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We have investigated dynamics of the Internet performance through the assessment of scaling features of a network ICMP echo
mechanism or pinging. Time series of round-trip times (RTT) from the host computer to 5 destination hosts and back, recorded
during three consecutive days and nights, have been used. To assess correlation and scaling features of network echo mechanism,
we used method of detrended fluctuation analysis (DFA) for RTTdata sets. It was shown that for different, 10 minute long periods
of day and night observations, RTTdata sets mostly fluctuate within a narrow range, though sometimes we observe strong sharp
spikes. RTT variations mostly reveal persistent behavior. DFA fluctuation curves often are characterized by crossovers indication
stronger or lesser changes in the dynamics of network performance. Distribution function of DFA scaling exponents of considered
RTT time series mostly was asymmetric with long tail on the right hand side. Dynamical changes occurring in the scaling features
of Internet network as assessed by RTT fluctuations do not depend on the location of the host and destination nodes. Larger delays
in round-trip time responses make the scaling behavior of the RTT series complicated and strongly influence their long range
correlation features.

1. Introduction

According to available literature data, interest in questions
related to the information transfer through the Internet net-
work permanently increases (see, e.g., 1–11). Generally, is well
known that the Internet forms the network where routers
navigate packets of data from one computer to another. (e
testing of reachability of a host at the network level has been
performed since the early days of the deployment of Internet
because it was clear that the character of the process of packet
delay may affect the quality of service. Further, the under-
standing of mechanisms of Internet packet delay may help to
design an efficient congestion control mechanism as well as
developing network behavior prediction algorithms enabling
model property of complex delay processes. Consequently,
comprehensive investigation of network behavior is presently
regarded as question of decisive importance.

(e standard facility which monitors performance in
Internet network is ICMP echo mechanism based on Packet

Internet Groper (PING) program. Hence, ICMP is often
used since almost all hosts and routers respond to ICMP
packets and this, so-called active measurement, method can
be used for various network environments [1–7]. Generally
active measurement means that probe packets are injected
into the network from a probe host, and we observe the
response of the network to these probe packets. As it is easy
to use, has accurate results, and can be flexibly deployed
anywhere in the network, active measurement became the
primary method of network measurement. Alternatively,
besides active one, passive measurement method; for ex-
ample, TCP, can be used too [8, 9] but, since RTT mea-
surements using TCP or ICMP are close enough, here
we decided to be restricted by active measurement data
series [9].

Measuring and monitoring of round-trip time, the
significant network performance characteristic, is important
for multiple reasons. RTTdata quantify the speed at which IP
packets travel across a specific path. (us, increased RTT is
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the sign that less packets are allocated, and vice versa as the
RTT decreases, more packets will be allocated. From the
literature it is known that RTT, or latency, may vary in very
wide range. Such essential quantitative changes, according to
Jorgensen and colleagues [10], have potential to negatively
affect the quality of network performance. On the other
hand, it is clear that besides the quantitative changes in RTT
values, qualitative changes are much more important which
may occur in the dynamics of RTT variation. (ese changes
may occur due to different causes and can seriously affect the
process of packets distribution in Internet network [10, 11].
Knowledge of these dynamical features will help operators
and end-users in better understanding of insights of un-
derlying processes and allow protecting and optimizing their
network performance [6, 12, 13].

Many studies on different aspects of Internet packet
delay or RTT features, in diverse network environments,
have been reported [see, e.g., 4–6, 9, 11]. Considerable part
of these researches is devoted to the dynamics of RTT
variation and often are focused on the problem of self-
similarity, long range memory, and scaling behavior. Such
interest to dynamics of processes in echo mechanism of such
a complex system like Internet (with complicated cluster and
hierarchical structures, spatiotemporal correlation with
feedback, self-organization, and connection diversity) is
quite understandable. Indeed, as we mentioned above,
without knowledge of dynamical features of RTT variation
(including its scaling characteristics), it will be impossible to
solve or even correctly pose important questions related to
the prediction of Internet packet delay and improving the
network performance. Results of the mentioned researches
convince that scaling features of network traffic greatly
influences the character of network performance, its resilient
and robustness to random errors, queuing time, break-
downs, attacks, and so forth [12, 14, 15].

