
Research Article
An Exponential Active Queue Management Method Based on
Random Early Detection

Hussein Abdel-Jaber

Faculty of Computer Studies, Department of Information Technology and Computing, Arab Open University, Saudi Arabia

Correspondence should be addressed to Hussein Abdel-Jaber; habdeljaber@arabou.edu.sa

Received 15 November 2019; Revised 15 February 2020; Accepted 5 May 2020; Published 22 May 2020

Academic Editor: Roberto Nardone

Copyright © 2020 Hussein Abdel-Jaber.)is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Congestion is a key topic in computer networks that has been studied extensively by scholars due to its direct impact on a
network’s performance. One of the extensively investigated congestion control techniques is random early detection (RED). To
sustain RED’s performance to obtain the desired results, scholars usually tune the input parameters, especially the maximum
packet dropping probability, into specific value(s). Unfortunately, setting up this parameter into these values leads to good, yet
biased, performance results. In this paper, the RED-Exponential Technique (RED_E) is proposed to deal with this issue by
dropping arriving packets in an exponential manner without utilizing the maximum packet dropping probability. Simulation tests
aiming to contrast E_RED with other Active Queue Management (AQM) methods were conducted using different evaluation
performance metrics including mean queue length (mql), throughput (T), average queuing delay (D), overflow packet loss
probability (PL), and packet dropping probability (DP).)e reported results showed that E_RED offered a marginally higher
satisfactory performance with reference to mql and D than that found in common AQM methods in cases of heavy congestion.
Moreover, RED_E compares well with the considered AQM methods with reference to the above evaluation performance
measures using minimum threshold position (min threshold) at a router buffer.

1. Introduction

With the fast development in computer hardware and data
communications, Quality of Service (QoS) in computer
networks has become an important concern for end users
[1, 2]. QoS can be defined as the network performance for
the different services sought by the user while data is tra-
versing via this network [1]. QoS has different levels pro-
vided to the users based on the requirements of applications
used, providers of network services, or Service Level
Agreement (SLA) among users [2]. Best effort is one of the
services used in the Internet to deliver packets and not
differentiate between packets generated by different classes
of service [3]. QoS can be evaluated by different metrics such
as bandwidth, packet loss, jitter, and delay.

In modern communication and computer networks,
different network applications have been developed such as
voice over IP (VoIP), video conferencing, live video, e-mail,

and file transfer.)ese applications require different QoS.
For instance, VoIP, video conferencing, and live video ne-
cessitate high bandwidth and low delay and jitter. Moreover,
network applications have low sensitivity to packet loss. On
the other hand, the applications of e-mail and file transfer
have high sensitivity to the requirements of packet loss and
low sensitivity to bandwidth, delay, and jitter. Enhancing the
performance of a network can be performed based on
obtaining the QoS for that network. Many researchers have
proposed congestion control techniques [4–9, 10--12] that
are implemented via simulation to enhance network per-
formance with different QoS requirements [1, 13, 14]. Other
congestion control techniques have been developed as an-
alytical models to deal with QoS issues [1, 2]. For example, in
[15–18], the authors proposed discrete-time queue analytical
models aimed at early control of congestion. Researchers
[1, 19, 20] also developed analytical models to solve prob-
lems related to the delay in the computer network.

Hindawi
Journal of Computer Networks and Communications
Volume 2020, Article ID 8090468, 11 pages
https://doi.org/10.1155/2020/8090468

mailto:habdeljaber@arabou.edu.sa
https://orcid.org/0000-0001-9372-4558
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8090468

RED is one of the key AQM techniques that were
proposed to enhance the classic drop-tail method [21]
performance. Nevertheless, and despite superiority of RED
over the drop-tail method, the advances in traffic service
diversity have revealed the following performance issues
associated with RED’s performance [2, 22].

(1) Usually the key congestion measure (average queue
length (aql)) used by RED varies according to the
level of congestion. For instance, when aql is near to
the min threshold, light congestion occurs, whereas
if the aql is near the max threshold, heavy congestion
occurs.)ese may cause the router buffer to overflow
and, therefore, the dropping of arriving packets.

(2) Another issue is tuning certain parameters of RED
into specific values, that is, the maximum value of
packet dropping (Dmax), to ensure a satisfactory
performance.)is produces biased results.

(3) Often aql depends on the number of TCP connec-
tions. When the numbers of TCP connections are
increased, the aql increases as well and may exceed
the max threshold position; hence, every arriving
packet is dropped.

)is paper deals with the second problem described
above which is tuning Dmax to a certain value to guarantee
high yet biased QoS. We would like to minimize this
problem by proposing a new method that relaxes the de-
pendency on the Dmax and instead employs a new expo-
nential measure called Dinit (see equation (5)) that is based
on average queue length (aql). In particular, when aql is
between the minimum and the maximum thresholds, the
proposed congestion control method drops arriving packets
exponentially.)is will result in more realistic performance
results rather than those that are biased. We call the pro-
posed algorithm RED-Exponential (RED_E).

