
Review Article
Packet Reordering Metrics to Enable Performance
Comparison in IP-Networks

Pedro Rodrigues Torres-Jr and Eduardo Parente Ribeiro

Post-Graduate Program in Electrical Engineering, Federal University of Paraná, Centro Politécnico, Curitiba,
PR 81531-890, Brazil

Correspondence should be addressed to Pedro Rodrigues Torres-Jr; pedro.torres@ufpr.br

Received 15 October 2019; Revised 15 March 2020; Accepted 4 May 2020; Published 30 May 2020

Academic Editor: Djamel F. H. Sadok

Copyright © 2020 Pedro Rodrigues Torres-Jr and Eduardo Parente Ribeiro. 0is is an open access article distributed under the
Creative CommonsAttribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided
the original work is properly cited.

Despite the existence of several metrics to perform measurements on out-of-order packets, few works have used these metrics for
comparative purposes. A potential reason for this is that the use of these simple singleton metrics makes it difficult to analyze all
the effects of packet reordering. On the other hand, more complete metrics are represented in a vectorial manner, making
comparative analysis challenging. In this paper, we present a scenario for testing and describe a methodology for conducting
experiments to compare network paths with respect to unordered packets.0e results of several simulations explore simple packet
reordering metrics derived from vector metric that may allow future work to be benchmarked against. We demonstrated the
behaviour of some TCP congestion control algorithms by adjusting different levels of reordering. We highlight good results with
the Entropy reorder metric.

1. Introduction

A desirable network feature is that the packets arrive in the
same order they were sent. Due to the ever-present paral-
lelism in the network infrastructure, the reordering happens
and affects the performance of the transport and application
layer protocols. Several factors can contribute to that effect,
among them: links load balancing, routing instability,
parallel processing, and others [1]. In general, we can
consider that the various redundancies applied to the net-
work, either to increase availability or capacity, can be a
point of packets overtaking, which can lead to out-of-order
delivery.

RFC 4737 [2] defines a standard with several metrics for
packet reordering. Some simple scalar metrics are as follows:
Reordered Packet Ratio and Reordering-Free Runs. Other
nonsingleton metrics are Reordering Extent, Reordering
Late Time Offset, Reordering Byte Offset, Gaps between
Multiple Reordering Discontinuities, and n-Reordering.
However, the use of any of these metrics alone is insufficient
to completely characterise all aspects of packet reorder in a

path on the network. RFC 5236 [3] describes other improved
vectorial metrics that allow capturing the effects of packet
reordering. A detailed comparison of these metrics re-
garding advantages and disadvantages can be seen in [4].

A protocol that has been thoroughly tested to tolerate
well the packets reordering in the network is the TCP.
Although the research carried out with TCP is quite exu-
berant to evaluate its performance with each modification
that is proposed, it is still difficult to find works that use a
standard reordering metric that turns possible to make a
comparative analysis.

In this work, we describe a methodology for measuring
packet reordering. We present the results obtained through
simulations performed in a virtual environment that uses the
protocols and algorithms available in several systems. A
well-known metric is used, the Reorder Density, and from it
we derived simpler known metrics that turn possible the
comparison with others works. We evaluated these metrics
through more than 16000 simulations, with different
probability distributions to generate the packet reordering
and apply different TCP configurations.

Hindawi
Journal of Computer Networks and Communications
Volume 2020, Article ID 8465191, 8 pages
https://doi.org/10.1155/2020/8465191

mailto:pedro.torres@ufpr.br
https://orcid.org/0000-0003-3793-2840
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8465191

0e simple metrics Mean Displacement and Entropy [5]
are used to analyze the results. 0ese metrics can be easily
used for comparing the protocol performance and also allow
a simpler comparison of the quality of service provided in
terms of packets reordering by the Internet Service Providers
(ISP). In scenarios where a small difference in reordering
may lead to a large difference in protocol performance, the
Entropy metric showed to be more appropriate to be used.