All the abovementioned makes clear why for the last
several years, one of the most interesting aspects of complex
and interwoven Internet network researches become an
investigation of their scaling features [see, e.g., 9, 11]. At the
same time, in spite of the important advance achieved in the
last years, it need be stated that we still lack knowledge of
many aspects of the scaling behavior of packet delay espe-
cially in the sense of a quantitative characterization of the
RTTfluctuations and their dynamical properties [14].

Based on the experience gained by many research groups
up to day, in the present work we intended to continue the
study of scaling features of RTT data sets based on original
measurements at local host node at Georgian Technical
University, Tbilisi, Georgia. In this research we decided to be
based on the research scheme applied earlier by research
group of Wang and colleagues [12]. (ey have carried out
analysis for measurement node at Massachusetts Institute of
Technology (MIT), Boston, and five destination nodes (e.g.,
MIT, Harvard University (HARVARD), Boston, University
of California, Los Angeles (UCLA), University of Southern
California (USC), Los Angeles, and University of Science
and Technology of China (USTC), Hefei). In our case, we
used the same remote node shaving, as mentioned, mea-
surement node at Georgian Technical University, Tbilisi,

Georgia (GTU). On the basis of these data sets we inves-
tigated dynamical features of internet performance assessing
scaling characteristics of a RTT variation.

2. Materials and Methods

As it was pointed in previous section, based on the ICMP
protocol we conducted active measurement by ping facility
to measure RTT, a key performance metric for web appli-
cations [4–6]. Here it is necessary to underline that there are
a diversity of causes for changes in RTT, or latency, such as
insertion latency, the influence of physical distance of the
path, the so-called queue latency, traffic level, and so forth
[12, 16].

According to the aim of the present research, we col-
lected RTT data of the five different Internet paths men-
tioned above having the measurement node always at GTU.
(ese destination nodes, located in different distances from
the measurement node, are located, respectively, at GTU
(0.5 km), HARVARD (8672 km), UCLA (114010 km), USC
(11411 km), and USTC (6354 km).

For every path, we measured RTT at two different
working hours and two different nonworking hours, since
the network load should usually be quite different during the
two periods. (e measurement interval was always 10ms
and each measurement included 50000 samples. (e probe
packet is 56 bytes. Finally, for the present research, we se-
lected RTTdata sets recorded during three consecutive days
of observation.

Often for different analysis, purposes stationarity of
Internet network is assumed [7]. In fact though, this
practically never is the case, like it is for a diverse of time
series generated by natural and physical processes [17–20].
(is is why in our research after selection of necessary data
sets, we proceeded to the scaling and long range correlation
features analysis of RTT data sets using well-known
detrended fluctuation analysis (DFA) method that is capable
of eliminating artifacts arising from nonstationarities. Given
RTT time series of N samples were first integrated and then
divided into boxes of equal length n, according to standard
DFA procedure [19, 20]. In each box, the polynomial local
trend was calculated and removed. After N/n mean squared
residuals, Detrended Fluctuation Functions (F (n)) were
calculated for each box (or window) of size n:

F(n) �

��
1
N

􏽲

􏽘

N

i�1
Y(i) − Yn(i)􏼂 􏼃

2
. (1)

(is computation was repeated over all time scales
(window sizes) to determine the relationship between the
average fluctuation, F (n), and window size n. A log-log plot
of F (n) versus n was then linearly regressed to obtain the
slope, α, the scaling exponent, which is a typical fingerprint
of the scaling behavior intrinsic to the data. As far as F (n)
increases with the box size n, in case of fractal or self-similar
properties of analyzed data, a power law behavior F (n)∼ n α
can be revealed. If a power law scaling exists, the F (n) versus
n relationship, in double logarithmic fluctuation plot, will be
linear or close to be linear and the scaling exponent α can be
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estimated. Scaling exponent α= 0.5 indicates uncorrelated
dynamics [21, 22]. If α is different from 0.5, then the time
series is regarded as persistent or antipersistent, with α> 0 5
or α< 0 5 accordingly [21–23].