)e proposedmethod is implemented using a simulation
and a discrete-time queues approach [23].)e discrete-time
queues approach is used to model the arrival and departure
of packets in every single time unit called a slot. Further
details on using the discrete-time queues approach with the
proposed method is given in Subsection 4.1.)e benefits of
the proposed RED_E algorithm are as follows:

(i) Calculating Dinit not involving using parameter
Dmax, relaxing users’ subjectivity when setting up
RED’s parameters;

(ii) Enhanced performance measures of mql and D

when compared to RED and one of the RED-based
AQM methods such as NLRED especially in cases
where the value of packet arrival probability is very
high.

)is paper is organized as follows. Related work, in-
cluding RED and NLRED methods, is introduced in Section
2. Section 3 presents the proposed RED_E. Simulation
details are introduced in Section 4 as well as performance
measures results. Finally, conclusions and future work are
provided in Section 5.

2. Related Work

2.1. RED and Nonlinear RED. RED is one of the known
AQM techniques that was proposed to detect and control
congestion [7]. RED relies on certain parameters to calculate
its Dp value.)ese parameters are min threshold,
max threshold, Dmax, and qw. For every arriving packet at
the router buffer, RED computes the aql value. When the aql
value is less than the min threshold, no congestion occurs
and thus no packets can be dropped. However, if the aql
value is less than max threshold and equal to or larger than
the min threshold, this gives an indication there is con-
gestion, and the router buffer drops arriving packets
probabilistically. Lastly, when the value of aql is equal to or
greater than the max threshold, heavy congestion is pre-
sented, and every arriving packet will be dropped in order to
manage this congestion.)is is achieved either by dropping
the arriving packets at the router buffer or by marking them
using Explicit Congestion Notification (ECN) [18].)e
pseudocode of the RED technique is shown in Algorithm 1.

Algorithm 1 shows that RED utilizes several factors to
compute aql and Dp.)e factors are explained below:

current time: current time.
idle time: starting idle time at the RED router buffer.
n: number of packets sent to the RED router buffer
during an idle interval time.
C: number of packets arrived at the RED router buffer
not dropped since the last packet was dropped.
Dp: instantaneous packet dropping probability.
Dinit: initial packet dropping probability.
q instantaneous: instantaneous queue length.
qw: queue weight.
Dmax: maximum value of Dp.
q(time): linear function for the time.

One of the main issues of RED is that setting the pa-
rameters cannot guarantee stable performance under
varying traffic loads [24].)is can be attributed to the linear
packet dropping probability function that is often aggressive
when the traffic load is light and not aggressive when the
traffic is low, which may cause the value of average queue
length to reach the value of the maximum threshold. To
overcome this problem, [24] proposed Nonlinear RED
(NLRED) that utilizes a nonlinear packet dropping function
similar to those proposed in [4, 25].)e pseudocode of the
NLRED method is given in Algorithm 2.

Algorithm 2 shows the NLRED router buffer is working
as RED’s router buffer when the value of aql is less than the
min threshold or greater than or equal to the max threshold.
In cases when the aql is between the min threshold and
max threshold, then NLRED uses the quadratic function to
compute the packet dropping probability, and this function
is given in

Dinit � Dmax′ ×
(aql−min threshold)

(max threshold−min threshold)
􏼐 􏼑

2
, (1)

2 Journal of Computer Networks and Communications

where Dmax′ is the maximum value of packet dropping
probability. If the same value is used for Dmax in RED and
Dmax′ in NLRED, then NLRED will be gentler than RED for
all traffic loads since the packet dropping probability value of
NLRED is less than that of RED. If the total of packet
dropping probabilities of RED and NLRED are similar, then
the value of Dmax′ will be set as follows:

Dmax′ � 1.5 × Dmax. (2)

)e packet dropping probability functions of RED and
NLRED methods are shown in Figure 1.

2.2. Other AQM Techniques. To solve the first shortcoming
of RED, aql varies according to the level of congestion, so the

Adaptive RED (ARED) technique was proposed in [8].
ARED aimed to stabilize the aql value at a specific level
between the min threshold and max threshold positions.
)is may prevent the dropping of large numbers of packets.

Gentle RED (GRED) technique [9] was proposed to
reduce packets being dropped.)is was accomplished by
preventing the dropping of every arriving packet when the
aql value equals the max threshold position as in RED [7];
instead, GRED drops arriving packets probabilistically based
on values in the range of Dmax to 1.0.

Dynamic Random Early Drop (DRED) technique [5]
was proposed to deal with aql dependency on the number of
TCP connections; BLUE technique [6] was developed to
offer better network requirements of packet loss rates and
queue size than those of RED [7].

(1) Initialisation stage
C � −1
aql � 0.0

(2) For every arriving packet at a RED router buffer
Calculate the aql for this packet at the RED router buffer
Examine the queue status at a router buffer, is it empty or not

if the queue at a RED router buffer is empty then
Compute n, where n � q(current time − idle time)
aql � aql × (1 − qw)n

Else
aql � aql × (1 − qw) + qw × q instantaneous

3. Determine a congestion status at the RED router buffer
if aql value is less than min threshold value then

Calculate Dp value for the arriving packet as follows:
Dp � 0.0
C � −1

else if aql value is greater than or equal to min threshol d value and less than max threshold value then
C � C + 1
Dinit � (Dmax × (aql − min threshold))/(max threshold − min threshold)

Dp � Dinit/(1 − C × Dinit)

Mark/Drop the arriving packet probabilistically regarding to Dp value due to occurrence of congestion
C � 0

else
Mark/Drop every arriving packet Dp � 1.0 due to occurrence of heavy congestion
C � 0

4. When the RED router buffer becomes empty
idle time � current time

ALGORITHM 1: RED technique detailed pseudocode.