1.1. Organisation of,isWork. 0e purpose of this article is
to present the main metrics of packet reordering and suggest
methods for producingg and measuring out-of-order se-
quences that can be useful for performance comparison for
the development of communication protocols and systems.
We will present the methodology and results of many
simulations with differentt types of reordering and their
behaviour in relation to the TCP throughput configured
with various congestion control algorithms.

0e remainder of this article is organised as follows: In
Section 2 we will review the metrics about packet reordering,
as well as the works that study the effects of this reordering
over TCP. In Section 3 we will present the methodology and
the environment configuration that we used to carry out the
simulations. Next, in Section 4, we will present the results.
Finally, in Section 5 we will describe the conclusions and
future work. Information about the source code used in this
work is available in Section 6.

2. Review on Packets Reordering

In this session, we will present the main definitions of
packets reordering and discuss the tolerance of TCP to
unordered segments. Before we begin with the definitions
that will be used in the remainder of this paper, we will show
the problem of using a simple reordering metric, commonly
used by network operators: percentage of out-of-order
packets.

Consider two out-of-order packet sequences (1, 2, 4, 5, 3,
6) and (1, 2, 5, 4, 3, 6). We can interpret the sequences in
distinct ways. (1) In both sequences we can say that the
packets 3, 4, and 5 are out-of-order (50%). (2) In the first
sequence only packet 3 is out-of-order (16.6%). (3) In the
second sequence packets 3 and 4 are out-of-order (33, 3%).
Even considering only delayed packets as out-of-order, that
metric does not capture all the characteristics of the disorder.

A reordering metric should be simple and still capture
the amount and the magnitude of the reordering. At the
same time, it should be orthogonal to other metrics such as
packet loss and duplicate packets. It should be useful for
applications, for example, to determine the buffer size, as
well as having other features including being robust with
respect to network events and being easy to compute [6].

A reordering can be represented for a sequence of
packets (1, 2, ..., N) transmitted in a network, assigning an
index in order of arrival at the recipient, disregarding lost
and duplicate packets. If the index given to a packet m is
(m+ dm), with dm≠ 0, it can be said that a reordering event
occurred in the network. For this we will use the notation

r(m, dm). If no reordering occurs on the network, the sent
stream will have the same index received on the recipient,
and therefore dm� 0. A packet will be said late if dm> 0 and
early if dm< 0. 0us, the reordering of a sequence of packets
is represented by the union of reordering events of R,
represented by R�∪{r(m, dm) | dm≠ 0} [6].

Reorder Density (RD) is defined as the discrete density of
the frequency of packets with respect to their displacement,
i.e., the lateness and earliness from the original position. Let
S[k] denote the set of reordering events in R with dis-
placement equal to k, i.e., S[k] = {r(m, dm) | dm= k}. Let |S[k]|
be the cardinality of the set S[k]. 0us, RD[k] is defined as |S
[k]| normalised with respect to the total number of received
packets N., that is, not considering lost or duplicates packets.

RD[k] �
|S[k]|

N.
. (1)

Equation (1) defines RD for k f = 0. RD uses a threshold
Dt, in which a packet arriving early or late, beyond to that
value, is considered as lost; therefore −Dt≤ k≤+Dt.

RD[0] � 1 −
|S[k]|

N.
. (2)

Equation (2) define RD[0], that represents the packets in
which the index is the same as the sent sequence number
and, therefore, have not been reordered. Some features
derived from the RD[i]≥ 0, ∀i are as follows:

􏽘
i

RD[i] � 1, (3)

􏽘
i

i × RD[i] � 0. (4)

Table 1 shows the example of an eight-packet sequence
that was received out-of-order, the index assigned, and the
displacement. In this sequence no packet was considered lost
or duplicated. 0e value of the set R is as follows:

R � (2, 2), (3, 2), (4, 2), (5, 2), (6, −4), (7, −4). (5)

Table 2 shows RD for the prior example. It can be seen
that two packets arrived in four positions early, two packets
arrived in right order, and four packets arrived in two
positions late.

