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Botnet is one of the most dangerous cyber-security issues. 'e botnet infects unprotected machines and keeps track of the
communication with the command and control server to send and receive malicious commands. 'e attacker uses botnet to
initiate dangerous attacks such as DDoS, fishing, data stealing, and spamming. 'e size of the botnet is usually very large,
and millions of infected hosts may belong to it. In this paper, we addressed the problem of botnet detection based on
network’s flows records and activities in the host. 'us, we propose a general technique capable of detecting new botnets in
early phase. Our technique is implemented in both sides: host side and network side. 'e botnet communication traffic we
are interested in includes HTTP, P2P, IRC, and DNS using IP fluxing. HANABot algorithm is proposed to preprocess and
extract features to distinguish the botnet behavior from the legitimate behavior. We evaluate our solution using a collection
of real datasets (malicious and legitimate). Our experiment shows a high level of accuracy and a low false positive rate.
Furthermore, a comparison between some existing approaches was given, focusing on specific features and performance.
'e proposed technique outperforms some of the presented approaches in terms of accurately detecting botnet flow records
within Netflow traces.

1. Introduction

Most of the people depend on the Internet for their day-to-
day tasks such as business, education, and entertainment [1].
Botnet is one of the most popular security threats [2]. 'e
term “botnet” is formed from two words: robot and network.
Robot means an automatic program that is run and performs
the intended tasks without user interaction. 'e bot can be
good or bad. 'e bot in the botnet is a bad (malicious)
software that is run on the victim’s machine without his
knowledge.'e attacker who owns the bot takes control of the
machine and formed, with other bots, a network of infected
machines.'e attacker is known as botnet master. 'e botnet
master uses special mechanism to communicate with these
bots and exchange commands through the botnet. 'is
mechanism called Command and Control server (C&C).

Bots act in a coordinated manner and follow the botnet
masters instructions, given the power of botnets to execute
various malicious activities and massive attacks against
e-commerce website, governments’ websites, etc. [3].

'e bot has the capabilities to lunch dangerous attacks
such as Distributed Denial of Service (DDoS), fishing, data
stealing, click fraud, and spamming. A survey from Kas-
persky shows that DDoS botnet attacked 79 countries online
resources in the first quarter of 2018 [4]. 'is number of
attacks is increasing each year.'e goal of botnet activities is
typically to gain a financial benefit for different purposes.
One of the botnet activities is to steal sensitive information
from the compromised machines and send this information
back to the C&C server. 'en, this sensitive information is
sold by the botnet master. An example of sensitive infor-
mation is personal bank details or any other information
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that an unauthorized person should not have the right to
access to it.

Organizations firewalls are designed to allow legitimate
traffic such as DNS, HTTP, and P2P. 'e botnet master
takes this as an advantage to pass the organization firewall
and download the bot into the users’ computers. 'e huge
amount of packets and data exchanged in the network
prevent network administrator to detect this intrusion
since he cannot monitor all these information. 'ere are
many types of botnets that are identified by the previous
researchers [5–7]. 'e first developed botnets are Internet
Relay Chat (IRC) botnets, followed by Hypertext Transfer
Protocol (HTTP) botnets, and finally Peer to Peer (P2P)
botnets. IRC bot is the easiest type of botnets to detect
because it uses centralized architecture which means all
bots are supervised from a center point. 'e existence of a
central point makes it visible and therefore easy to be
detected and blocked [8]. However, P2P bot is the most
difficult one to detect because it uses distributed archi-
tecture which means the botnet master transfers command
to an infected bot peer who transfers it to other peers. In
this case, a single failure in distributed botnet does not
create significant disruption [7].

'e first action that must be taken to secure a network is
to detect machines infected by bots. However, the botnet is
employing and developing hiding techniques along with the
development of the technology. 'ese hiding techniques can
be done by various ways such as trying to imitate the le-
gitimate network traffic and using process injection. For-
tunately, botnet follows a unique communication pattern
that is different from nonmalicious (legitimate) traffic in
different criteria such as packet size, flow size, flow and
duration time.

Botnet detection may be implemented at the network
level or at the host level. Botnet detection at the network
level plays a critical role in security by monitoring the
network traffic and providing warning to the network
administrator when any unusual event is detected. On the
other hand, the detection at the host level plays a crucial
role in the detection of malware infection by monitoring
files system modification, registry modification, and net-
work traffic on the host.

Given the discussion above, our research question is as
follows: Can botnets be detected effectively by combining
both network traffic flow data analyzer and host processes
data analyzer?

In this research, we propose a general hybrid technique
capable of detecting botnets in early phase. Early phase
means that we try to detect malicious behavior when the bot
tries to propagate the bot malicious code to infect other
machines or from the first packets exchanged between the
bot and the C&C server. Our technique is deployed at the
host level and the network level. 'e botnet communication
traffic that we are interested in includes HTTP, P2P, IRC,
and DNS using IP fluxing. Our technique consists of three
components: network analyzer, host analyzer, and detection
report:

(i) 'e host analyzer observes the process operation in
file system and registry.

(ii) 'e network analyzer observes the network traffic
activity of the host process. 'ese activities include
botnet propagation operation and botnet commu-
nication with command and control server.

(iii) 'e detection report component generates a report
with infected machines’ IP addresses.

To achieve our goal, we develop an algorithm called
HANABot (Host And Network Analyzer for Botnet detec-
tion) to preprocess the data to detect bots based on set of
features. 'ese features have been combined to generate a
classification technique capable of differentiating botnet and
legitimate flow records with a high degree of accuracy. Al-
though some of these features were previously studied, they
are reused and ordered in a different way to improve the
accuracy in differentiating legitimate traffic from botnet
traffic. In fact, these features are fundamental to achieve high
botnet detection accuracy. Moreover, new features are pro-
posed to enhance the botnet detection especially in early stage.

Our proposed approach has the following three
contributions:

(1) A general botnet detection technique capable of
detecting the three types of botnet (IRC, HTTP, and
P2P). For the network traffic analysis, our solution
monitors two activities: botnet propagation tech-
niques and network data flow. Botnet propagation
detector aims to detect newly infected hosts before
this bot starts the communication with the C&C
server.

(2) Our technique, for the host process analysis, mon-
itors file system creation and registry modification.

(3) An effective algorithm, HANABot for Host and
Network Analyzer for Botnet detection, is developed.

'is paper is organized as follows. Section 2 gives an
overview of some research works proposed for botnet detec-
tion. Section 3 describes our methodology to reach our ob-
jectives and the laboratory experimental setting. Section 4
introduces the proposed technique, HANABot, and its com-
ponents. Section 5 presents HANABot performance and a
comparisonwith some previous solutions. Finally, we conclude
our paper in Section 6 and recommend some future works.

2. Literature Review

One of the hot research topics is the botnet detection. Many
researches in the literature focus on botnet detection
techniques. Many of these techniques are focused only on
specific botnet type. Botnet behavior-based detection ap-
proaches can be classified into three classes: host-based
detection, network-based detection, and hybrid detection.
Here, we briefly describe some of the previous researches
that propose different solutions to detect botnet.