DFA scaling exponent α is considered as an indicator of
the nature of the fluctuations giving the information about
the long range power law correlation properties in the
analyzed data sets [21–24]. In the frame of present analysis,
we used second order of the polynomial fitting. Scaling
exponents in the range 1< α< 2 correspond to the integral of
a fractional Brownian signal and α� 1.5 correspond to the
well-known Brownian motion [20, 24].

3. Results and Discussion

As mentioned above, key performance metric for web ap-
plications, RTT, is the duration, measured in milliseconds,
from when a browser sends a request to when it receives a
response from a server. Supposedly RTT can be influenced
by the following: a distance that a signal has to travel, the
medium used to route a signal, number of intermediate
routers or servers, level of traffic, queuing, and so forth. For
clearness of further discussions, we also point here that RTT
and latency are regarded as closely related as far as first one is
transmission time to host and back while the latest is time to
the host.

Here we investigated dynamical features of Internet
performance assessing scaling characteristics of a network
echo mechanism. Similar to results of earlier researches the
shape of used RTT recordings (not shown here) indicated
that considered process is unstationary [see, e.g., 14, 23, 27,
28]. All used RTT data sets were highly fluctuating within a
narrow range, with some strong, isolated spikes followed by
smaller values indicating that the network at certain times is
in the relatively congested state and vise versa. Conse-
quently, characterized by heavy tailed distribution functions,
RTTdata sets can be divided into small part of strongly spiky
components of large delay times and much larger part of
delay times fluctuating within a relative narrow range. Some
authors claimed earlier that spikes in RTT data sets appear
periodically [6, 12, 13, 25, 26], but we, likeWang [12], do not
observe periodicity in spikes occurrences.

After selection of RTTdata sets, they have been normed
to standard deviation, and we started the DFA analysis.
Having in mind that RTT data sets were unstationary, it
becomes more understandable that robust against many
types of nonstationarity DFA method was preferable in our
research.

We underline that as far as opposite to number of
previous researches, we aimed to analyze original dynamical
features of echo mechanism; in the present work we avoided
any filtering of data sets in order to preserve internal
structure of target process.

In Figures 1 and 2, we present results of DFA calculation
accomplished for entire length of available RTT data sets
recorded during three consecutive days and nights of ob-
servation. Presented here are the results obtained for
polynomial fit p � 2, but the results for higher orders of
polynomials (3 and 4) have been found to be generally

similar. It is important that in most cases fluctuation curves
reveal presence of crossovers. Among the target nodes se-
lected for this study, there was no one for which the fluc-
tuation curves of the RTT series, recorded day or night
(during the three days of observation), would always be
linear. At the same time, in some cases, crossovers look very
conditional since divide parts of fluctuation curves with
close enough slopes. It is interesting that, sometimes, lin-
earity of fluctuation curve is observed for closely located
destination node, like for the first-day observations in case of
GTU, or for far located nodes such as UCLA and in some
extent for USC. RTT recordings for the second-day obser-
vations show linearity of fluctuation curve only for USC
node. (ird-day observation indicated crossovers for all
selected destination nodes. Similar is the situation for night
time measurements. Linearity of fluctuation curve was
observed for first-night RTT recordings in case of Harvard
and USTC nodes, second-night RTTdata of UCLA and USC
nodes, and GTU and Harvard nodes data sets recorded
during third-night observations (see Figure 2). It is also
worth mentioning that DFA scaling exponents calculated for
entire scale range (global exponent) of fluctuation curves
without crossovers are different for different destination
nodes or observation period. Namely, in case of destination
node USC for the second day and second night (Figures 1(b)
and 2(b)), RTT time series looked similarly close to random-
like (α� 0.54) while the first-day measurement for the same
node (Figure 1(a)) shows closer to persistent behavior
(α� 0.59). Clear persistence is revealed for the first-day
observations of GTU (α� 0.69) and UCLA (α� 0.91) nodes,
as well as for the first-night Harvard (α� 0.65), second-night
UCLA (α� 0.74), and third-night GTU (α� 0.59) node
observations. Fractional Brownian motion type behavior of
RTTobservations recorded for USTC node during first night
(a� 1.29) and Harvard node third night (α�1.44) are also
needed to be pointed. All this indicates complicated char-
acter of RTT variation depending on the network load
features and other presently unknown factors. At the same
time it looks obvious that scaling features of RTT variation
are not influenced by time of observation or by far or close
location of destination node.