For each arriving packet
Compute the average queue length (aql)
if aql≤M in threshold
No packet will be dropped

else if M in threshold≤ aql≤Max threshold
Compute the packet dropping probability using quadratic function
Drop the arriving packet with the computed probability

else
Drop the arriving packet

ALGORITHM 2:)e pseudocode of the NLRED method [24].

Journal of Computer Networks and Communications 3

Effective RED (ERED) technique was proposed to reduce
packet loss rates in a simple and scalable manner.)e au-
thors made a few changes to the packet dropping function of
RED and the rest of RED’s parameters remain unchanged.
)ey refined and controlled the packet dropping function
using average queue size and instantaneous queue size
parameters. Simulation results demonstrated that ERED
achieved higher throughput and lower packet dropping than
RED.

)e authors of [27] proposed an AQM algorithm based
on RED called NPD-RED.)is algorithm is dependent on
self-tuning feedback control for proportional and differ-
ential. NPD-RED relies on the current queue length and the
instantaneous differential error signal to length of the buffer.
)e authors presented an analysis for stability of the system
and also provided procedures for choosing the gains of the
feedback of TCP/RED in order to maintain the current
queue length. NPD-RED was compared with RED, using
simulation NS2; the simulation results showed that NPD-
RED outperformed RED with reference to average queue
length, average throughput, and stability.

An AQM algorithm based on REDwas proposed by [28].
)is Improved Adaptive RED algorithm uses nonlinear
smooth function for packet loss rate through exploiting the
ascend demi-cauchy of fuzzy distribution. In the ARED
algorithm, the increasing velocity of packet loss rate near the
maximum threshold position is quick, whereas it is slow near
the minimum threshold position. Also, the maximum value
of packet dropping probability (Dmax) of AREDmodified the
size of the mean queue and the target for adapting the al-
tering of network conditions.

Two discrete-time queue analytical models based on
RED, called RED-Exponential and RED-Linear, were aimed
at improving RED’s issue in cases of heavy traffic were
presented by [29].)ese two analytical models dealt with
this issue by using instantaneous queue length instead of
average queue length as a congestion measure.)e two
models outperformed the classic RED regarding the per-
formance results of mean queue length and average queuing
delay when congestion occurs.

A learning-automata-like method for avoiding conges-
tion incidence in wired networks called LALRED was

introduced by [30].)e aim of LALRED was to enhance the
value of average queue size used for congestion control and
as such decrease the total packet loss at the queue.

An analytical framework model for RED queues using
blended types of traffic such as TCP and User Datagram
Protocol (UDP) was introduced by [31]. Steady-state
goodput expressions for every flow and average queuing
delay at every queue were obtained.)e analytical frame-
work was extended to include a class of RED queues, which
offers different services for flows with multiple classes [31].
)e analytical framework was validated with several network
configuration simulations of RED.)e results of these
simulations showed that the analytical framework matched
with several of the network configuration simulations of
RED with a 5% value for mean error.

An adaptive queue management with random dropping
method that uses information related to the average queue
length and its rate of change was proposed [32].)is method
was named AQMRD, and it uses the rate of change in the
queue length as an extra parameter to detect the congestion.
)is method avoids the average queue length frequently
exceeding the maximum threshold value by quickly
responding to congestion thus avoiding buffer overflows.

An AQM method named ModRED that employs three
dynamic packet dropping probabilities depending on the
incoming traffic was presented by [33].)is method can use
different traffic shapes. ModRED utilizes an Additive-In-
crease Multiplicative-Decrease (AIMD) algorithm with the
purpose of using different packet dropping probability for
dissimilar traffic loads [33]. Depending on the kind of traffic
load, the packet dropping probability is calculated. ModRED
handles congestion at the receiver side and as such it is used
for TCP congestion control. ModRED provided better
performance than REDwith respect to throughput, goodput,
packet delivery ratio, and delay simulation results.

A new RED method based on the Hemi-Rise Cloud
model (CRED) was introduced by [34]. CRED uses a
nonlinear packet loss approach, and this method enhances
the uncertainty and sensitivity of the parameters. Control-
ling of network congestion and efficient use of network
resources were accomplished [34]. CRED’s stability was
investigated, and this showed that CRED might enhance the
stability and it gives a more acceptable performance than
either RED or ARED.

RED is sensitive to its parameters and the traffic, so when
traffic load is low, then bandwidth is underutilized. How-
ever, when traffic load is high, this will give a large delay [26].
)ree-section random early detection (TRED) method
based on nonlinear RED was proposed in [26]. In TRED,
packet dropping probability function is split into three parts
with the aim of discriminating between different loads: light,
moderate, and high.)is distinguishing between loads aims
to obtain a tradeoff in the throughput and delay among low
and high loads.

3. The Proposed RED-Exponential Technique

As mentioned previously in Section 1, RED has drawbacks
that contribute in deterioration of its performance.)is

minth maxth Average queue
length

RED

Dropping probability

1

NLRED
maxp′

maxp

Figure 1: Packet dropping probability functions of RED and
NLRED methods [26].