2.1. Botnet Detection at the Host Side. Using antivirus soft-
ware and a firewall to protect the host are not enough to
prevent its infection by botnet malware. Moreover, even if
we can stop the C&C server, the infected host (with bot) can
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be launched again into future attack. In this case, we need a
host-based detection to eliminate the bot program from the
host. 'ere are various researches in host-based detection
techniques [9–11]. Huang [10] proposes an effective bot host
detection solution based on network failure tracking in a
host during short period. 'e solution consists of two
phases: (1) training phase and (2) detection phase. 'e first
phase is used to extract features from failure flows. 'e
second phase analyses the data based on knowledge obtained
during training phase using C4.5 algorithm. In [9], Etemad
and Vahdani deal with the detection of C&C centralized
botnet by using host analysis. 'eir solution is based on
incoming and outgoing host real traffic analyses. It consists
of two basic components:

(i) Protocol classifier: the host outgoing traffic and
incoming traffic are redirected to this component.
First, this protocol classifier separates IRC traffic and
HTTP protocol traffic from the rest of host traffic.
'en, it forwards the separated traffic to the com-
munication pattern interpreter component.

(ii) Communication traffic pattern interpreter consists
of two modules: IRC module and HTTP module.
'is component distinguishes malicious traffic from
legitimate traffic.'en, the host firewall can filter this
malicious packet out. In IRC module, it detects the
IRC malicious bot based on its communication
traffic with the botnet C&C server. In the HTTP
module, it recognizes HTTP-based botnet C&C
server communication traffic based on periodic
pattern of HTTP messages.

'is approach is based on the traffic analyzer in the host
and not on process detection. It does not process encrypted
packets (command) from the botnet master to bots.
Moreover, it is limited to centralized botnet and does not
deal with P2P botnet.

In [12], Zeng et al. proposed a per-process level contain-
ment technique for each host in the monitored network. 'e
per-process containment consists of two components: be-
havior analysis component and containment model. 'e be-
havior analysis component consists of various monitor and
suspicion-process level generators.'e process is monitored in
the runtime behavior at the operating system level in registry,
file system, and network stack. 'en based on the process
activities analysis, they apply the SVM algorithm to each
running process to assign a suspicious level for that process. In
the containment, there is a mapping function optimizer to
transfer the suspicious score to a threshold for each process.

'eir approach has many advantages:

(1) 'ey propose a technique that integrated both
behavior analysis and containment for early and an
automatic defense against malicious network
worms.

(2) 'ey generate a suspicious level for each process
using a machine learning classification technique
and develop an algorithm to map each suspicious
level score to a threshold for rate-limiting procedure.

(3) 'ey perform in-depth analysis and experiment
using traces of real world worm binaries and normal
programs.

2.2. Network-Based Botnet Detection. Earlier, botnet detec-
tion techniques are based on payload inspection analysis
techniques which check the TCP and UDP packets contents
for malware signature. Payload analysis techniques are re-
source consuming that require processing large amount of
packet data and it is a slow process. Moreover, new botnet
generation employs encryption algorithms and other
methods to hide their communication traffic and to crush
packet payload inspection analysis techniques.

Flow-based attributes extracted from the network traces
were similar to NetFlow features such as bytes-per-packet,
bytes-per-flow, and bytes-per-second. In the last few years,
botnet detection techniques using flow analysis has emerged.
'ere are many network traffic flow detection techniques
that have been proposed in the last years. In this section, the
discussion of some of those techniques and their limitations
will be stated. Anomaly detection can be through mining-
based detection techniques which are used to extract un-
expected network traffic patterns. Hence, it can detect ab-
normal traffic even if the packets are encrypted. Many
techniques used flow analysis [5, 7, 13–15].

In [5], general botnet detection that is able to detect
different types of botnet is proposed. 'is approach ana-
lyzes the network traffic flow during constant time inter-
vals. 'en, statistical correlation in the network traffic flow
is performed for building effective classification system.
'is approach can detect botnet regardless of the topology
or the protocol used. Moreover, it is capable of detecting
unknown botnet.

In [7], Liao and Chang propose a P2P botnet detection
approach based on analyzing andmonitoring network traffic
using data mining scheme. 'ey evaluate their solution
using three data mining popular algorithms: J48, naı̈ve
Bayes, and Bayesian networks. 'e accuracy rate of these
algorithms is 98%, 89%, and 87%, respectively.

Zhao et al. in [13] propose a new solution for P2P to
detect botnets by analyzing network traffic. 'eir idea
consists in selecting 12 features from the network flow to be
analyzed and hence extract flow behavior for predefined
time window. 'ey use machine learning algorithm to
isolate the botnet traffic from the legitimate traffic. 'ey
select decision tree using the reduced error pruning algo-
rithm. 'en, they use correlation attributes evaluator to
choose the key discriminating attribute for botnet detection.
'eir approach can detect single bot activity offline or in live
traffic. Moreover, it is able to detect unknown bots and
detect bots in early stage through its activity in C&C phase.

Hung and Sun in [14] propose a botnet detection system
based onmachine learning.'e solution is based on network
traffic. First, a set of flow-based features is selected and
extracted from the network traffic. 'en, to make sure the
model performs well, some noise is added to payload,
interarrival time, and features. 'is solution achieves high
accuracy that reaches 99.7% for some botnet types.
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Compared with an existing botnet detection system, the
proposed solution shows that it can resist more noise.

Alauthaman et al. [15], propose a P2P Botnet detection
scheme based on decision tree and adaptive multilayer
neural networks. 'is framework passively monitors the
network traffic to detect the botnet communication with the
C&C server and between bots. First, network traffic re-
duction is done to manage the enormous amount of network
traffic. 'en, 29 features are proposed for botnet detection.
Features with small influence on classification model are
eliminated by using the feature reduction approach: the
classification and regression tree (CART). 'e target of this
feature reduction is to keep only worthy features to obtain
better rates of neural network learning and classification
accuracy. 'e evaluation of this approach shows that it gives
very good accuracy with 99.2% and outperforms some
existing solutions.

DNS detection techniques are based on specific DNS
features analysis produced by a botnet. However, these DNS
techniques are not useful to differentiate C&C server traffic
and new botnet types. Some solutions focus onDNS traffic to
detect botnet which relays on DNS to discover the C&C
server.

Zhao et al. [16] propose an IDns system to detect
malicious domain names in the C&C server for APT (ad-
vanced persistent threat) attack. 'e proposed system is
deployed at the network side which can reduce the network
traffic volume that has to be registered then analyzed. 'eir
approach consists of four components:

(i) Data collector: to store the inbound and outbound
network traffic.

(ii) Malicious DNS detector: to analyze the DNS record
that is stored by data collector. 'en, it detects the
suspicious APT C&C domain and supplies the
suspicious server IP address corresponding to the
domain to the next components.

(iii) Network traffic analyzer component: it consists of
two units which are signature detector and anomaly
detector.

(iv) Reputation engine: it calculates a reputation result
for each IP address from the previous components.

'e 14 features that are studied for malicious DNS
detector in this approach are divided into 5 categories:
domain name features, DNS answer features, time value
features, TTL value-based features, and active probing
features. 'is botnet detection can detect only malwares that
depend on DNS. Hence, P2P botnet cannot be detected.

2.3. Hybrid-Based Detection. Hybrid-based detection is a
correlation between network traffic analysis and host traffic
analysis.