Complex character of Internet performance, as assessed
by features of RTT variation, is revealed by the presence of
crossovers in fluctuation curves. In general, it is known that a
crossover phenomenon usually arises due to changes in the
correlation properties of the analyzed process at different
temporal or spatial scales [19, 27]. In such cases, when DFA
fluctuation curve is not linear (crossovers present), correct
extraction of global exponents for the entire scale is ques-
tionable. In Figures 1 and 2, local exponents for different
scaling regions of fluctuation curves are shown. In accor-
dance to earlier findings [12], in the case of most analyzed in
our work RTT time series, DFA plot consists of two or
sometimes three distinct regions characterized by straight
lines before and after crossover points. In Figures 1 and 2, we
notice different scaling exponents for different scaling re-
gions. Also a significant shift of the position of crossover
points was noted for different observation time periods.
Such shift(s) in the location of crossover point(s) usually are

Journal of Computer Networks and Communications 3



interpreted as a reduction of temporal correlation in the
analyzed process. (is means that unknown influences in
Internet network induce a decrease in the temporal or-
ganization of the echo mechanism. It is also important that
the found crossovers may correspond to different types of
transitions among nonpersistent, antipersistent, or per-
sistent behaviors in RTT time series. For example, as we see
in Figure 1, almost nonpersistent behavior (α� 0.51 ± 0.01)
observed for short scales (windows) in first-day recordings
of Harvard node RTT time series was changed to clearly
persistent behavior (α� 0.98 ± 0.03) for larger scales.
Moreover, we observe two crossovers in first-day RTT
series to USTC node where Brownian noise type behavior
(α�1.46 ± 0.04) at short time scale was transformed to
clearly persistent behavior at middle scales
(α� 0.73 ± 0.02) and become random-like at larger scales
(α� 0.49 ± 0.03).

Two crossovers present also in the fluctuation curves of
second-day RTT time series. Namely, RTT sequences to
Harvard node, at small middle and larger scales indicate
transition from persistent (α� 0.72± 0.02) to antipersistent
(α� 0.26± 0.01) long range correlated behavior followed by
negatively correlated (antipersistent) noise (α�1.20± 0.02)
[28, 29]. Complicated transition from the clearly correlated to
uncorrelated (random-like) and again persistent correlated

behavior is revealed for UCLA RTT series (α� 0.99± 0.02,
α� 0.46± 0.01, and α� 0.86± 0.02 for short, middle, and large
time scales accordingly). In case of USTC node, RTT time
series, recorded in second day, behave almost like for first-day
data sets excluding long range correlation detected for long
scales (α� 0.88± 0.04). By the way, for USTC node, RTT time
series recorded during third-day observations seem to be
characterized by one crossover and considered process of
RTTvariation at small and long scales is positively long range
correlated (α� 0.74± 0.02; α� 0.67± 0.01). Recorded for third
day, GTU, Harvard, and UCLA nodes RTT sequences also
have one crossover. As can be seen in Figure 1(c), the last two
of these time series reveal transition from persistent to slightly
less persistent behavior (α� 0.77± 0.03; α� 0.61± 0.01 ac-
cordingly), while RTT for GTU node indicate transition from
close to uncorrelated noise to clear persistence for long scales
(α�1.12± 0.01 and α� 0.71± 0.01). Changing character of
correlation is shown also for USC node where we again
observe two crossovers separating positively correlated short
and large scales by the close to be uncorrelated random-like
behavior in the middle time scale (α� 0.96± 0.02;
α� 0.52± 0.02; α� 0.77± 0.01 accordingly).