4 Journal of Computer Networks and Communications

paper deals with the second problem (presetting RED’s
parameters), to ensure achieving a realistic performance
without the need to tune parameters to a certain value, in
particular, the Dmax.)erefore, the RED_E method was
developed, which employs the aql as the congestionmeasure.
Yet it differs on the way packets are dropped whenever a
packet arrives at a router buffer, particularly when the aql
value is equal to or larger than the min threshold and less
than the max threshold. In this scenario, classic RED drops
packets probabilistically using the following equations.

Dinit � Dmax ×
(aql − min threshold)

(max threshold − min threshold)
, (3)

Dp �
Dinit

1 − C × Dinit(􏼁
. (4)

In equations (3) and (4), Dinit is the initial packet
dropping probability and, in equation (4), C represents the
number of packets which arrived at the router buffer and
have not dropped since the last packet was dropped [7]. On
the other hand, RED_E as shown in Algorithm 3 does not
utilize the Dmax parameter in computing Dinit as employed
in RED and many of its successors. Instead of calculating
Dinit as equation (3), RED–E employs its own computedDinit
as shown in equation (5).

Dinit �
eaql − emin threshold(􏼁

emax threshold − emin threshold(􏼁
. (5)

It can be seen in equation (5) that RED_E no longer uses
the Dmax parameter, which is typically set in the preliminary
stage as in RED to guarantee satisfactory performance.
RED_E drops arriving packets exponentially using equations
(4) and (5). Figures 2 and 3 display the Dinit mechanism
versus the aql mechanism for RED and RED_E, respectively.
)e proposed technique increases the Dinit value expo-
nentially from 0.0 to 1.0 as the aql value increases from the
min threshold value to the max threshold value.)e pseu-
docode of RED_E, given in Algorithm 3, has other goals
besides removing the biased results by presetting the pa-
rameters, such as offering a more satisfactory performance
in heavy congestion scenarios.

4. Simulation Results

4.1. Simulation Setup. RED, NLRED, and RED_E methods
are simulated using a single queue node system that is shown
in Figure 4. One packet can arrive and/or depart at a time
unit called a slot that is used in a discrete-time queue [23].
)e implementations of RED, NLRED, and proposed
methods are conducted based on discrete-time queues in the
Java environment. Packets interarrival and service times are
geometrically distributed with means 1/α and 1/β, respec-
tively, where α is the probability of packet arrival in a slot
and β is the probability of packet departure in a slot.)e
arrival process used in both methods is the Bernoulli process
[23]. In Figure 4, the finite capacity of a single queue node for
RED, NLRED, or RED_E is K packets. First come, first

(1) Initialisation stage
C � −1
aql � 0.0

(2) For every arriving packet at a RED-Exponential router buffer
Calculate the aql for this packet at the RED-Exponential router buffer
Examine the queue status at a router buffer, is it empty or not

if the queue at a RED-Exponential router buffer is empty then
Compute n, where n � q(current time − idle time)
aql � aql × (1 − qw)n

Else
aql � aql × (1 − qw) + qw × q instantaneous

(3) Determine a congestion status at the RED-Exponential router buffer
if aql value is less than min threshold value then

Calculate Dp value for the arriving packet as follows:
Dp � 0.0
C � −1

else if aql value is greater than or equal to min threshold value and less than max threshold value then
C � C + 1
Dinit � (eaql − emin threshold)/(emax threshold − emin threshold)

Dp � Dinit/(1 − C × Dinit)

Mark/Drop the arriving packet probabilistically regarding to Dp value due to occurrence of congestion
C � 0

else
Mark/Drop every arriving packet Dp � 1.0 due to occurrence of heavy congestion
C � 0

(4) When the RED-Exponential router buffer becomes empty
idle time � current time

ALGORITHM 3: RED_E technique detailed pseudocode.

Journal of Computer Networks and Communications 5

served (FCFS) is the queuing discipline which is used in
RED, NLRED, or RED_E.

4.2. Parameter Settings.)e parameters of RED, NLRED,
and RED_E are tuned in Table 1.

In Table 1, the α values vary between 0.18 and 0.93, with
half of these values (i.e., 0.18, 0.33, and 0.48) being less than β
and the rest (i.e., 0.63, 0.78, and 0.93) being greater than β.
)ese α and β values were set in order to test the perfor-
mance measure results when 1) α< β and 2) α> β (con-
gestion scenarios). K is set to 20 packets to test congestion
with small buffer sizes. max threshold is triple that of
min threshold as in [8].)e qw and Dmax in Table 1 are set to
the values as in [7].)e Dmax′ is set to a value calculated using
equation (2).)e set value of number of slots is given in
order to guarantee it reaches a steady state.

4.3. Simulation Environment. Special things are used in this
simulation such as packet arrival probability and packet
departure probability in discrete-time queues. Such special
things were not employed by existing simulators. Moreover,
these special things can be applied in simulation environ-
ments such as Java, and for this reason Java has been chosen
as the simulation environment of RED, NLRED, and RED_E
methods in this paper.

4.4. Results Analysis. A warming-up period is conducted
before generating the performance measure results. When
the system reaches a steady state, the performance measure
results are then obtained. Each performance measure result
represents the arithmetic mean of ten time runs for each α
value. For every run, a seed value is changed utilizing a
random number generator to remove any biased results. A
decision on which method offers better satisfactory results is
reached only using the setting values of α.