Zeng et al. [17] propose a botnet detection technique that
incorporates both host level detection and network level
detection. 'eir solution is the first that combines the host
and network level detections and correlating the alerts which
could increase the detection accuracy. 'ey propose to use 9

features for host analysis: 6 features for file and registry
operations and 3 features for network traffic in the host. For
network analysis, 17 features are extracted from netflow
data. 'ey evaluate the combined host and network de-
tection technique and show that their solution is effective
against IRC, P2P, and HTTP botnets.

In [18], a botnet detection technique that incorporates
both host level detection and network level detection is
developed. 'e proposed solution, called EFFORT, is
implemented as a multimodule approach to correlate in-
formation from different host and network level aspects to
achieve an efficient and effective detection. 'e solution is
implemented and evaluated in real-word machines. Results
show that EFFORTeffectively detects until 15 real-word bots
with low false positive rate.

In [19], Abdullah et al. deal with the P2P botnet ar-
chitecture. 'eir solution depends on the combination be-
tween the host- and network-based analyses. In the host
level, the analysis will be on the file system: registry and log
file. 'is analysis looks for abnormal behavior and char-
acteristics in every single activity that happened in the host.
In the network level, the analysis is on the full packet
payload.'is analysis can differentiate both the C&C servers
and the infected hosts with bots in the network.

'is solution can be also considered as prevention
mechanism. In fact, it is effective in detecting bot in early
stage from the host analysis. However, it takes time to
complete the analysis due to the network violations in P2P
bots. For accurate detection rate, it combines the host
analysis result with network analysis result.

2.4. Discussion. We have presented a brief state of the art
related to botnet detection, significantly contributing to
localize and detect bots in the network.

We distinguished between (1) botnet detection at the
host side, (2) botnet detection at the network side, and (3)
hybrid botnet detection. It is clear that the highest benefits
will be obtained by a solution that

(i) Combines the host and network analysis which
means hybrid botnet detection: to be efficient,
some solutions integrate more than one strategy.
Using hybrid botnet detection, many parameters
are combined and correlated to localize and detect
abnormal behavior. In this case, if the bot traffic is
not detected by the network analyzer, the host
analyzer can detect it using other rules and taking
into account other features and the reverse is true
(if the bot behavior is not detected by the host
analyzer, the network analyzer can detect it using
other rules and taking into account other
features).

(ii) Minimizes the complexity: the target of a botnet
detector is to detect botnet traffic as early as possible
while reducing the complexity and the processing
time of the analyzer. For example, the network
analyzer must analyze and classify all the ingoing
and outgoing traffic. Consequently, an efficient
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botnet detector should filter the traffic before
starting the analysis.

(iii) Easily adapted to detect new botnets and scalable: a
botnet detector may have a good detection rate for
known botnets. However, the solution should also
detect unknown botnet with a very high accuracy.
In all cases, the target of all these solutions is to
detect as soon as possible the botnet and stop it. 'e
ideal solution is to obtain 100% of detection rate
with 0% of false positive rate. To be adopted, such
solutions should be effective with low complexity
and capable to detect new or unknown botnets.

3. Methodology

In this section, we present the research methodology to be
able to perform an investigation as well as analyzing the bot
in the infected host.

3.1. Laboratory Environment. 'e laboratory environment
in this research consists of physical machines and virtual
machines (VMs). One of the physical machines is used to
collect malwares, and the other physical machines are used
to analyze malwares. Using the VM software, in this re-
search, affords an efficient and safe environment to analyze
the botnets and makes a flexible way to deploy a laboratory
to analyze botnets.

'is laboratory consists of several computers. If this
laboratory depends only on physical computers to analysis
botnets, the cost of the research will be very high. However,
the advantages of using the VM are first to reduce the cost
and second to be able to restore the computer to its original
state if the VM is infected.'is will save the time in repeating
the experiment multiple times which help us to provide
results with high accuracy and in safe way.

On the other hand, this research is dealing with a
malicious activity that can threat the security of the re-
searcher’s network. 'erefore, we need first to consider the
security of the researcher’s network. 'e solution is to use a
demilitarized zone (DMZ) on the physical machine that
collects malwares. 'is DMZ provides a honeypot in an
isolated environment to capture all the malicious traffic in
experimental machine.

3.2. Laboratory Components. 'is subsection presents the
laboratory components used for the experiment of this
research. 'ese components are shown in Figure 1.

It consists of a physical computer (the host) with Linux
as an operating system. On this host, we install a VM with
Windows 7 as an operating system.'eVMwill be the target
of the attack in this research, and the Linux operating system
is the controller on which honeypot is installed. For a dy-
namic analysis, different tools will be used to carry out the
experiment:

(i) Honeypot: this tool is used to collect malware
samples from the Internet. In fact, the collection of
the malwares using this tool is the safest way. 'e

physical computer is connected to the Internet
directly to expose the computer vulnerabilities and
hence attracts attackers. 'e honeypot chosen for
this research is the low-interaction honeypot Dio-
naea [20].

(ii) Controller: the controller is the Linux-based oper-
ating system. It will be used to monitor the network
activity and to control the windows virtual machine
activities. It will construct a database to collect
malware signatures.

(iii) Virtual target: it is a windows 7 VM. 'e malware
analysis tools will be installed on it. 'is will allow
us to examine the bot behavior.

(iv) Dynamic analysis: this is a VM with Windows 7 as
an operating system; we will have an ability to
perform a dynamic analysis. A dynamic analysis will
be performed in this research separately.

3.3. Dataset Collection. We have run the honeypot for one
month and collected six types of malware binaries. Un-
fortunately, only two of the collected binaries belong to
botnet. Hence, we download the rest of wanted malware
binaries from VirusTotal. 'en, we do the experiment to
build our dataset by capturing the activities of normal and
malicious processes. 'e monitored applications are eMule,
Bittorrent, web services, Rbot, Zues, Neris, and Storm. 'e
legitimate application traces were collected from clean
(malware-free) VM PCs in regular use. 'e dataset collected
is presented in Table 1.

To construct our proposed technique training dataset, we
have applied the publicly available botnet dataset from
multiple sources. We collect three different botnet datasets
and one benign dataset from Dalhousie University [21], two
botnet datasets and one normal dataset from CTU Uni-
versity [22], one botnet dataset from the Sourcefire Vul-
nerability Research Team (VRT) [23], and one dataset from
ISCX which is a mixture of several accessible publicly
available botnet and normal datasets [24].

Table 2 shows a detailed description of the collected
datasets.

To evaluate our botnet detection technique, we have used
the collected dataset from the experiment.

3.4. Research Design. 'e research design is divided in two
phases. 'e first phase consists of the collection of malware
signatures by using honeypot.'esemalware binaries will be
used to infect the VMware host in order to monitor their
activities.

'e target of monitoring the infected host, using sniffer
tool (wireshark) and malware analysis tools (process
monitor and process explorer), is to be able to extract the
communication pattern characteristics between the C&C
server and this host. After that, we use these tools to analyze
the collected malware behavior and gather behavior infor-
mation artifacts that we need.

'e second phase of this research consists of the de-
velopment of an algorithm (using python) to extract needed
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artifacts. 'en, we perform preprocessing steps to collect
features which conduct to the final decision. 'is final de-
cision will be produced using machine learning algorithm
using Knime.