Night-time measurements, in sense of presence of
straight linear parts and crossovers in fluctuation curves, do
not reveal principal differences from what we observed for
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Figure 1: DFA p � 2, fluctuation curves of RTT time series for first (a), second (b), and third (c) days, day-time measurements. From top to
bottom measurements for GTU, Harvard, UCLA, USC, and USTC nodes.
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day time measurements. Indeed, in the cases when there are
no crossover points, the linear fluctuation curves of RTT
time series recorded during first, second, and third obser-
vation nights indicate different types of behavior (see Fig-
ure 2). Indeed, RTT time series recorded during first night
for Harvard node, second night for UCLA and USC, and
third night for GTU nodes reveal mostly positively corre-
lated persistent behavior (α� 0.65± 0.08; α� 0.73± 0.01;
α� 0.54± 0.01; and α� 0.59± 0.01 accordingly. In case of
RTT data recorded in second night for UCLA node, the
character of fluctuation was close to be regarded as non-
persistent random-like, with α� 0.54± 0.01. At the same
time, results for first-night recordings of USTC and third-
day recordings of Harvard RTT data sets point that process
at entire time scales looked close to be uncorrelated
Brownian noise (α�1.29± 0.01 and α� 1.44± 0.05
accordingly).

According to the results presented in Figures 1 and 2, it
can be said that in general there is no principal difference in
the shape of DFA fluctuation curves for day and night time
RTT recordings. (is is true for the cases both when we
observe the so-called simplex or linear fluctuation curves
and when there are crossovers. What is said is interesting in
the light of earlier results indicating that the extent of
temporal variation of RTT depends on the time of day [30].

In case of both day and night time data sets, the presence
of crossovers indicate changing character of correlation in
RTT variation cannot be explained by the location of des-
tination node or certain period of observation. Indeed, first-
night observations of closely located destination node of
GTU reveal transition from uncorrelated Brownian motion
(α�1.35± 0.01, at small scales) to persistent (α� 0.61± 0.04,
at larger scales) behavior (note that crossover is shifted to
larger scales). It is important that fluctuation curve of
second-night RTT recordings of this node is almost linear,
with practically negligible differences in correlation features
before and after crossover (α� 0.84± 0.03 and α� 0.82± 0.02
accordingly). More or less close to fractional Brownian type
behavior, with scaling exponents in the range 1< α< 2
[20, 24], is displayed for second-night Harvard, first-night
UCLA, and third-night USTC RTT recordings, with dif-
ference that, for the last two cases, small and large scales are
intermitted by middle scale persistent behavior (Figure 2).
Our results in complete accordance with earlier findings
[1, 14] point out the extreme heterogeneity of the Internet
processes transmission supposedly related to the fact of
strong differences in transmission speed between different
points of the network.

It deserves to be said that presence of spikes in con-
sidered data sets, causing strong differences in calculated
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Figure 2: DFA p � 2, fluctuation curves of RTTtime series for first (a), second (b), and third (c) nights, night-timemeasurements. From top
to bottom measurements for GTU, Harvard, UCLA, USC, and USTC nodes.
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values of coefficients of variation for certain day or night
RTTseries, is not connected with the question of presence of
crossovers in DFA fluctuation curves. For example, RTT
recorded in the first- and second night at GTU node are
characterized by strong spikes (Cv� 10.12 and Cv� 4.17)
though fluctuation curve of first one has clear crossover
while the second one practically is linear (see Figures 2(a)
and 2(b)). Also, RTT recorded at third night at USC
(Cv� 10.6) have one crossover though that recorded at
USTC (Cv� 0.013) has two crossovers.