RED, NLRED, and RED_E algorithms are compared
with reference to the following performance measures: mql,
T, D, PL, and DP.)e abbreviation mql denotes mean queue
length; T is the throughput that represents the number of
packets that have been successfully passed through a queue
node for every time unit; D is the average queuing delay for
packets; PL is the probability of packet loss due to buffer
overflow; and DP is the packet dropping probability before a
router buffer becomes full.)is comparison aims to evaluate
RED_E performance in different congestion situations and
without utilizing the Dmax parameter.

Figures 5–9 show the performance measure results (mql,
T, D, PL, and Dp) versus α for RED, NLRED, and the
RED_E.)e column chart type is used rather than scatter
chart type due to the performance measure results of the
compared methods being slightly different based on α, and
these differences are shown more clearly by using column
chart type than scatter chart type.)e performance mea-
sures are functions of α.

4.4.1. Performance Evaluation Results Based on Varying α
Values. After analyzing Figures 5 and 7, RED, NLRED, and
the proposed RED_E provide similar D and D results when
α is less than or equal to 0.33. In other words, RED and

0aql min threshold max threshold Buffer capacity

Dinit

1

Figure 3: Dinit versus aql of RED_E.

Marking/dropping

No marking/dropping

Arriving packet For packets

max
threshold

min
threshold

Packets queued in the router buffer

Marks/drops every Packets
probabilistically

α

β

Figure 4:)e single router buffer for RED, NLRED, or the pro-
posed RED_E.

min threshold max threshold Buffer capacity
aql

0

Dmax

Dinit

1

Figure 2: Dinit versus aql of RED.

6 Journal of Computer Networks and Communications

RED_E give similar mql and D results in noncongestion
situations at a router buffer of a queue node.)is is due to
both RED and E_RED dropping the same numbers of
packets before the router buffer is full (see Figure 9), that is,
zero, and loses the same number of packets due to overflow
(see Figure 8), that is, zero.

When α is greater than 0.33 and less than or equal to
0.48, RED provides a slightly lower mql and D results than
NLRED and RED_E since RED drops slightly more packets
than NLRED and RED_E before the buffer is full. RED_E
and NLRED gave similar results concerning mql and D

because RED_E and NLRED drop similar packets before the
buffer is full. Moreover, RED, NLRED, and RED_E lose
comparable number of packets due to overflow (PL).

When α is larger than 0.48 and less than 0.63, NLRED
provides slightly smaller mql and D results among the
compared methods because of the previously mentioned
reason. RED and RED_E have analogous mql and D results.
RED and NLRED lose fewer packets than RED_E, and this is
because the router buffers of RED and NLRED are

Probability of packet arrival

RED
RED_E
NLRED

Average queueing delay vs. probability of packet arrival

0.18 0.33 0.48 0.63 0.78 0.93
0

10

20

30

40

Av
er

ag
e q

ue
ue

in
g

de
lay

Figure 7: PL versus α.

Table 1: Parameter settings of RED, NLRED, and RED_E.

Parameter)e set value
α 0.18–0.93
β 0.5
K 20
min threshold 3
max threshold 9
qw 0.002
Dmax 0.1
Number of slots 2,000,000

0.18 0.33 0.48 0.63 0.78 0.93

Mean queue length vs. probability of packet arrival

Probability of packet arrival

RED
RED_E
NLRED

0
2
6
8

10
12
14
16
18

M
ea

n
qu

eu
e l

en
gt

h

Figure 5: mql versus α.

Probability of packet arrival

RED
RED_E
NLRED

Throughput vs. probability of packet arrival

0.18 0.33 0.48 0.63 0.78 0.93
0

0.2

0.4

0.6

Th
ro

ug
hp

ut

Figure 6: T versus α.

Probability of packet arrival

RED
RED_E
NLRED

0.18 0.33 0.48 0.63 0.78 0.93

Overflow loss probability vs. probability of packet arrival

0

0.1

0.2

0.3

O
ve

rf
lo

w
 lo

ss
 p

ro
ba

bi
lit

y

Figure 8: D versus α.

Journal of Computer Networks and Communications 7

overflowed on number of occasions, less than that of RED_E.
Furthermore, RED_E has fewer dropped packets than RED
and NLRED, and both RED and NLRED drop similar
packets before their router buffers are full.

When α is greater than 0.63 such as α � 0.78, RED_E
achieves themost satisfactorymeasured performance among
the compared methods in terms of mql and D results since
RED_E maintains less mean queue length. Additionally,
NLRED to some extent gave better results for mql and D

than RED because of the previous mentioned reason. RED
provides higher PL result than NLRED and RED_E since
RED’s buffer overflows more times than NLRED and
RED_E. NLRED has a reduced PL result than RED_E. In
addition, RED drops fewer packets than the other two
methods, and RED_E has slightly better Dp result than that
of NLRED. In the presence of heavy congestion such as
α> 0.78 such as α � 0.93, RED_E accomplishes lower mql, D
and PL results than RED or NLRED due to RED_E dropping
a higher number of packets (Dp) than either RED or
NLRED. Furthermore, NLRED produces better mql, D, and
PL results than RED since NLRED drops further packets
than RED.