3.5.ExtractedProprieties forFeaturesBuilding. 'ebots need
the Internet to perform various actions such as communi-
cation with C&C server and the propagation of the botnet by
infecting other computers. As a result, monitoring the
network traffic and processes activities in hosts are an es-
sential aspect to detect the botnet.'e artifacts needed to our
features for host processes analysis are explained in Section
4.2.

In the following, we review the features and attributes
that are used for classifying P2P, IRC, HTTP, and IP fluxing
activities from bots activities in network monitoring. In the
traffic classification field, finding a combination of features

and attributes that distinguishes each category with a high
accuracy and successfully determines the label of each un-
known item to a right class is the challenge.

'e characteristics needed for our features vector
analysis can be extracted directly from the network flow
record. For each flow record, we first determine the traffic
type then compute the features needed based on the traffic
type.

Table 3 shows the artifacts needed to build up features for
machine learning tools.

'e four first artifacts are used to determine packets
belonging to the same flow.'e artifact numbers five and six
are used to compute the failed connection ratio feature
presented in Section 4.1.1. 'e last five artifacts are used as
follows.

3.5.1. Packet Size. P2P application and Internet services that
need a large amount of bandwidth will typically have large
packet sizes. 'is is because these packets are linked with a
large payloads content and contain a lot of data and in-
formation.'ese large packet sizes are generated by network
bandwidth consuming services such as uploading or
downloading files, video streaming, and P2P file sharing.'e
(TCP or UDP) packets, Maximum Transmission Unit
(MTU), size running on the Ethernet is approximately 1400
bytes and for P2P application is between 1000 and 1400 as
shown in Figure 2.

However, the botnet uses small packet size to minimize
their observable impact on the network traffic and does not
consume network bandwidth.'ere are two reasons for that:
first, to maintain the connection undetectable and hidden in
the network; second, to maximize the reliability of the
connection between the bots and command and control
server. 'e packet size used in the botnet communication is

Analysis machine
(Vmware windows)

Target machine
(Vmware windows)

Controller
(Linux)Honeypot

(Dioneae)

Modem

Figure 1: Laboratory components.

Table 1: Description of experiment dataset.

Dataset type Size
Legitimate 15.4GB
Malicious 11GB

Table 2: Description of public datasets.

Dataset Dataset type Size
ISCX Mixture 5GB
Citadel P2P botnet 8.39MB
Zues P2P botnet 6.98MB
Rbot IRC botnet 27MB
Neris IRC botnet 1.04GB
NormalCapture Normal 2.44GB
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less than 400 bytes as shown in Figure 2. We consider the
packet size as small packet size if its size is less than 400 bytes
as a measurement for botnet detection.

For HTTP traffic, 3 ranges can be identified for the
request and response size which are 0–500, 501–1000, and
1001–1500 bytes. In HTTP traffic, we distinguish two cases:

(i) 'e abnormal behavior in which HTTP request
packet size is in range1 (0–500) and the response
packet size is in the same range (range1).

(ii) 'e normal behavior in which HTTP request packet
size is in range1 (0–500) and the response packet size
is in the different range (range2 or range3).

Example of HTTP request and response ranges is pre-
sented in Table 4.

3.5.2. Equal small Packet size. As mentioned in subsection
3.5.1, bots use small packet size. Furthermore, during the
life-cycle of the botnet, the communication activities be-
tween the C&C server and bots follow constant pattern
(since they are hard coded in the bot program). In fact, the
packets exchanged between a C&C server and a bot have the
same content. 'is means the same packet size which is

generally small as explained above. 'us, the bot follows
uniformity in their communication traffic behavior such as
packet size, whereas legitimate users use distinct packet sizes
which are generally large packet sizes. 'e packet size and
the number of equal small packet size are used to make
decision on the traffic if it is normal or abnormal behavior.
'erefore, for each flow the first incoming packet size (IPS) if
it is small packet or the first outgoing packet size (OPS) if it is
small packet is taken as reference. 'ese values are used at
the end of the flow to conclude. 'en,

(1) 'e number of equal incoming small packet (EIS) is
computed. To achieve that, the number of all small
incoming packet that their size is equal to IPS is
counted. 'en, the total number of packets in the
flow called total incoming packet (TIP) is counted. At
the end of the flow, the following equation is
computed:

EIS � σTIP − NIP, (1)

where σ is a positive parameter used since all packets
are not equal to the first packet (IPS) in botnet flow.
From our experiment, we notice that there are some
distinct values. 'erefore, we choose σ � 0.75.

(2) 'e same step is used in the case of outgoing traffic.
'e number of equal outgoing small packet (EOS) is
computed. Hence, the number of small outgoing
packets (NOPs) where the size of this packet is equal
to OPS is counted. 'e total outgoing packets is also
counted. 'en, the following equation is computed:

EOS � σTOP − NOP, (2)

where σ � 0.75.

4. HANABot Technique Description
and Analysis

Our solution, HANABot (Host And Network Analysis for
Botnet detection), works at the network level and host
level. In the network level, it can monitor the traffic of all
devices connected to this network and analyze it to observe
specific connection patterns. In the host level, our solution
can monitor the host processes operations and network
traffic to detect the bot process. 'e monitored host
process operations involve registry and file system. 'en,
specific features are varied to decide if a flow including a
host’s IP address or a process in a host is suspected of bot
activity or not. Figure 3 shows our technique architecture
in which we distinguish three components: network an-
alyzer component, host analyzer component, and detec-
tion report.

Table 3: List of selected artifacts for network monitor.

Number Artifact
1 Port source and destination
2 IP source and destination
3 Protocol (UDP or TCP)
4 HTTP method (POST or GET)
5 Total number of connections
6 Number of failed connections
7 First packet length
8 Packet size
9 Total number of packets
10 Number of input small packets
11 Number of output small packets
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Figure 2: Packet distribution in general Internet.

Table 4: Example of HTTP request and response ranges sizes.

Classification RequestPacketSize ResponsePacketSize
Abnormal <�500 bytes <�500 bytes
Normal <�500 bytes >500 bytes
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In this research, we try to detect the botnet as efficiently
as possible. In Section 4.1, we detailed each component of
our architecture.

4.1. Network Analyzer. 'e network traffic of the botnet is
classified into two main categories:

(i) Propagation and infection of other computers in the
network either through scanning for other vulner-
abilities in the network or through social engi-
neering. Scanning techniques may be a port
scanning or failed connection. Social engineering
techniques may be an e-mail spam.

(ii) Botnet master communicates with the botnet
members through the C&C server in the same botnet
with a specific communication pattern. 'e com-
munication traffic of HTTP, IRC, IP fluxing, and P2P
is discussed.

As a starting step for the classification technique, we
need to distinguish between P2P activities and nonP2P
activities. 'e packets are parsed from the Wireshark packet
analyzer (PCAP file) to our HANABot algorithm. 'e
process for distinguishing the network traffic is based on the
source port number, destination port number, and the
protocol used. In non-P2P traffic, we identify the following
network traffic:

(i) HTTP using TCP protocol and port number 80
(ii) IRC using TCP protocol and port number 194
(iii) IP fluxing by DNS using UDP protocol and port

number 53

If the port source number and port destination number
is bigger than 1024, then the traffic is considered P2P
traffic.