In addition to the RD, other metrics have already been
defined. 0e Reorder Buffer-occupancy Density (RBD) is also
a vector metric of a buffer that could allow the recovery of
out-of-order packets [7]. 0e authors of [4] show the ad-
vantage of using RD over other metrics, in particular,
Reordering Extent and n-Reordering, detailed in RFC 4737.
0ese metrics are classified as lateness-based metrics; i.e., a
packet is not considered reordered unless it is late. 0us, in
this work, we will use RD to derive the simpler metrics that
allow a comparative analysis for performance evaluation.

2.1. Simple ReorderingMetrics. 0e use of RD is described in
RFC 5236 [3]. Although the document shows the advantages
of using this metric, it does not define a simpler metric,
analogous to the percentage. In the work of [5] several scalar

2 Journal of Computer Networks and Communications

metrics are derived from RD. Among these metrics areMean
Displacement and Entropy.

Since packets may arrive early or late depending on the
reorder event that occurs on the network, the displacement
may be either positive or negative. When computing the
Mean Displacement of these packets, the result will be zero,
as seen in equation (4). 0erefore, one way to calculate the
Mean Displacement (MD) is by considering the magnitude
of the displacement, according to the following equation:

MD � 􏽘

i�+Dt

i�−Dt

|i| × RD[i]. (6)

where Dt is the threshold used to restrict the calculation to a
finite number of packets. So, packets arriving too late or too
early are considered lost.

Another simple metric that can be used to capture packet
scattering is Entropy (Er), which is defined as the negative of
the logarithm of the probability density function [8]. Since
RD is a discrete probability distribution, this can be cal-
culated as follows:

Er � −1 × 􏽘

i�+Dt

i�−Dt

RD[i] × lnRD[i]. (7)

For RD from Table 2 the Mean Displacement (MD) is
equal to 2 and the Entropy (Er) is approximately 1.04.

2.2. TCP Tolerance to Reordering. 0e Transmission Control
Protocol (TCP) is a reliable, connection-oriented, stream-
oriented transport layer protocol that has become widely
used on the Internet because of these characteristics. In TCP,
flow control and acknowledgment (ACK) are indexed to a
byte value, rather than a packet or message number. 0e
TCP minimum transfer unit is a segment or packet of data.

When the destination receives a TCP segment, it sends
an acknowledgment (ACK) with the next byte of data ex-
pected to receive. In addition to ensuring the delivery of all
segments, this packets exchange allows calculating round-
trip time (RTT). Note that the RTTencompasses not only the
round-trip time but the times spent in queues and
processing.

TCP flow control is used to prevent data from being sent
at a higher receiver reception capacity. For this, an advertised

window field is used in the TCP header to indicate the
amount of data that can be sent without acknowledgment.
TCP also needs to deal with network congestion and adapt
the sending rate to the network’s circumstances. Several
congestion controls have been implemented in TCP [9–13].
0ese algorithms deal with controlling a variable in the
sender known as the congestion window (cwnd). 0e max-
imum number of segments that can be sent before receiving
an ACK is the minimum between the advertised window and
cwnd.

0e control of the variable cwnd is divided into two
stages. 0e first stage precedes the fact that a packet has been
lost or has arrived out-of-order and the algorithm’s slow
start and congestion avoidance are used. In the second stage,
after the detection of a lost or out-of-order packet, the fast
retransmit and fast recovery algorithms take effect [14].

0e effects of packet loss or reordering imply the TCP
control algorithms behaviour. 0e loss of a packet is a sign
that some kind of congestion has occurred in the network.
On the other hand, reordering can occur in such a way that it
will be confused with a loss and will cause a decrease in data
transfer throughput. Any packet that arrives out-of-order
will cause a duplicate ACK to be sent, which is the same
behaviour if that segment had been lost. 0e fast retransmit
algorithm uses a default number to detect a packet loss,
typically configured as three duplicates.