It is noted in Figure 6 that RED, NLRED, and RED_E
offer similar T results in the existence of congestion or
without congestion.

4.4.2. Performance Evaluation Results Based on Varying α
Values. Further simulation tests between RED, NLRED, and
RED_E based on different values for min threshold to
evaluate their effect on performance results were conducted.
α was set to 0.78 since this value can produce heavy con-
gestion and we needed to evaluate the effectiveness of the
min threshold parameter on the compared techniques in the
presence of heavy congestion.)e min threshold was set to
different values, ranging from 3 to max threshold − 1 to
observe the effectiveness of each min threshold value on the
performance measure results.)e performance measure
results of RED, NLRED, and RED_E versus min threshold
values are given in Figures 10–14.)e chart type used in this
subsection is scatter because the results of the compared
methods can be shown clearly.

It is noted from Figures 10, 12, and 13 that RED offers
higher mql, D, and PL results than NLRED and RED_E for
all min threshold values.)is is because the RED router
buffer drops fewer packets than NLRED and RED_E (see
Figure 14). In addition, RED_E provides smaller mql and D

results than NLRED when the min threshold value is 3 or 4,
and these values represent the farthest given values from the
max threshold. In case that the value of min threshold is set

Probability of packet arrival

RED
RED_Exponential
Adaptive GRED

Dropping probability vs. probability of packet arrival

0.18 0.33 0.48 0.63 0.78 0.93
0

0.05
0.1

0.2
0.15

0.25
0.3

0.35
0.4

D
ro

pp
in

g
pr

ob
ab

ili
ty

Figure 9: Dp versus α.

Mean queue length vs. min (threshold)

3 6 84 5 7
Min (threshold)

15.4
15.5
15.6
15.7
15.8
15.9

16
16.1
16.2

M
ea

n
qu

eu
e l

en
gt

h

RED
RED_E
NLRED

Figure 10: mql versus min threshold.

Throughput vs. min (threshold)

3 6 84 5 7
Min (threshold)

0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut

RED
RED_E
NLRED

Figure 11: T versus min threshold.

Average queueing delay vs. min (threshold)

3 6 84 5 7
Min (threshold)

30.5

31

31.5

32

32.5

33

Av
er

ag
e q

ue
ue

in
g

de
lay

RED
RED_E
NLRED

Figure 12: D versus min threshold.

8 Journal of Computer Networks and Communications

to 8 (the nearest value to the max threshold), then NLRED
generates lowermql andD results than that of RED_E; this is
due to the length of mean queue of NLRED being smaller
than that of RED_E.)e performance results of NLRED and
RED_E regarding mql and D are comparably similar when
the min threshold value is set to 5, 6, and 7 (halfway between
the min threshold and the min threshold). NLRED generates
a smaller PL than that of RED_E when the min threshold is
set to the farthest value from the max threshold, whereas PL

derived smaller PL than NLRED when the min threshold is
given as 4.

It is clear from Figure 14 that RED drops fewer packets
than NLRED or RED_E since both NLRED and RED_E offer
smaller mql results than RED. RED_E obtains smaller DP

than NLRED when the min threshold is given to a value that
is the farthest value from the max threshold. However,
NLRED achieves smaller DP than RED_E when the
min threshold value is set to 4.

For the other min threshold values (5, 6, 7, and 8), both
NLRED and RED_E generate similar PL and DP results since
they lose and drop a similar number of packets. In addition,
T performance results for RED, NLRED, and RED_E are
similar regardless of the min threshold value and stabilized
on β value and are not affected by the min threshold pa-
rameter. Lastly, DP results for RED, NLRED, and RED_E are

decreased if the value of the min threshold is increased. It
can be inferred that the performance measures’ results of
RED, NLRED, and the RED_E are all affected by the
min threshold parameter except for the T results (see
Figure 11).

5. Conclusions and Future Work

)is research paper addressed one of the AQM problems in
congestion, namely, the configuration of the Dmax parameter
to generate a good yet biased performance. We proposed a
new exponential AQM method called RED-Exponential
(RED_E) to minimize reliance of these methods on the Dmax
parameter.)e proposed technique differs from RED and its
successors by dropping arriving packets in an exponential
manner rather than tuning the Dmax parameter.)is ex-
ponential packet dropping process will minimize the de-
pendency on pretuned parameters, particularly the Dmax
parameter, when calculating the performance measures of
the AQM methods.

Simulation results have been generated to measure the
advantages and disadvantages of RED_E.)e focus of the
simulation results was on utilizing different α and
min threshold values to measure the performance of RED,
NLRED, and RED_E in different situations (no congestion,
light congestion, and heavy congestion).)e key metrics
used to measure the performance of the considered AQM
techniques are T, mql, D, Dp, and PL. Hereunder is the
summary of the results.

RED_E enhanced the performance measures results with
reference to mql and D when heavy congestion occurred and
offered better mql and D results than RED or NLRED.

When α � 0.78, RED_E outperformed RED and NLRED
with reference to mql and D results. Also, NLRED provided
the best PL result among the compared methods, whereas
RED produced the most satisfactory Dp result. In the case
α � 0.93, RED_E obtained the most acceptable mql, D, and
PL results compared with RED and NLRED, while RED
presented better Dp result than NLRED and RED_E.