In this stage, we filter out all irrelevant network traffic
flows. Notice that this filtering step is just an optional
procedure and not critical to our network analyzer. 'e

purpose of this step is to reduce the computational cost by
reducing the total number of flows. 'en, the network traffic
is split into different categories (HTTP traffic, IRC traffic,
etc). In each category, all packets that belong to the same
flows are extracted. Next, our HANABot algorithm extracts
all the artifacts presented in Table 3 from these flows. After
that, the HANABot algorithm preprocesses these extracted
artifacts to obtain the relevant features of each flow. 'e
preprocessing is applied on the network traffic to collect
valuable information that based on the decision is made at
the end. In the following, we present HANABot pre-
processing steps.

Figure 4 shows the network analyzer components. In the
following, we present each component in more details.

4.1.1. Botnet Propagation Detector. 'is component is
common for P2P and non-P2P botnet. In fact, in all case,
the botnet uses propagation techniques to spread its
malicious code and infect new machines. 'e bots will be
looking for known vulnerabilities in new victim machine
as part of the propagation process. Bots look for a new
target randomly or a specific machine and scan it. 'e
propagation techniques that we interested in are as
follows:

(i) In traditional non-P2P traffic, such as HTTP, DNS,
and SMTP, the server works well and generally all
connections are successful. 'erefore, the failed
connection is low in client/server networks. How-
ever, in P2P networks, such as BitTorrent, the failed
connection is high. 'e reason for that is that a peer
maintains the connection with other peers and tries
to connect to the peers that have been disconnected
in P2P networks. However, IRC botnet and HTTP
botnet have high failed connection ratio since the bot
is trying to find the C&C server IP address. Regarding
P2P botnets, it has low failed connection ratio be-
cause the bot communicate with known peers via
hard coded IP addresses.
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Figure 3: HANABot architecture.
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'e failed connection types are listed in Table 5. We
have a failed connection if the outgoing connection is
not successful.
'e failed connection ratio is computed using the
following equation:

FCR �
FCN
ACN

, (3)

where FCR means failed connection ratio, FCN
means failed connections number, and ACN means
all connections number.

(ii) Port scanning can be detected by monitoring the
failed connection from the same source IP to dif-
ferent hosts in the network. If the packet is non-P2P
packet (if the source port or the destination port is
<1024), many failed connections to different hosts
in sliding time window is considered as abnormal
behavior.
Based on Table 5, we keep track of the number of
failed connections issued from the same sender IP
address. Every time a failed connection is tracked, a
variable flag is_failed is set to 1. 'en after 2 sec-
onds, we sum up the is_failed value for each sender
in the monitored network.

(iii) E-mail spam is a method for sending unwanted
e-mail messages frequently with commercial or
marketing content in large quantities to a random
set of recipients. Delivering e-mail spam procedure
is same as delivering legitimate e-mail, utilizing
Simple Mail Transfer Protocol (SMTP) on port 25
[25].
'e botnet master uses botnet for diffusing spam
e-mails at a large scale. 'e senders of e-mails may
belong to different botnet networks and also they

may serve different botnet masters for different
purposes and this spam emails can have different
contents.
We keep track of the number of SMTP packets
issued from the sender IP address. Every time a
SMTP packet is tracked, a variable flag is_SMTP is
set to 1. 'en after 120 seconds passes, we sum up
the is_SMTP value for each sender in the monitored
network.

Features for botnet propagation detection:

(1) Failed connection ratio (FCR)
(2) Number of failed connection from same IP address

during an interval of time (2 seconds in our case)
(3) Number of emails (port 25) from same IP address

during an interval of time (120 seconds in our case)

4.1.2. P2P Communication Traffic Detector. In [26], we
present our work to detect P2P botnet. Here, we mention
briefly the presented approach. If both the source port
number and the destination port number of the packet is
greater than 1024, then the packet is considered as P2P
packet. In P2P application, each node can act as server to
download data or as client to upload data. In order to

Traffic 
identification based 

on port number

P2P

P2P detector Propagation HTTP detector IRC detector IP fluxing

Non P2P

Network analyzer

Network traffic

Figure 4: Network analyzer components.

Table 5: Monitored network failure types.

Protocol
Description of the failure

Packet sent Packet received

TCP
TCP SYN TCP reset
TCP SYN ICMP unreachable
TCP SYN No packet received for 120 seconds

UDP UDP ICMP unreachable
UDP No packet received for 120 seconds

DNS DNS query A DNS server error code to the queried
domain
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communicate with each other, each peer should have a peer
list. It can get the peer list from distributed hash table (DHT)
using the UDP transmission protocol or from the applica-
tion server using the TCP transmission protocol. After
obtaining the peer list, the peer, first, tries to establish the
communication with other peers. 'is is the first stage in a
P2P application session. 'e second stage consists of data
exchange stage.

(1) Communication establishment stage: the transport
protocol UDP or TCP can be used to establish
communication with existing peer list.

UDP communication establishment: the peer sends a
small UDP packet to establish the P2P session and
then waits for a packet from the receiver to start the
transmission of the data. Figure 5 presents the UDP
packet sizes of themost commonP2P application [27].

According to Figure 5, we distinguish two cases:

(i) If the packet request size is between 36 bytes and
67 bytes, then it is considered as an abnormal behavior.
'erefore, if the size of UDP packet used to initiate a
P2P session is between 36 bytes and 67, it is a botnet
communication packet. In fact, this case is when the
bot knows who is the peer bot to communicate with
via hard coded IP addresses. Moreover, the bots send
many small packets to maintain connections.

(ii) If the size of UDP communication request packet is
more than 120 bytes and the response packet size
exceeds 400 bytes, then the traffic is considered as
suspicious bot. In fact, if the peer needs to retrieve
other peers IP addresses who has the wanted file
using DHT, it should send a request UDP packet size
as mentioned above and receives packet with a size
less than 400 bytes as in case of BitTorrent. However,
the response, in case of botnet, contains the mali-
cious code which is generally larger than 400 bytes.

TCP communication establishment: a normal three
handshake TCP communication establishment is
performed. 'erefore, the detection for TCP
communication is performed in the data trans-
mission stage.

(2) Data transmission stage: After the establishment of
the connection, the data transmission starts by
uploading or downloading data through the P2P
network. During this transmission, peers use large
packet sizes to reduce the overhead in the network.
'ese packet sizes are generally higher than
1000 bytes. However, bots use small packet size to
minimize the impact of its traffic on the network as
explained above in this paper. Equations (1) and (2)
computed in the preprocessing step are used to make
a decision concerning the traffic type:

(i) Based on Equation (1), if NIP>� EIS, then the
number of incoming equal small packet size is
high (abnormal behavior).

(ii) Based on equation (2), if NOP>� EOS, then the
number of outgoing equal small packet size is
high (abnormal behavior).

An example of Equation (1) computation is presented in
Table 6.

'e flow is terminated in TCP connection by TCP finish
flag or TCP reset flag. 'ere are other cases where the flow
can be terminated in a nonstandard way such as failure in the
physical link. In this case and in UDP transmission protocol,
we check the time of the last packet arrived if it exceeds 120
seconds (this time is the default value used by open source
linux kernel’s connection tracking module), we consider this
flow as terminated.