ACKs on most operating systems resend the segment
immediately. 0e degradation of the TCP throughput is
impacted if more packets are lost and reordering occurs in
the same transmission window [15].

0e cumulative TCP acknowledgment prevents the fast
retransmit algorithm from knowing more than one loss
simultaneously, and this will cause the value of the variable
cwnd to decrease, which will result in a decrease in trans-
mission rate [16]. For this, several papers have been pro-
posed to include selective acknowledging (SACK) [17,18]
and duplicate acknowledging (D-SACK) [19]. SACK allows
to simultaneously inform which segments have been re-
ceived. D-SACK defines a method in which the recipient
informs the sender about segments that have received du-
plicates, thus allowing the sender to infer that reordering has
occurred.

Several papers have studied the side effect of the arrival
of out-of-order packets on the network. However, in the
simulation environment of these works, the reordering
measurement unit is not standardised and is also difficult to
reproduce and compare. In [15,20] the measurement is
performed considering the percentage of the packets out-of-
order. In [21], a comparison of several TCP algorithms that
are tolerant to reordering is made. In the simulation per-
formed, the packet reordering rate is measured using their
own metric, called path delay factor.

Although, by the characteristics of the Internet, the
packets can arrive out-of-order, any parallelism in the
network must be tested to avoid this reordering [16]. 0e
question whether or not we should be concerned with
reordering packets should be considered at all levels, from
the development and testing of new protocols to the ap-
proval of the links being activates.

Table 1: Example of out-of-order for eight-packet sequence.

Description p1 p2 p3 p4 p5 p6 p7 p8
Arrived sequence 1 6 7 2 3 4 5 8
Received index 1 2 3 4 5 6 7 8
Displacement 0 −4 −4 2 2 2 2 0

Table 2: Reorder Density (RD) for the eight-packet sequence.

Description d1 d2 d3
Displacement −4 0 2
Packets 2 2 4
Ratio 0.25 0.25 0.50

Journal of Computer Networks and Communications 3

3. Reordering Measurement Methodology

In this section, we will describe the methodology used to
measure packet reordering in the network and how we use
this measurement in several TCP throughput tests config-
ured with different characteristics.

Figure 1 represents the topology created in Mininet
emulator [22] to perform the simulations. Two hosts, A and
B, were configured as origin and destination traffic, re-
spectively. 0e central host S1 has been manipulated to limit
the bandwidth between A and B and cause the packets to be
unordered. 0e settings performed on S1 were only to
simulate different network operating conditions. 0e mea-
surement methodology does not depend on these settings.

Since all hosts in the Mininet are virtualized Linux
systems, the links characteristics have been configured
through Network Emulation (netem) [23], which provides
the functionality for protocol testing, emulating network
characteristics such as packet delay, loss, duplication, and
reordering. 0e bandwidth between hosts is controlled by
the use of theHierarchical Token Bucket (HTB), which limits
the output traffic based on the Token Bucket Filter algorithm,
which does not depend on the physical link characteristics
[24].

In our environment, we are interested only in the
characteristics of packet reordering, so bandwidth and delay
were kept constant in traffic forwarding direction, from A to
B, with 100Mbps and 100ms, respectively.

To generate the packets reordering a random delay is
applied to each packet. 0at jitter was configured in S1, in
the forwarding traffic from A to B, through the use of netem.
0e queue inside netem that keeps packets in order by time
to send was adjusted to accommodate up to 5000 packets.
0e packet delay used follows a probability distribution, thus
causing its earliness or lateness. 0ree probability functions
were tested: uniform distribution, normal distribution, and
exponential distribution. We used 62 jitter values between 0
and 10ms to test both lower and higher reordering.