So far as, sometimes slopes of parts of fluctuation curves,
divided by crossover, were very close; prior to continuing
with our following analysis we anyway would like to talk
about slopes of fluctuation curves on the entire available
scale. It looks interesting that slopes for entire scales in the
case of day-time RTT recordings were in the range 0.54 to
0.99, being in overwhelming cases clearly persistent. Night
recordings, on the other hand, in some cases reveal broader
range of slopes being actually from 0.66 to 1.2, indicating
sometimes close to fractional Brownian type of behavior.

Next, we applied sliding window procedure to reveal
time-varying long range dependence in the RTT time series
at different node locations. DFA exponents were calculated

for consecutive 1000 data windows shifted by 100 data steps.
As far as analyzed RTT data sets were long enough, we
selected 1000 data long windows that, on one hand, enabled
us to trace details of scaling features variation in the data sets
and, on the other hand, ensured appropriate level of the
reliability of calculations. Moreover, selected length win-
dows were appropriate to avoid mistakes in the calculation
of fluctuation function, which may happen if the data in
DFA boxes of smaller sizes is scarce. (us, reliable calcu-
lations for large number of small size boxes are important for
accurate estimation of the fluctuation function because in
the case of larger boxes, due to their low number, strong
noise effects may occur due to averaging problems
[21, 31, 32]. 1000 data length windows looked most ap-
propriate to ensure acceptable time resolution and the
correct calculation of scaling characteristics of used RTT
data sets. As far as fluctuation curves on larger scales often
have crossovers, we have considered only windows with
close to be linear fluctuation curves. Selection criterion was
such that standard deviations of increments of fluctuations
do not exceed 10 times of minimal STD for all windows.

In Figures 3 and 4, results of these calculations, for
different observation nodes, are presented as plots of
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Figure 3: Frequency of occurrence of DFA scaling exponents of RTT time series calculated for first (a), second (b), and third (c) days,
day-time measurements. Scaling exponents have been calculated for consecutive 1000 data windows shifted by 100 data steps. Crosses:
GTU, squares: Harvard, diamonds: UCLA, triangles: USC, and circles: USTC.
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frequency of occurrences of DFA scaling exponents calcu-
lated for consecutive 1000 data windows shifted by 100 data
steps along entire length of available RTT time series. As it
follows from the obtained results, in most cases both for day
and night recordings, frequency of occurrences of DFA
scaling exponents of RTT data sets is better described by
unimodal, asymmetric, and skewed left or right long tailed
distributions. It is interesting that according to results of the
previous researches, original RTT data sets are also char-
acterized by heavy tail distributions [10, 14, 30, 33].

Full range and width at half maximum of DFA scaling
exponents distribution functions convincingly indicate that
from window to window correlation features may change
drastically. In spite of such variability, from about 15 to 50
percent of cases calculated for shorter windows scaling
exponents are grouped at certain values, depending on
measurement node and period of data recording (see Fig-
ures 3 and 4). For example, scaling exponents, calculated for
1000 data windows of RTT series of Harvard node, during
first, second, and third days of observation, indicate random
or random-like slightly persistent (α from 0.5 to 0.54) be-
havior in 15% to 40% of all windows. Opposite to the first
two days, in case of third-day Harvard node RTT data,
distribution function of scaling exponents is most