Features for P2P communication traffic detection:

(i) Packet request size for UDP protocol
(ii) Packet communication request size for UDP

protocol
(iii) Packet response size for UDP protocol
(iv) NIP, EIS, NOP and EOS for TCP protocol (for each

flow)

4.1.3. Non-P2P Communication Traffic Detector. Non-P2P
application is any application that runs on well-known port
number (if the source port number or the destination port
number is less than 1024). In non-P2P detector, we monitor
HTTP, IRC, and IP fluxing.

(1) HTTP Detector. HTTP traffic uses the TCP transmission
protocol. 'e standard HTTP traffic contains request and
response messages.

(i) 'e request can be one of three types: GET, POST,
and HEAD.

(ii) Each response has a status codes.'is status code can
be one of five classes. 'e interesting response status
code for us is 200 from the second class (2xx) which
means that the HTTP request successful. 'e actual
response code status number will depend on the
HTTP request method type used. In a HTTP GET
request, the HTTP response status code 200 will
contain an information entity corresponding to the
requested web resource. In a HTTP POSTrequest, the
HTTP response status code 200 will contain an in-
formation entity containing the result of the activity.
We analyze three types of parameters which are the
HTTP request size, HTTP response size, and pay-
load packet size. In normal HTTP traffic, to
download data, legitimate users will send small
request packet size and receive large response packet
size with large incoming packet size. To upload data,
legitimate users will send large request packet size
with large outgoing packet size and receive small
response packet size.
However, C&C server communication with bots
using HTTP as shown in Figure 6 can be categorized
in three cases.

10 Journal of Computer Networks and Communications



(i) 'e C&C server sends to the bot instructions to do it
or malicious code to download them. In this case,
the incoming packets size will be small and the
number of equal small incoming packets size should
be large.

(ii) 'e bot sends the compromised host machine’s
information to the C&C server. In this case, the
outgoing packets size will be small and the number
of small outgoing packets that have the same size
should be large.

(iii) 'e bot maintains the connection with C&C for
updates. In this case, the incoming and the outgoing
packet size will be small. Moreover, the request size
and response size will be in same range (both are in
small range).

'e preprocessing of number of small packet is done by
equations (1) and (2).

'e flow is terminated by TCP finish flag or TCP reset
flag. 'ere are other cases where the flow can be terminated
in a nonstandard way such as failure in the physical link. In
this case, we consider this flow is terminated if the last packet
arrived 120 seconds ago.

Features of the HTTP detector are as follows:
For each flow,

(i) HTTP request size (POST or GET messages)
(ii) HTTP response size (status code 200)
(iii) NIP, EIS, NOP, and EOS

(2) IP Fluxing. DNS protocol is used to resolve the server
name to the IP address. When the host performs DNS query
for a specific domain, it will retrieve DNS response records.
'e response record can be one of the different types such as
A record for IPv4. 'e mapped IP address in the response
record can contain one or many IP addresses if the domain
name was located.'is response record optionally has a time
to live (TTL) period. 'is time period is predefined by the
authority name server for the zone. Caching resolver per-
forms lookup and stores the results for a TTL period of time.
'is period informs how long (in seconds) a server and
application should cache this address. Most of the legitimate
services use long caching times such as 86400 seconds or
even more. 'is long caching relieves the loads on the
authority servers and provides response faster [28–30].

'e main challenge for the botnet master is to hold the
C&C server undetected to longer time as many security
administrators try to block down and track the IP addresses
of these servers [30]. Moreover, to better manage large
distributed infrastructure, botnet masters have implemented
fast flux techniques using DNS traffic for four reasons:

(i) 'ey intend to minimize cache time by setting a low
TTL period for C&C domain names. 'is is because
long caching delays the propagation of new IP of the
C&C servers.

(ii) 'ey obtain the flexibility to change the IP addresses
of the malicious servers that they manage.

(iii) 'e C&C server becomes more difficult to identify
and take down.

(iv) To hide their critical servers behind proxy services.

DNS, for load balancing, uses a round robin technique in
two steps:

(i) 'e domain name is mapped to multiple IP
addresses.

(ii) 'e DNS server rounds through these IP addresses
and returns each time a different IP address mapping
[31].

Whenever a computer is infected with a bot, it joins to
the botnet as an asset to the collection [29]. Malicious
domains IP addresses are gathered from bots that exist in
different autonomous systems and countries. Botnet masters
do not aim a specific country or a specific IP range [32].

We can detect IP fluxing in DNS by keeping track of two
artifacts: IP address assigned to domain and domain cache
TTL. Every time the host sends a query for specific domain,
we keep track of the last IP assigned (if there), the new one
and the domain cache TTL. In fact, if newest IP address is
not in the same class subnet of the previous IP and cache
TTL period is less than 1000, then this domain is suspicious.
Indeed, normal domain assigns multiple IP addresses in the
same class subnet and long domain cache TTL period.

Features for IP fluxing detector are as follows:

(i) IP address assigned to domain
(ii) Next IP address assigned to domain
(iii) TTL value

(3) IRC Detector. We follow the same procedure as discussed
in P2P data transmission. We keep track of the number of
small packet size and the ratio of the equal small packet size.

4.2. Host Analyzer. Table 7 shows our features for host
process analysis.

P2P applications

Peer UDP packet size

Shareaza

19

Edenkey
2000

BearShare
limewire

Bytes2523 27 35 12068

EMule BitTorrent

Figure 5: UDP communication packet in famous P2P application.

Table 6: Example of equal incoming small packet calculation.

TIP NIP EIS Compare NIP with EIS
30 15 7.5 High
20 5 10 Low
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Host analyzer, as shown in Figure 7, consists of three
components: process behavior analysis, process correlation,
and process behavior accumulation. In the host analyzer, we
monitor three activities: registry keys, file system, and
process active time, for a period of time. 'e monitoring
time is randomly chosen from 10min to 30min. In Section
4.2.1, we discuss these components in more details.

4.2.1. Process Behavior Analysis. We develop an algorithm
to monitor the registry keys, file system, and active process
time. 'e first action to reduce the propagation speed of
botnet is to identify processes that perform malicious ac-
tivities in a host computer. 'e botnets share certain be-
havior patterns, such as creating autorun registry key and
creation of EXE in system directory, that are different from
normal application. However, a single activity, such as
creation of an autokey in the registry or creation of EXE in
system directory, alone could appear harmless, while the
combination of multiple activities may expose a malicious
intent.

In our analysis, we extract the common botnet behavior.
We focus on software process run-time behavior vector
including registry modification, file system creation, and
network traffic. 'e host process network traffic analyzing
and detection is performed and followed the procedure
explained in Section 4. In this section, we explain the features
that are used by our technique to analyze the monitored
registry, file system, and active time of processes in the host.

(1) Registry. Bots, in the registry, deal with two keys entries
operations:

(i) Bots will modify the value of critical registry key and
the creation of autorun key. 'e means of critical
registry key value is the value of any software meant
to do process monitoring to detect any malicious
action. An example of process monitoring software is

Windows Task Manager, Sysinternals tools, and anti-
virus. 'e bot changes the value of the software registry
to evade detection such as Taskmgr disable, overriding
antivirus, windows firewall disable, etc. An example
of value of the registry key that had been modified
by a bot is HKEY_LOCAL_MACHINE\SOFTWAR-
E\Microsoft\Windows\CurrentVersion\Policies\System.

