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Copyright © 2020 Hao Zhang et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Structural modeling is an important branch of software reliability modeling. It works in the early reliability engineering to
optimize the architecture design and guide the later testing. Compared with traditional models using test data, structural models
are often difficult to be applied due to lack of actual data. A software metrics-based method is presented here for empirical studies.
-e recurrent neural network (RNN) is used to process the metric data to identify defeat-prone code blocks, and a specified
aggregation scheme is used to calculate the module reliability. Based on this, a framework is proposed to evaluate overall reliability
for actual projects, in which algebraic tools are introduced to build the structural reliability model automatically and accurately.
Studies in two open-source projects show that early evaluation results based on this framework are effective and the related
methods have good applicability.

1. Introduction

Software reliability engineering aims to improve software
quality and its role covers software life cycle. Recently, more
research studies believe that reliability engineering imple-
mented in the early stages of software development can
significantly reduce potential risks such as rework costs from
later stages [1–4]. Structural reliability models work in the
early reliability engineering, but they are often difficult to be
applied in actual projects due to lack of modeling param-
eters. From the recent empirical research on reliability
modeling, most of them belong to the traditional software
growth models (SRGMs) which are based on the testing
failure data. Luan and Huang [5] study the distribution of
faults in large-scale open-source projects by using the Pareto
distribution which can obtain better prediction curve fitting
accuracy than others. Sukhwani et al. [6] implement dif-
ferent SRGMs on NASA’s flight control software for im-
proving the development process and version management.
Aversano and Tortorella [7] present a framework to evaluate
the reliability of an ERP software which is based on bug
reports. Honda et al. [8] use popular SRGMs in industrial
software projects and discuss the performance of each

SRGM. Tamura and Yamada [9] give a hierarchical Bayesian
model which emphasizes the role of the fault detection rate
in the reliability analysis of several open-source projects.

Most empirical studies do not cover early reliability
evaluation because of the use of nonstructural models. In
structural reliability models, Markovian models have been
widely concerned which are state-based and emphasize
structural analysis based on a specific granularity. Typical
models include Littlewood’s semi-Markov process (SMP)
[10], Cheung’s discrete-time Markov chain (DTMC) [11],
and Laprie’s continuous-time Markov chain (CTMC) [12].
-ese models are not easy to apply in practice. Take the
DTMC model as an example. -e two parameters required
for modeling—component reliability and control transfer
probability among components—are difficult to obtain from
actual projects [13]. In this study, we aim to obtain the
necessary information from software codes directly without
testing failure data. From the perspective of improving the
engineering process, we propose a complete framework for
reliability modeling and calculating in design and coding
period.

Software metrics, which measure codes from different
perspectives, have been applied to the quality analysis and
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the defect prediction in actual projects. Shibata et al. [14]
incorporate the cumulative discrete-rate risk model with
time-related measurement data and verify that the new
model can obtain better predictive performance than pop-
ular nonhomogeneous Poisson process (NHPP) SRGMs.
Chu and Xu [15] indicate a general functional relationship
between complexity metrics and software failure rate which
can be used in the exponential SRGMs. D’Ambros et al. [16]
give the performance of several software defect prediction
methods and the factors of threat validity in practice, which
are based on static source code metrics and dynamic evo-
lution metrics. In [17], the authors summarize the existing
defect prediction models based on software metrics into four
categories and explain how to aggregate them to achieve
significant effect on performance evaluation.

-e above studies do not involve reliability analysis and
calculation. Besides, some researches reveal the relationship
between the cognition of code complexity and the quality
control. Fiondella et al. [18] point out that the complexity
metric data could be utilized in cognitive modeling, which
usually has characteristics of a low collection cost and
various forms. Kushwaha and Misra [19] indicate the im-
portance of the cognitive measure of complexity and im-
plement it as the control quantity in a more reliable software
development process. We consider that the cognitive in-
formation required for early reliability analysis is already
included in the code structure, code metrics, and design
documents. In this empirical study, we use multiple con-
secutive versions of code metrics and recognize the rela-
tionship between it and reliability changes based on some
tools such as RNN. -en, the early reliability evaluation in
the target version is carried out in order to assist decision-
making in the development process.