To perform the measurements, an F packet stream must
be generated with a sequential identification F� (1, 2, ..., N).
0e packet type should be chosen in such a way that it does
not overload the NIC drivers and CPU. 0e amount of
packetsN in the stream should be large enough to carry out a
test of sufficient duration and to be able to occupy the buffers
of the systems. Each packet in the stream is required to beM
bytes and be forwarded at a rate of R in order to avoid
excessive interruptions and to ensure that the packets are not
dispersed with each other. Table 3 summarises these pa-
rameters and the values used in the experiments.

0e link measurements of RD, MD, and Er were per-
formed on B by observing the arrival order of a sequence of
65535 packets sent from A. 0at traffic consisted of ICMP
packets type 8 (echo request). Each packet had MTU in-
terface size of 1518 bytes and forwarded at the configured
bandwidth of 100Mbps. 0e maximum packets size was
chosen to not overload the hosts with excessive interruptions
and the forwarding rate was chosen to allow the minimum
interval between the packets, making it easy to change the
order by the network. 0e threshold Dt, the maximum

displacement for RD calculation RD used was 200. We use
this value to capture large displacements. Note that in our
topology, we have an environment free of packet loss or with
some known anomalous behaviour that could duplicate
packets.

For TCP measurements, the iperf tool was used. Each
test consisted of a data transfer of approximately 120MB,
which, in the best case, would spend more than 10s to
complete the transfer. For each link configuration, 30 TCP
tests were performed using three congestion control al-
gorithms: bic, high speed, and Westwood. SACK and
D-SACK were kept on, and the other parameters, including
buffers size, were not changed. In total, 16, 740 simulations
were generated. 0e results are presented in the following
section.

4. Results

In this section we will show the simulations results per-
formed in theMininet environment as detailed in Section 3.
Firstly, we will show the data for validation of the proposed
methodology. 0e graph of Figure 2 shows the probability
density function (PDF) with the three distributions used to
cause the reordering of the packets in node S1: uniform
distribution, normal distribution, and exponential distri-
bution. 0e theoretical curves were plotted considering the
delay of 100ms as the mean and standard deviation of
1.2475.

After playing the ICMP traffic by sending the 65535
sequential packets from host A and captured in host B, as
mentioned previously, the RD for the three different
probability distributions was calculated. 0e graph of Fig-
ure 3 shows the RD histogram for the same delay and jitter of

A S1 B

Figure 1: Topology used in packet reordering tests: A is the traffic
source, S1 is an intermediate node that limits bandwidth, delay, and
generates packet reordering, and B is the traffic destination.

Table 3: Parameters to be configured to perform the reorder tests.

Parameter Description Selected value

F Ordered packet
stream

ICMP echo request. 0e 16-bit
sequential number header field was
used to set the values. 0e ICMP
echo reply was disabled in the

receiver.

N Number of
packets

65535 ICMP packets for a ≈ 8 s test
with the selected M and R.

M Size of each
packet

1518B for the complete packet.
0is value is the path MTU.

R Packets-per-
second rate

Since we are simulating 100Mbps
links, the sending rate was 8235

packets-per-second with
1518 bytes each one. 0is rate is
well sustained on both sending and

receiving hosts.

4 Journal of Computer Networks and Communications

the theoretical curves. 0e abscissa axis contains the packet
displacement, which can be either negative for packets that
have arrived earlier or positive for packets that have been

late. It is possible to note that the shape of the curves is
similar to the probability distribution function used. Since
RD is a vector metric, the behaviour of each simulation is

1.0

0.8

0.6

0.4

0.2

0.0
94 96 98 100 102 104 106

Delay (ms)

D
en

sit
y

PDF for delay = 100 and Jitter = 1.2475

Exponential
Uniform
Normal

Figure 2: PDF for three different distributions.