asymmetric and skewed right. Almost the same can be said
for day time RTT data sets recorded for UCLA and USC
destination nodes (Figure 3), where in 15% to 35% of all 1000
data windows analyzed process looks random-like or slightly
persistent (α from 0.51 to 0.59) and distribution functions of
scaling exponents always are long tailed, skewed right.
Unusually, comparing to the above said, is the situation with
USTC destination node where for the first and second days
of observation in considerable part of 1000 data windows
(from 10% to 20%) RTT variation looks as Brownian noise
type (α≈1.2). At the same time third-day RTT recordings
show slightly persistent (α� 0.59) behavior in 21% of win-
dows. Nevertheless, distribution functions of scaling expo-
nents are long tailed though are skewed left. All what is
mentioned is related to the far located destination nodes.
Nonetheless, close GTU node also indicate different be-
havior of RTT data sets recorded in different days. Namely,
first- and second-day RTT observations show clearly per-
sistent behavior (α from 0.62 to 1.0) in 11%–18% of win-
dows, while third-day data indicate shift to Brownian noise
type (α≈1.2) behavior in about 10% of windows. Distri-
bution functions of RTT data sets recorded for close GTU
node were different, being sometimes more or less sym-
metric or close to be skewed left or right long tailed.
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Figure 4: Frequency of occurrence of DFA scaling exponents of RTT time series calculated for first (a), second (b), and third (c) nights,
night-time measurements. Scaling exponents have been calculated for consecutive 1000 data windows shifted by 100 data steps. Crosses:
GTU, squares: Harvard, diamonds: UCLA, triangles: USC, and circles: USTC.
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It is important, that like in the case of analysis of entire
length data sets, in case of 1000 data windows, we also do not
observe principal differences for day or night observations.
Indeed, as it is shown in Figure 4, DFA scaling exponents
calculated for night time RTT measurements at different
destination nodes show different behavior which cannot be
simply explained by location of certain destination node or
time of observation. Here we also observe presence of wide
range of scaling exponents and character of distribution
functions.

(us, results of research indicate complex character of
the dynamics of RTT variability which cannot be related to
one or several causes mentioned above. In addition to what
is mentioned above we add here that the importance of
results of this and similar researches also is related to the fact
that nowadays many devices have multiple network inter-
faces to achieve better robustness and efficiency. In such case
one usually deals with multiple subflows and thus needs to
determine subflows with minimal round-trip time when
transmitting packets. Knowing complex character of RTT
variation, described above, it becomes clear that quantitative
vision of issue, being focused on the minimum RTT values,
will not lead to a solution of problem and that it is necessary
to focus on assessment of qualitative changes in dynamics of
the process.

4. Conclusions

We investigated dynamics of Internet performance based on
the assessment of scaling features of a network ping time
series of echo mechanism. Time series of round-trip times
from the host computer to 5 destination hosts and back have
been recorded during three consecutive days and nights.

DFAmethod has been used for the purpose of long range
correlation testing of RTT data sets. It was confirmed that
RTTdata sets fluctuate within wide range depending on time
of observation or host location. At the same time, we find
that dynamical changes occurring in the Internet network do
not depend on the location of host and destination nodes or
time of observation.

It was confirmed that RTT values fluctuate within wide
range depending on time of observation or host location.
(is makes the scaling behavior of the RTT time series
complicated what is expressed in essential changes in the
long range correlation and scaling features of echo mech-
anism. It was shown that dynamical changes occurring in the
round-trip time variation of Internet network do not depend
on the location of host and destination nodes or on the time
of observation. From this we conclude that the character of
the found dynamical changes apparently is related to the
internal dynamical structure of the analyzed Internet echo
mechanism and is not caused just by the size of certain large
measured RTTvalues, location of node, or time of recording.

DFA fluctuation curves of RTT data sets are usually
characterized by more or less expressed crossovers, indi-
cating changing dynamics of the analyzed process during the
period of observation.

Distribution function of considered RTT time series
mostly was asymmetric with long tail on the right hand side.

Dynamical changes occurring in the scaling features of
Internet network as assessed by RTT fluctuations do not
depend on the location of the host and destination nodes.
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[16] G. Aceto and A. Pescapé, “Internet censorship detection: a
survey,” Computer Networks, vol. 83, pp. 381–421, 2015.