(ii) Bots will create an autorun key in the registry to
automatically run themselves when the operating
system starts up.'e value of the autorun key will set
to the name of the executable file of the bot. An
example of bot creation of an autorun key is Mar-
ipose [33].

We use the HANABot algorithm to periodically check
the registry location mentioned above. 'en, HANABot
extracts the value of the registry key and finds the process ID
who own this value.

(2) File System. When a victim computer is infected with a
bot, a bot always downloads its malicious binary from the
Internet to the file system directory. 'is is because it could
be launched again when the operating system starts up.

Bayer et al. [34] indicate that malware files creation
belongs to one of the two following categories:

(i) 'e first one contains executable files (EXE). Most of
the bots choose system directory location such as C:
\WINDOWS or one of its subfolders as a typical
location to drop the binary. 'is is because normal
users rarely check the system directory and the bot

Malicious command

Maintenance and update

Connection

C&C serverBot

Figure 6: C&C server communication with bots.

Table 7: List of selected artifacts for host monitor.

Feature
number Behavior features

1 Creation of DLL or EXE in system directory

2 Creation of and set the value of AutoRun key in
registry

3 Critical registry key modification
4 Active time of the bot process

Process 
correlation

Process 
accumulation

File system

Registry

Network stack 
TCP/IP

Host analyzer
Process behavior 

analysis

Host traffic

Figure 7: Host analyzer components.
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binary is less noticeable among the system files
which could be a thousands of files. New bots start to
target user folder which is C:\USERS\username\-
Documents and Settings.

(ii) 'e second one contains nonexecutable files which
are dynamic link library (DLL), temporary data files,
and batch scripts. Most of these files are placed either
in the windows directory or in the user folder. In-
ternet traffic creates significant amount of temporary
Internet files. 'ese files are used to download
content from the Internet.

Based on the monitored location, we use the HANABot
algorithm to monitor the creation of DLL and EXE files
access in windows directory. 'en, HANABot extracts the
process ID owner of this file.

(3) Active Time of the Bots. Bots need to be always online to
maintain the connection with the botnet master. If the bots
are disconnected, then the botnet life cycle will be affected.
As a result, the active time of the bots (operating in the
background and waiting for updates) should be similar to
the underlying compromised operating system. In contrast,
the active time of any legitimate process is determined by
the user, which is likely to be transient from one user to
another.

'e HANABot algorithm is used to monitor the active
time of the process. It takes the creation time of the process.
If its time is closer to OS starts up time, then it checks
periodically to see if this process is terminated or not.

4.2.2. Process Correlation. To perform malicious activities,
bots can act as follows:

(i) 'e bot behaves on its own process to conduct its
malicious activities.

(ii) 'e bot divides its activities through multiple pro-
cesses, so the processes collaboratively perform its
assigned malicious activities. To mitigate against
such sophisticated bots whose one process malicious
activity is not considered as a bot, we take into
account process correlation during the monitoring.
We keep track of the interprocess relations and
aggregate the behavior vector from the processes
correlation. 'e obtained behavior vectors are equal
for all the correlated processes like a parent process
and its children processes. We can easily exclude
some normal process with correlation such as
windows services by maintaining a white list.
'erefore, it is not hard to differentiate a set of
processes behaving malicious altogether. 'is means
that these processes have exactly the same behavior
vectors.

4.2.3. Process Behavior Accumulation. 'e bot, during the
monitoring time window, may perform either multiple
malicious activities or single malicious activity. To deal with
this type of bot, we collect the value of each behavior feature

vector in host monitor as shown in Table 8. 'e behavior
vector features value summation (accumulation) are those
rarely seen from normal software, such as creating EXE file
in system directory or creating an AutoRun key in the
registry, etc. 'e accumulation procedure is straightforward.
An example of the accumulation procedure is shown in
Table 8.

Using this procedure, the process final score will not
decrease if the process does one malicious activity in single
time window. Every window time, the process conducts
malicious activity and its score will increase. 'e same
concept is applied to a set of processes when each one shows
malicious activity in various time windows.

After the bot process is identified in the monitored host,
the file associated with this process will be scanned by the
administrator. 'is file can provide valuable information
about the C&C server IP address and how the commu-
nication is established between the bot (the compromised
machine) and the C&C server. Moreover, the administrator
can know how the botnet is propagated and infect other
machines. 'is knowledge permits to the administrator to,
in one hand, block all the incoming and outgoing traffic
with the C&C server, and, in another hand, improve the
overall detection mechanism by exploiting these infor-
mation to build new rules.

Applying only host analyzer technique may not be ef-
fective because host resident bots may compromise the
detection technique.

5. Evaluation

5.1. Classification Algorithms. As malicious bot software
spreads, the demand for an automated alternative is in-
creased because manually generated rules become imprac-
tical. Machine learning algorithms allows the detection
systems to fit fast changing malware. Moreover, it allows an
automated method for learning specific patterns and
properties that may be presented by botnet.

Our target is to effectively distinguish between legitimate
traffic and botnet traffic. To achieve that, we consider the
most memorable classification algorithm, namely, decision
tree ensemble classifier and Naive Bayesian statistical
classifier.

Naive Bayesian classifier (NB) represents a supervised
learning method and a statistical technique for classification.
It assumes an implicit probabilistic model. It allows to
capture and analyze the relationship between each feature
and the corresponding class to derive a conditional prob-
ability that links feature values and its class.

'e decision tree classifier (DT) utilizes a decision tree as
a predictive model which maps an item observation to
conclusions about the item’s target class. It is one of the
predictive modelling approaches used in data mining and
machine learning. 'e classification tree is a tree model
where the target variable can take a finite set of values. In this
tree structure, leaves represent class labels and each branch
represents the feature so the conjunctions of these features
lead to those class labels.
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5.2. Performance Metrics. To avoid data bias, multiple
metrics are measured. Accuracy, precision, recall, F-mea-
sure, and false positive rate are the five metrics used to
evaluate the performance of our solution. Accuracy depends
on the sample size. However, precision and recall measures
are independent of the sample size.

Precision rate indicates the credibility of stated detection
result, whereas Recall rate indicates the portion of hosts
belonging to a specific class that can be identified.'emetric
F-measure is a coordinated mean of Precision and Recall.
'e last metric which is false positive rate indicates an error
in classifying an item in botnet class whereas the right class is
legitimate class.

Table 9 shows the performance results for the five
presented metrics. As shown in this table, the decision tree
classifier achieves high performances and outperforms the
naive Bayesian classifier in host level and network level
detection. Its accuracy reaches 99.6% in case of hybrid
detection with 0.01 as false positive rate. 'at is why we
choose the decision tree classifier for our solution.

5.3. Results and Discussion. Our technique consists of two
main components: host analyzer and network analyzer. 'e
purpose of our technique is to detect unknown botnet and
infected hosts with bots. To build the ground truth, we
collect the data set from the publicly available botnet
datasets. To evaluate the classifier detection technique ac-
curacy rate, we use the 10-fold cross validation method to
divide our dataset into 10 random subsets. 9 subsets are used
for the training, and one subset is used for the evaluation.
'is same process is repeated until each subset of the 10
subsets have been used as the testing set exactly once. 'e
evaluation must show that it can detect unknown botnet that
are not in the training dataset. For this purpose, we use the
data set collected from our experiment as explained in
Section 3. 'e detection accuracy rate of our network an-
alyzer is 99.6%. We report the following:

(i) Neris bot, which belongs to IRC botnet, generates
high failed ratio and performs scanning technique.
Our technique is able to detect the IRC bot in the
propagation phase.