Displacement

–4
4

–4
2

–4
0

–3
8

–3
6

–3
4

–3
2

–3
0

–2
8

–2
6

–2
4

–2
2

–2
0

–1
8

–1
6

–1
4

–1
2

–1
0 –8 –6 –4 –2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Ra
tio

Reorder density (RD) for Jitter = 1.2475

Exponential
Uniform
Normal

Figure 3: RD measured for each probability distribution.

Journal of Computer Networks and Communications 5

easily shown in a histogram-type graph, but it is difficult to
use for comparison with other variables.

To evaluate the reordering caused by these different
distributions we will check the corresponding Mean Dis-
placement (MD) and Entropy (Er) metrics. 0e graph of
Figure 4 shows the MD curve calculated for each RD cor-
responding to the 62 jitters chosen between 0 and 10ms to be
tested. It can be noted that the MD for the uniform dis-
tribution is systematically higher than theMD of the normal
distribution, which is higher than theMD of the exponential
distribution. For a 1ms jitter, theMean Displacement already
reaches approximate 7.1, 6.6 and 5.3, for the uniform,
normal, and exponential distributions, respectively. 0eMD
growth is linear with the jitter, which can be a disadvantage
in cases where there is a great degradation of the quality of
the network for a small variation in the packets delay.

0e Entropy for the corresponding RD has also been
calculated. 0e graph of Figure 5 shows Er for each distri-
bution tested. Different fromMD, we can observe that Er for
the normal distribution is systematically higher than the
uniform distribution, which in turn is higher than the ex-
ponential distribution. 0is difference occurs because the
Entropy calculation is influenced positively by greater spread
distributions, that is, with larger packet displacements. It is
possible to observe that for small delay variation, the En-
tropy is already significant and this value, other than MD,
does not grow linearly. Instead, growth follows a logarithmic
curve, making Entropy suitable for cases where a small
variation in the packet send order can significantly affect the
network quality.

In order to show the utilisation ofMD and Ermetrics for
the comparison of the performance of the upper layer
protocols, 30 TCP flow tests were performed for each of the
62 jitters values. In this scenario, we use the default system
configurations with SACK and D-SACK enabled, together
with bic control congestion algorithm.0e graph of Figure 6
presents the results of the average TCP throughput for

different values of MD. Note that the Mean Displacement of
the packets, at the moment of the throughput collapse, is
quite different for the three distributions; in addition, much
of the degradation occurs in a small range of delay variance,
making it difficult to compare.

Still using the same configuration described above, the
analysis was performed against Er. 0e graph of Figure 7
shows the results of the various TCP flow tests. Unlike the
MD, the moment of the throughput collapse occurs for
intermediate Entropy, allowing for observing more easily the
behaviour for small variations in the order of the packets.
Nevertheless, it is possible to notice that the distribution of
probability used considerably compromises the comparison.
While for the uniform distribution, an Entropy of 3.8, the

70

60

50

40

30

20

10

0
10864

Jitter
20

M
D

Jitter vs mean displacement (MD)

Normal
Uniform
Exponential

Figure 4: MD for diverse jitters.

6

5

4

3

2

1

0
10864

Jitter
20

ER

Jitter vs mean Entropia (Er)

Normal
Uniform
Exponential

Figure 5: E r for diverse jitters.

95

90

85

80

75

70

65

M
ea

n
th

ro
ug

hp
ut

 T
CP

 (%
)

Mean throughput TCP for MD

7040 50 603020
MD

100

Normal
Uniform
Exponential

Figure 6: 0roughput TCP for the values of MD.

6 Journal of Computer Networks and Communications

throughput is above 90%, for the exponential distribution,
the TCP throughput falls below 80%.