When light congestion exists (α � 0.48), RED slightly
outperformed RED_E with regard to mql and D results,
whereas RED_E and NLRED have similar mql and D results.
However, when α � 0.63, RED outperformed NLRED and
RED_E with reference to mql and D results. Moreover, both
RED and NLRED outperformed RED_E regarding to PL

results, whereas RED_E outperformed RED and NLRED in
Dp results.

)e considered techniques offered similar T results when
heavy congestion occurred. In addition, RED, NLRED, and
RED_E offered similar mql, T, D, PL, and Dp results when
there was no congestion in a router buffer.

In addition, NLRED and RED_E provided better mql, D,
and PL performance results than RED using different values
of themin threshold parameter. For instance, RED_E offered
marginally higher PL results and marginally lower Dp than
those of NLRED when the min threshold was set to the
farthest value from the max threshold, and it generated
slightly lower PL results and slightly higher Dp than those of
NLRED when the min threshold was set to the second

Packet dropping probability vs. min (threshold)

3 6 84 5 7
Min (threshold)

0.13

0.14

0.15

0.16

0.17

0.18

Pa
ck

et
 d

ro
pp

in
g

pr
ob

ab
ili

ty

RED
RED_E
NLRED

Figure 14: Dp versus min threshold.

Overflow packet loss probability vs. min (threshold)

3 6 84 5 7
Min (threshold)

0.185

0.195

0.205

0.215

0.225

0.235

O
ve

rf
lo

w
 p

ac
ke

t l
os

s
pr

ob
ab

ili
ty

RED
RED_E
NLRED

Figure 13: PL versus min threshold.

Journal of Computer Networks and Communications 9

farthest value from the max threshold. For the other given
values of the max threshold (5, 6, 7, and 8), both RED_E and
NLRED produced similar PL and Dp results.

)e results of mql, D, and PL of RED, NLRED, and
RED_E techniques increased as long as the value of the
min threshold is increased, whereas the DP results decreased
when the min threshold is increased. Hence the results of
RED, NLRED, and RED_E have been impacted by the
min threshold parameter except in the case of the T metric.

In the near future, we intend to develop the RED_E in
order to further improve performance results based on
dynamic values of the min threshold, max threshold, and qw.

Data Availability

)ere are no data availabile.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

References

[1] J. Wang, L. Guan, L. B. Lim et al., “QoS enhancements and
performance analysis for delay sensitive applications,” Journal
of Computer and System Sciences, vol. 77, no. 4, pp. 665–676,
2011.

[2] M. Welzl, Network Congestion Control: Managing Internet
Traffic, p. 282, Wiley, Hoboken, NJ, USA, 2005.

[3] D. D. Clark and W. Wenjia Fang, “Explicit allocation of best-
effort packet delivery service,” IEEE/ACM Transactions on
Networking, vol. 6, no. 4, pp. 362–373, 1998.

[4] S. Athuraliya, S. H. Low, V. H. Li, and Q. Qinghe Yin, “REM:
active queue management,” IEEE Network, vol. 15, no. 3,
pp. 48–53, 2001.

[5] J. Aweya, M. Ouellette, and D. Y. Montuno, “A control
)eoRED_Eic approach to active queue management,”
Computer Network, vol. 36, no. 2-3, pp. 203–235, 2001.

[6] W. Feng, D. Kandlur, D. Saha, and K. G. Shin, “Blue: a new
class of active queue management algorithms,” Technical
Report, UM CSE-TR-387-99, University of Michigan, Ann
Arbor, MI, USA, 1999.

[7] S. Floyd and V. Jacobson, “Random early detection gateways
for congestion avoidance,” IEEE/ACM Transactions on Net-
working, vol. 1, no. 4, pp. 397–413, August 1993.

[8] S. Floyd, G. Ramakrishnan, and S. Shenker, “Adaptive RED:
an algorithm for increasing the robustness of RED’s active
queue management,” Technical Report, ICSI, New Delhi,
India, 2001.

[9] S. Floyd, “Recommendations on using the gentle variant of
RED,” 2000, http://www.aciri.org/floyd/red/gentle.html.

[10] B. Abbasov and S. Korukoglu, “Effective RED: an algorithm to
improve RED’s performance by reducing packet loss rate,”
Journal of Network and Computer Applications, vol. 32, no. 3,
pp. 703–709, 2009.

[11] W. Chen, Y. Li, and S. H. Yang, “An average queue weight
parameterization in a network supporting TCP flows with
RED,” in Proceedings of the 2007 IEEE International Con-
ference on TuesM02 Networking, Sensing and Control,
pp. 590–595, London, UK, April 2007.

[12] W. Chen and S. H. Yang, “)e mechanism of adapting RED
parameters to TCP traffic,” Proc. of Computer Communica-
tions, Elsevier, vol. 32, no. 13-14, pp. 1525–1530, 2009.

[13] J. Hong, C. Joo, and S. Bahk, “Active queue management
algorithm considering queue and load states,” in Proceedings
of the 13th International Conference on Computer Commu-
nications and Networks, pp. 140–145, Chicago, IL, USA,
October 2004.

[14] K. Okokpujie, C. Emmanuel, O. Shobayo, E. Noma-Osaghae,
and I. Okokpujie, “Comparative analysis of the performance
of various active queue management techniques to varying
wireless network conditions,” International Journal of Elec-
trical and Computer Engineering (IJECE), vol. 9, no. 1,
p. 359∼368, 2019.