-e rest of this paper is organized as follows. Section 2
gives the framework, the RNN model, and the formal
modeling tool used in this study for reliability assessment.
Section 3 proposes the experimental methods, including
object selection, metric data processing, and aggregation
scheme. In Section 4, the experimental results are analyzed
and discussed. By comparing the performance with other
traditional reliability models, we prove the effectiveness of
the proposed method and draw conclusions in Section 5.

2. Framework and Approaches

2.1. Framework of +is Study. First, we give our framework
as shown in Figure 1 to fully describe the methods used in
this empirical study. -e actual metric data will be divided
into six categories based on their characteristics. -ese data
collected from different release versions of a software are
used as input for a series of RNN models. When a version is
identified as the current version to be evaluated, the cor-
responding RNN model will be trained on data from his-
torical versions in order to separate out the defect-prone
classes.-e next section describes in detail the RNNwe used.
Based on the specific strategy in Section 3, the classification
results are aggregated into the module reliability value. And
a DTMC model is established with all acquired parameter
values in order to calculate the overall reliability. -e formal

tools will be used to facilitate the application of the DTMC.
We will discuss the implementation details in the following
sections.

2.2. +e RNN Model. We use a simple type of RNN which
has one hidden layer in the framework. Figure 2 describes its
main structure.

As shown, the RNN propagates forward from initial state
s(0). -e update equations for every time step from 1 to t are
as follows:

s(t)
� tanh Ux(t)

+ Ws(t−1)
+ b􏼐 􏼑, (1)

o(t)
� sigmoid Vs(t)

+ c􏼐 􏼑, (2)

where b and c are the bias vectors. -e hyperbolic tangent
function tanh (·) is the most commonly used activation
function between input and hidden layers. And the logistic
function sigmoid (·) is chosen for output function because
we only deal with two classification problems here (defect-
prone or reliable). -e loss L is calculated as follows:

L � L
(t)

� −y(t)log o(t)
− 1 − y(t)

􏼐 􏼑log 1 − o(t)
􏼐 􏼑 +

λ
2
‖ω‖

2
2,

(3)

where λ/2‖ω‖22 is the item of L2 regularization to avoid
overfitting. We first calculate the gradient ∇s(t)L of the last
state s(t) and update the weight matrixV based on controlled
gradient descent. -en, we recursively calculate the gradient
of all states from s(t− 1) to s(1). -e matrices U andW are
updated during the iteration which is called back-
propagation through time (BPTT). -e dotted arrows in
Figure 2 indicate its order of calculation. For the historical
version used for training, all classes in each module are
labelled with concrete y(t) according to the actual test results.
-e application of this RNN model is detailed in Section 3.

2.3. Reliability Modeling and Formal Tools. Structural reli-
ability models can calculate the software reliability without
testing failure data. We choose the discrete-time Markov
chain (DTMC) model [11] in the framework, which is the
most popular one since it uses diagram similar to workflow
to describe the control transfer relationships between
modules. Assuming that the module Ni has the reliability
degree Ri and the transfer probability Pi,j, the product RiPi,j

expresses the probability that Ni has been executed suc-
cessfully and then transferred to Nj. -is is the probability of
one-step transfer in the Markov chain.

We can get the one-step probability of any pair of
modules and form a matrix Q called one-step stochastic
transfer matrix.-e powerQn is defined as an n-step transfer
matrix. And the Neumann series of matrix Q is as follows:

S � I + Q + Q2
+ · · · + � 􏽘

∞

k�0
Qk

, (4)

where I is the identity matrix.
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Let us set the uth row of S belongs to the starting module
Nu and the vth column belongs to the endingmodule Nv.-e
entry Su,v denotes the probability sum covers all possible
transfer paths from Nu to Nv. So the system reliability Rsys
can be computed as follows:

Rsys � Su,vRv, (5)

where Rv is the reliability of Nv. Equation (5) is expressed as
the probability of successfully reaching Nv and successfully
executing Nv.