When we have a known probability distribution and use
Entropy to compare the protocols, this allows evaluating the
robustness of these protocols to a certain packet reordering.
0e graph of Figure 8 shows the comparison of four TCP
congestion control algorithms: bic, highspeed, Westwood,
and yeah. 0e tests were performed using jitters between 0
and 10ms, but with the same probability distribution:
normal. We see that the bic, highspeed, and yeah algorithms
perform well for Entropy of approximately 3.3. 0e West-
wood algorithm collapsed with a much lower value, ap-
proximately 0.75. 0e Entropy values for the normal

distribution were generated with a jitter of 0.8585ms and
0.075ms, respectively. In spite of the small time difference of
the jitter to the collapse point among the algorithms, the
scale of the Entropy allowed differentiating them clearly.

5. Conclusion

In this work we describe the methodology for generating
out-of-order packet sequences and the measurement of
Reorder Density in a virtual environment, which can be
modified for the validation of links and protocols in a real
environment. From the vectorial metric RD we use two
scalar metrics,Mean Displacement and Entropy, to compare
the performance of several TCP protocol configurations.

0e results showed that both MD and Er, derived from
RD, can be used to compare the performance of protocols
sensitive to reordering. For cases where few packets reorder
can cause a high performance degradation, the Entropy was
more significant in the measurement due to its logarithmic
scale. However, we realise that these two simple metrics are
sensitive to the shape of the probability distribution that
produces the disorder, and thus, the same Mean Displace-
ment or Entropy may reflect on a different performance to a
protocol being evaluated.

In the emulations where the reordering was caused using
the same probability distribution, it was possible to clearly
detect the maximum Entropy until the performance col-
lapses. As future work, we propose an investigation in a
scalar metric that allows easy comparison of the RD his-
tograms, considering the data density shape.

Data Availability

0e software components used in this work are open-source
and available for download in https://bitbucket.org/
torresweb/reorder/

Conflicts of Interest

0e authors declare that they have no conflicts of interest.

References

[1] M. Przybylski, B. Belter, and A. Binczewski, “Shall we worry
about packet reordering?” Computational Methods in Science
and Technology, vol. 11, no. 2, pp. 141–146, 2005.

[2] A. Morton, L. Ciavattone, G. Ramachandran, S. Shalunov, and
J. Perser, Packet reordering metrics, RFC 4737, RFC Editor,
2006.

[3] A. Jayasumana, N. Piratla, T. Banka, A. Bare, and R. Whitner,
Improved packet reordering metrics, RFC 5236, RFC Editor,
2008.

[4] M. Nischal, P. Anura, and P. Jayasumana, “Metrics for packet
reordering—a comparative analysis,” Inter-National Journal
of Communication Systems, vol. 21, no. 1, pp. 99–113, 2008.

[5] B. Ye, A. P. Jayasumana, and M. Nischal, “On monitoring of
end-to-end packet reordering over the internet,” in Pro-
ceedings of the International conference on Networking and
Services (ICNS’06), p. 3, IEEE, Silicon Valley, CL, USA, July
2006.

95

90

85

80

75

70

65

M
ea

n
th

ro
ug

hp
ut

 T
CP

 (%
)

Mean throughput TCP for Entropy

4 5 632
ER

10

Normal
Uniform
Exponential

Figure 7: 0roughput TCP for the values of Er.

Mean throughput TCP for Entropy - TCP congestion control100

90

80

70

60

50

40
0

1

21 3 4 5
ER

Bic
Highspeed

Westwood
Yeah

6

M
ea

n
�

ro
ug

hp
ut

 T
CP

 (%
)

Figure 8: TCP throughput using different congestion controls for
Er.

Journal of Computer Networks and Communications 7

https://bitbucket.org/torresweb/reorder/
https://bitbucket.org/torresweb/reorder/

[6] M. Nischal, A. P. Jayasumana, and A. A. Bare, “Reorder
density (RD): a formal, comprehen- sive metric for packet
reordering,” Networking Technologies, Services, and Protocols;
Performance of Computer and Communication Networks;
Mobile and Wireless Communications Systems, vol. 3462,
pp. 78–89, 2005.