[17] A. Barabasi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[18] T. Matcharashvili, T. Chelidze, and M. Janiashvili, Identifi-
cation of Complex Processes Based on Analysis of Phase Space
Structures, Imaging for Detection and Identification,
pp. 207–243, Springer, Berlin, Germany, 2007.

[19] K. Hu, P. Ivanov, Z. Chen, P. Carpena, and H. E. Stanley,
“Effects of trends on detrended fluctuation analysis,” Physical
Review E, vol. 64, no. 1, 2001.

[20] Y. Ashkenazy, S. Havlin, P. C. Ivanov, C.-K. Peng, V. Schulte-
Frohlinde, and H. E. Stanley, “Magnitude and sign scaling in
power-law correlated time series,” Physica A: Statistical
Mechanics and Its Applications, vol. 323, pp. 19–41, 2003.

[21] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons,
H. E. Stanley, and A. L. Goldberger, “Mosaic organization of
DNA nucleotides,” Physical Review. E.vol. 49, no. 2,
pp. 1685–1689, 1994.

[22] Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Peng, and
H. E. Stanley, “Statistical properties of the volatility of price
fluctuations,” Physical Review E, vol. 60, no. 2, pp. 1390–1400,
1999.

[23] C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger,
“Quantification of scaling exponents and crossover phe-
nomena in nonstationary heartbeat time series,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 5, no. 1,
pp. 82–87, 1995.

[24] A. Paonita, “Long-range correlation and nonlinearity in
geochemical time series of gas discharges from Mt. Etna, and
changes with 2001 and 2002-2003 eruptions,” Nonlinear
Processes in Geophysics, vol. 17, no. 6, pp. 733–751, 2010.

[25] K. Papagiannaki, S. Moon, C. Fraleigh, P. (iran, and C. Diot,
“Analysis of measured single-hop delay from an operational
backbone network,” in Proceedings of the Twenty-First Annual
Joint Conference of the IEEE Computer and Communications
Societies, New-York, NY, USA, June 2002.

[26] K. Papagiannaki, S. Moon, and C. Diot, “Measurement and
analysis of single-hop delay on an IP backbone network,”
IEEE Journal on Selected Areas in Communications, vol. 21,
no. 6, pp. 908–921, 2003.

[27] R. G. Kavasseri and R. Nagarajan, “Evidence of crossover
phenomena in wind-speed data,” IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, vol. 51, no. 11,
pp. 2255–2262, 2004.

[28] B. Hoop and C.-K. Peng, “Fluctuations and fractal noise in
biological membranes,” Journal of Membrane Biology,
vol. 177, no. 3, pp. 177–185, 2000.

[29] K. Ivanova and M. Ausloos, “Application of the detrended
fluctuation analysis (DFA) method for describing cloud
breaking,” Physica A, vol. 274, no. 1, pp. 349–354, 1999.

[30] A. Acharya and J. Saltz, A Study of Internet Round-Trip Delay,
Technical Report, University of Maryland, College Park, MD,
USA, 1997.

[31] R. Hardstone, S. S. Poil, G. Schiavone et al., “Detrended
fluctuation analysis: a scalefree view on neuronal oscillations,”
Frontiers in Physiology, vol. 3, no. 450, pp. 1–13, 2012.

[32] T. Matcharashvili, T. Chelidze, Z. Javakhishvili, and
N. Zhukova, “Variation of the scaling characteristics of
temporal and spatial distribution of earthquakes in Caucasus,”
Physica A: Statistical Mechanics and Its Applications, vol. 449,
pp. 136–144, 2016.

[33] C. J. Bovy, H. T. Mertodimedjo, G. Hooghiemstra,
H. Uijterwaal, and P. Van Mieghem, “Analysis of end-to-
end delay measurements in internet,” in Proceedings of the
Passive and Active Measurements Workshop (PAM2002),
Fort. Collins, CO, USA, March 2002.

Journal of Computer Networks and Communications 9