[15] H. Abdel-Jaber, M. Woodward, F.)abtah, and A. Abu-Ali,
“Performance evaluation for DRED discrete-time queueing
network analytical model,” Journal of Network and Computer
Applications, vol. 31, no. 4, pp. 750–770, 2008.

[16] H. Abdeljaber, M. Woodward, F.)abtah, and M. Al-diabat,
“Modelling Blue active queue management using DiscRED_
Ee-time queue,” in Proceedings of the 2007 International
Conference of Information Security and Internet Engineering
(ICISIE’07), pp. 568–573, London, UK, July 2007.

[17] M. Al-Diabat, H. Abdeljaber, F.)abtah, O. Abou-rabia, and
M. Kishta, “Analytical Models based DiscRED_Ee-time
queuing for the congested network,” International Journal of
Modeling, Simulation, and Scientific Computing (IJMSSC),
vol. 3, no. 1, p. 22, 2012.

[18] K. Ramakrishnan and S. Floyd, “)e addition of explicit
congestion notification (ECN) to IP,” RFC, vol. 3168, 2001.

[19] A. G. Fayoumi, “Delay performance evaluation of shared-
buffer based all-optical multihop networks,” in Proceedings of
the 15th IEEE International Conference on Networks,
pp. 166–169, Adelaide, SA, Australia, November 2007.

[20] L. B. Lim, L. Guan, A. Grigg et al., “Controlling mean queuing
delay under multi-class bursty and correlated traffic,” Journal
of Computer and System Sciences, vol. 77, no. 5, pp. 898–916,
2011.

[21] C. Brandauer, G. Iannaccone, C. Diot, T. Ziegler, S. Fdida, and
M. May, “Comparison of tail drop and active queue man-
agement performance for bulk-data and web-like internet
traffic,” in Proceedings of the Sixth IEEE Symposium on
Computers and Communications, pp. 122–129, IEEE, Ham-
mamet, Tunisia, July 2001.

[22] R. Braden, D. Clark, J. Crowcroft et al., “Recommendations on
queue management and congestion avoidance in the inter-
net,” RFC, vol. 2309, 1998.

[23] M. E. Woodward, Communication and Computer Networks:
Modelling with discRED_Ee-Time Queues, Pentech Press,
London, UK, 1993.

[24] K. Zhou, K. L. Yeung, and V. O. K. Li, “Nonlinear RED: a
simple yet efficient active queue management scheme,”
Computer Networks, vol. 50, no. 18, pp. 3784–3794, 2006.

[25] B. Zheng and M. Atiquzzaman, “DSRED: an active queue
management scheme for next generation networks,” in Pro-
ceedings of 25th Annual IEEE Conference on Local Computer
Networks (LCN’00), pp. 242–251, Tampa, Fl, USA, November
2000.

[26] F. Chen-Wei, L. F. Huang, C. Xu, and Y. C. Chang, “Con-
gestion control scheme performance analysis based on
nonlinear RED,” IEEE Systems Journal, vol. 11, no. 4,
pp. 2247–2254, 2015.

[27] N. Xiong, A. V. Vasilakos, L. T. Yang et al., “A novel self-
tuning feedback controller for active queue management
supporting TCP flows,” Information Sciences, vol. 180, no. 11,
pp. 2249–2263, 2010.

10 Journal of Computer Networks and Communications

http://www.aciri.org/floyd/red/gentle.html

[28] J. Zhang, W. Xu, and L. Wang, “An improved adaptive active
queue management algorithm based on nonlinear smooth-
ing,” Procedia Engineering, vol. 15, pp. 2369–2373, 2011.

[29] H. Abdel-Jaber, F.)abtah, and M. Woodward, “Modeling
discrete-time analytical models based on random early de-
tection: exponential and linear,” International Journal of
Modeling, Simulation, and Scientific Computingfic Computing,
vol. 6, no. 3, Article ID 1550028, 22 pages, 2015.

[30] S. Misra, B. J. Oommen, S. Yanamandra, and M. S. Obaidat,
“Random early detection for congestion avoidance in wired
networks: a discretized pursuit learning-automata-like solu-
tion,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 40, no. 1, pp. 66–76, 2010.

[31] A. A. Abouzeid and S. Roy, “Modeling random early detection
in a differentiated services network,” Computer Networks,
vol. 40, no. 4, pp. 537–556, 2002.

[32] P. S. Karmeshu, S. Patel, and S. Bhatnagar, “Adaptive mean
queue size and its rate of change: queue management with
random dropping,” Telecommunication Systems, vol. 65, no. 2,
pp. 281–295, 2017.

[33] K. Kachhad and A. Lathigara, “ModRED: modified RED an
efficient congestion control algorithm for wireless networks,”
International Research Journal of Engineering and Technology
(IRJET), vol. 5, no. 5, pp. 1879–1884, 2018.

[34] Z. Yuhong, M. Zhonggui, Z. Xuefeng, and T. Xuyan, “An
improved algorithm of nonlinear RED Based on membership
cloud theory,” Chinese Journal of Electronics, vol. 26, no. 3,
pp. 537–543, 2017.

Journal of Computer Networks and Communications 11