[7] M. Nischal, A. P. Jayasumana, A. A. Bare, and T. Banka,
“Reorder buffer-occupancy density and its application for
measurement and evaluation of packet reordering,” Computer
Communications, vol. 30, no. 9, pp. 1980–1993, 2007.

[8] C. E. Shannon and W. Weaver, “0e Mathematical 0eory of
Communication,” 0e University of Illinois Press, Cham-
paign, IL, USA, 1971.

[9] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion
control (BIC) for fast long-distance networks,” in Proceedings
of the INFOCOM 2004. Twenty-third AnnualJoint Conference
of the IEEE Computer and Communications Societies, vol. 4,
pp. 2514–2524, IEEE, Hong Kong, China, March 2004.

[10] S. Ha, I. Rhee, and L. Xu, “Cubic,” ACM SIGOPS Operating
Systems Review, vol. 42, no. 5, pp. 64–74, 2008.

[11] S. Floyd, “Highspeed TCP for large congestion windows,”
RFC 3649, RFC Editor, 2003.

[12] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R.Wang,
“TCP westwood: end-to-end congestion control for wired/
wireless networks,” Wireless Networks, vol. 8, no. 5,
pp. 467–479, 2002.

[13] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound
TCP approach for high-speed and long distance networks,” in
Proceedings IEEE INFOCOM 2006. 25TH IEEE International
Conference on Computer Communications, pp. 1–12, IEEE,
Barcelona, Spain, April 2006.

[14] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion
Control. RFC 5681,” RFC Editor, 2009.

[15] M. Laor and L. Gendel, “0e effect of packet reordering in a
backbone link on application throughput,” IEEE Network,
vol. 16, no. 5, pp. 28–36, 2002.

[16] J. C. R. Bennett, C. Partridge, and N. Shectman, “Packet
reordering is not pathological network behavior,” IEEE/ACM
Transactions on Networking, vol. 7, no. 6, pp. 789–798, 1999.

[17] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP
Selective Acknowledgment Options,” RFC 2018, RFC Editor,
1996.

[18] K. Fall and S. Floyd, “Simulation-based comparisons of tahoe,
reno and SACK TCP,” ACM SIGCOMM Computer Com-
munication Review, vol. 26, no. 3, pp. 5–21, 1996.

[19] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An Ex-
tension to the Selective Acknowledgement (SACK) Option for
TCP,” RFC 2883, RFC Editor, 2000.

[20] J. Bellardo and S. Savage, “Measuring packet reordering,” in
Proceedings of the 2nd ACM SIGCOMMWorkshop on Internet
Measurment, pp. 97–105, ACM, Marseille, France, November
2002.

[21] K.-c. Leung, V. O. k. Li, and D. Yang, “An overview of packet
reordering in transmission control protocol (TCP): problems,
solutions, and challenges,” IEEE Transactions on Parallel and
Distributed Systems, vol. 18, no. 4, pp. 522–535, 2007.

[22] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
rapid prototyping for software-defined networks,” in Pro-
ceedings Of the 9th ACM SIGCOMM Workshop On Hot
Topics In Networks, Hotnets- IX, pp. 19:1–19:6, ACM, New
York, NY, USA, October 2010.

[23] S. Hemminger, “Network emulation with NetEm,” in Pro-
ceedings Of the Linux Conference Australia, pp. 19–23,
Canberra, Australia, April 2005.

[24] Hierachical token bucket theory, 2002, http://luxik.cdi.cz/
􏽥devik/qos/htb/manual/theory.htm.

[25] Reorder scritps, 2019, http://www.bitbucket.org/torresweb/
reorder/.

8 Journal of Computer Networks and Communications

http://luxik.cdi.cz/�devik/qos/htb/manual/theory.htm
http://luxik.cdi.cz/�devik/qos/htb/manual/theory.htm
http://www.bitbucket.org/torresweb/reorder/
http://www.bitbucket.org/torresweb/reorder/