-e DTMC model simply and effectively emphasizes the
influence of local structure on the overall system, and it is
suitable for reliability modeling in the early stage of software
development. But it has difficulties in practical applications.
-e first is that the parameters Ri and Pi,j are not easily
known in practical applications. We will use specific strat-
egies to solve this in Section 3.

-e second is the construction of the DTMC model.
Most DTMC modeling is based on directed graphs. In fact,
there are currently no tools to support the automatic cre-
ation of such graph. As the number of modules increases,
graphical representations and calculations will become more
complex and difficult. Moreover, using only directed arcs is
not enough to represent all relationships between modules
in a local structure, such as parallelism.

We have proposed easy-to-use formal tools in our
previous studies [20] for DTMCmodeling.-e basic idea is
to use an algebraic expression Ni ⊕ Nj instead of the arc

Ni⟶Nj in the diagram. -e operator ⊕ denotes the act of
motivating between modules, which usually means the
generation of control transfer. -e advantage of this formal
expression is that it is precise and unambiguous, especially
when dealing with more complex and larger-scale
situations.

In [20], we introduce more operators to express more
complex relationships so that these algebraic operators can
form a complete algebraic system. It is formally equivalent to
ordinary algebraic expression, which can be automatically
parsed by the automat of the formal language such as LL, LR,
and SLR. Using this, we can automate the calculation of the
DTMCmodel. We will explain in Section 4 how to use these
tools to automatically build DTMCmodels and calculate the
reliability of actual projects.

3. Experimental Design

-e detailed experimental design and process are presented
in this section. First, the actual software projects selected as
the research objects are listed and the reasons are explained.
-en processing methods for the used metric data are
proposed. Finally, we aggregate the reliability values of
software modules based on specific strategies.

3.1. Projects and Datasets. In this study, we use two open-
source projects—jEdit [21] and Apache Ant [22]. -ere are
popular and mature with strong developments and supports
behind it. Both of them have the same version length in the
PROMISE repository [23] which is the most important
software metrics database. Table 1 shows the use of
PROMISE’s data in our scheme.

In Table 1, we set the current version of the two projects
to 4.3 and 1.7, respectively. We have comprehensively
considered the update of the data in the database and the
impact on the effectiveness of this empirical study, although
neither jEdit 4.3 nor Ant 1.7 is the last stable version.-e two
projects are properly sized and representative for develop-
ment technology. In addition to themetric data, we also need
to analyze the structural information. When we carry out
reliability engineering at early stage, we consider ourselves as
developers and designers. So we can get the necessary
structural information from the design documentation and
source codes.

Version 1
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...
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for modules
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Figure 1: A framework of this study. -e trained RNNs classify all classes of one module in the current evaluated version. A specified
scheme receives class information and aggregates them to module reliability. -e DTMC is used to calculate the overall reliability.
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Figure 2: -e many-to-one RNN model used in this study. -e
right is the unfolded form, where U, V, and W are the uniform
weight matrices. -e loss L between the only output o(t) and the
goal y(t) is used in the backpropagation for updating model
parameters.

Journal of Control Science and Engineering 3



Table 2 lists the structural information of the two target
versions, including the description, and scale of some
modules is used as example. We have also marked these
packages with N1, N2, etc. Here, the granularity of module
division is defined at the package level. We consider that it is
appropriate to analyze the structure at the package level for
projects developed in Java. And the corresponding level can
be found in other language environments.

-ere are 23 packages (modules), 496 files, and 492
classes in jEdit 4.3. Ant 1.7 includes 15 packages (modules),
785 files, and 745 classes. Similarly, we need to seek the
structural information of earlier versions. Furthermore, we
need to check the previous version of one module in order to
seek more detailed information at the design stage. It usually
works because of the limited changes in modules between
versions. As the coding continues, we can continuously
adjust the metric data of one module.

