cost of negligible increases
in the end-to-end mean delays. Our further investigation
will include increasing the number of traffic classes in an
attempt to balance between the frequencies of contentions
that ultimately contribute to burst loss probabilities versus
end-to-end latencies especially during peak traffic periods.
In [28], the authors propose and discuss methods related to
QoS evaluation with regard to selecting an energy efficient
network. +e metrics taken into account also include energy
cost, network cost, end-to-end delays (latency), and band-
width. In our future work, we will incorporate the energy
cost metric when selecting a “least cost route” so as to
guarantee an energy-efficient network design [29]. With
regard to proper dimensioning of the available network
resources, we will further take into account the effect of
access network traffic behaviours.
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