(ii) 'e Storm bot behavior is similar to bitTorrent in
term of number of failed connections. Moreover,
they both implement DHT to obtain the peer list.
'erefore, Storm bot can escape to the detector
during the propagation stage. However, since in
bitTorrent, the DTH UDP packet size is bigger than
67 bytes while the bot uses less than this size, the
P2P detector will detect this bot. 'e detection
technique achieves very high accuracy.

(iii) From our experiment, the failed connection ratio
result for some P2P application is lower than the
threshold fixed for botnet detection; eMule is an
example of this case. In fact, eMule generates very
small failure connection rate. 'is is due to the use
of a “bad peer source list,” which will be added to the
application. 'is list is updated with the peers IP
addresses when the eMule application fails to
connect with these peers IP addresses. Consider this
peer source list of IP addresses as dead and block for
predefined time (15 to 45 minutes). Even if eMule
application behaves similar to bot in terms of failed
connection rate, eMule is not detected by our
technique since we check also equal small packet
size feature which is not satisfied in this case.

Table 10 shows a comparison of the two classifier per-
formances at host level. 'e first classifier uses all selected
features. 'e performance of this classifier generates high
false positive rates and low accuracy rate. 'is is due to two
features that are common between normal P2P application
and botnet. 'ese features are as follows: create and set the
value of AutoRun key in the registry and Active time of the
bot process.

'ese features are not effective to differentiate between
bots and legitimate P2P application detection and increase
the false positive. 'is is due to the nature of P2P ap-
plication, and it creates an AutoRun key to launch when
the OS starts up and stay working online in the back-
ground (the active time of this process is equal to the
active time of the OS). Botnet acts in the same way.
'erefore, we evaluate the second classifier by eliminating
these two features from the behavior vector. 'e second
classier decreases the false positive rate and increases the
accuracy rate.

Table 8: Example of behavior vector of malicious process accumulation.

Time window Behavior feature Feature score Accumulated feature score
win0 EXE file creation 1 1
win1 AutoRun creation 1 2
win2 DLL file creation 0 2

Table 9: Botnet detection technique result.

Measurement
Host Network Both levels

NB DT NB DT NB DT
Precision 0.97 0.99 0.98 0.98 0.99 0.99
Recall 0.97 0.98 0.97 0.96 0.98 0.99
F-measure 0.96 0.98 0.97 0.97 0.98 0.99
False positive rate 0.04 0.03 0.04 0.04 0.05 0.01
Accuracy (%) 95.8 98.5 98.2 99.1 98.6 99.6

Table 10: Botnet detection technique result with all host features.

Decision tree classifier Accuracy (%)
For all selected feature 85
For reduced features 98.5
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In our experiment, when host process is infected with
Rbot, the Rbot process injects the svchost process (windows
service).'e svchost performs DNS query to obtain the C&C
server IP address. 'en, the Rbot process establishes TCP
connection to this address. Rbot injects the svchost process
with malicious code. 'e host analysis does not cover any
process injection methods. 'erefore, the Rbot process will
evade our host analysis analyzer. However, if we use both
levels host analyzer and network analyzer, this bot will be
detected by the network analyzer. In fact, the detection
accuracy rate is increased, if we combine the network and the
host analyzer. In this case, all the flows are classified correctly
in the right class (botnet or legitimate).

5.4. Comparison. We compare our technique with the re-
search works proposed in [5, 13, 15]. 'e performance
comparison of our solution to some published approaches is
shown in Table 11. 'e existing solution performances are
computed by each developer. Zhao et al. [13] used two P2P
botnets, namely, Storm and Waledac, and two HTTP bot-
nets, namely, BlackEnergy and Weasel, to confirm their
model efficiency. Kirubavathi and Anitha [5] used three
botnets, namely, Zeus, Spyeye, and BlackEnergy botnets to
evaluate their solution. Alauthamanet al. [15] used two P2P
botnets, namely, Storm bot andWaledac bot to validate their
model.

From the performance comparison table, we can remark
that we achieve very good accuracy rate with the lowest false
positive rate using HANABot with the network analyzer
only. However, our proposed solution, which is hybrid
solution based on network and host analysis, outperforms
existing solutions in terms of accuracy rate and false positive
rate.

'e works in [9, 12] utilize the effectiveness of host level
analysis for more accurate results. 'ese approaches, as our
approach, monitored registry and file system in each host.
However, we differentiate in the feature selection of the
registry such as AutoRun key creation which increases the
botnet detection.

6. Conclusion

In this research, we proposed a general technique that is
capable of detecting a new botnet implemented on three
levels: the host level, the network level, or a combination of
both. 'e botnet communication traffic we are interested in
includes HTTP, P2P, IRC, and DNS using IP fluxing. Our
proposed technique consists of three components: host
analyzer, network analyzer, and detection report:

(i) 'e network analyzer monitors two activities:
botnet propagation and botnet communication with
the C&C server. 'e network analyzer consists of
three detectors: the propagation detector, the P2P
detector, and the non-P2P detector.

(ii) 'e host analyzer monitors three activities: the
registry keys, the file system, and the duration of the
active process over a period of time. 'e host an-
alyzer consists of three components: process be-
havior analysis, process correlation, and process
behavior accumulation.

(iii) 'e detection report is responsible for producing
the final score result based on the host analysis or
network analysis and provides a report of infected
machines.

We developed the HANABot algorithm to preprocess
host traffic data, host processes operations, and network
traffic activity to detect the bots based on specific rules. All
botnet flow records were successfully extracted by exploiting
specific connection patterns and setting up feature vectors
that is unique for botnet network traffic and its process
operations. A comparison between an existing approach was
given, focusing on specific features and performance.

In our future work, we will apply our solution for real-
time classification. In fact, the proposed technique imple-
ments the classification algorithm in an offline mode, where
the Internet network traffic traces are stored in a PCAP file
before processing them. 'e technique can be enhanced to
obtain real time classification instantaneously with a high
level of accuracy. 'is can be achieved by making relatively
short the export time period of the Netflow traces collector
and by supplying the exported Netflow traces to the clas-
sification technique instantly, as they arrive. 'e technique
can then differentiate botnet activities and take action on this
basis. 'e processing speed at which real time classification
takes place should vary, depending on various factors such as
the export time interval and the size of the exported Netflow
traces. Moreover, this work can be extended, in the host
level, to support the detection of process injection used by
botnet to exert full control over the process [35].

Data Availability

'e dataset used to support the findings of this study are
available from the corresponding author upon request.
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'e authors declare that they have no conflicts of interest.

Table 11: Performance comparison with published approaches.

Detection methods C&C structure False positive rate (%) Accuracy (%)
Zhao et al. [13] P2P, HTTP 0.2 99.1
Kirubavathi andAnitha [5] IRC, P2P, HTTP, hybrid 0.048 99.14
Alauthaman et al. [15] P2P 0.75 99.2
HANABot (network analyzer) IRC, P2P, HTTP 0.04 99.1
HANABot (host and network analyzer) — 0.01 99.6
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