4. Metric Data for RNN

Software metrics are generally classified into three cate-
gories: traditional metrics, object-oriented (OO) metrics,
and process metrics [24]. Sometimes the traditional and OO
are called code metrics. -e PROMISE’s data are, respec-
tively, collected at the method level, class level, and file level.
-e number of lines of code (LOC) and the cyclomatic
complexity (CC) are still valid at the method level within one
class, which are used formeasuring the basic size of codes. At
the class and file level, the Chidamber–Kemerer (CK) [25]
measurements are widely used, such as cohesion among
methods (CAM), response for a class (RFC), and depth of
inheritance tree (DIT). In addition, Darcy and Kemerer [26]
emphasize perspectives of encapsulation and coupling, and
the typical measurement element is coupling between object
classes (CBO). Moser et al. [27] present eight metrics of
process characteristics, and these are improved in the
Madeyski–Jureczko (MJ) [28] measurements.

In this study, metric data from the PROMISE library are
divided into six categories: complexity, coupling, cohesion,
inheritance, size, and process. Table 3 lists all relevant metric
elements we used in the RNN model as shown in Figure 2.

For one module, we identify defect-prone classes from
the six aspects in Table 3. -at is, we have to train six RNNs
to solve these two classification problems.

Take the RNN-c2 as an example.-is is the model for the
coupling category which is marked as c2.We first initializeU,
V, and W randomly and then set b, c, and s(0) to 0. -en an
input series consisting of metric data vectors is used for
training the RNN-c2 model. Table 4 shows the input series
when processing the BrowserView class in project jEdit.

-e input series is a definite sequence ordered by four
version numbers which corresponds to four vectors x(1)∼

x(4). And the vector x(5) is treated as test data. We define the
same sequence for all classes in all modules and use x(5) as
test input too. -e same training method is used in RNNs of
the other five categories. -e whole size of the training set of
jEdit is 492 and that of Ant is 745.

4.1. Aggregation Strategies. In this section, we propose
specific strategies to aggregate the RNNs’ result into the
reliability degree of one module and calculate the reliability
value of the target projects.

-e training RNNs classify all the classes into two types:
defeat-prone and reliable. So the total number of defeat-
prone classes can be counted in each aspect. For the defeat-
prone class (DPC), we give the following definitions to mark
the training data series:

(i) For a certain version, if a class has bug commit, it is
defined as DPC

Table 1: Training sets and test sets used in the RNN.

Project Historical version (for
training) Current version (for test)

jEdit 3.2 4.0 4.1 4.2 4.3
Ant 1.3 1.4 1.5 1.6 1.7

Table 2: Structural information of the two target versions.

Project Package Description Files Classes Mark

jEdit
4.3

Browser File system browser 10 10 N1
Bsh Bean shell 115 106 N2
Buffer Buffer event listener 18 18 N3

Bufferio I/O request for
buffering 6 6 N4

Total 23 packages (modules) 496 492

Ant 1.7

Dispatch Actions dispatch for a
task 3 3 N1

Filters Input and output
filtering 22 22 N2

Helper Help functions 5 5 N3
Input Input handler 6 6 N4
Total 15 packages (modules) 785 745

Table 3: Metric division in this study.

Category Metric elements Mark
Complexity AMC, MAX_CC, AVG_CC c1
Coupling CBO, CA, CE, IC, CBM c2
Cohesion LCOM, LCOM3, CAM c3
Inheritance DIT, MOA, MFA c4
Size WMC, NOC, RFC, NPM, LOC, DAM c5
Process NR, NDC, NML, NDPV c6

Table 4: Input series of the RNN-c2 (e.g., the class BrowserView of
jEdit).

Coupling metric
Version

v3.2
x(1)

v4.0
x(2)

v4.1
x(3)

v4.2
x(4)

v4.3
x(5)

CBO 13 18 25 24 28
CA 8 11 14 15 15
CE 10 14 20 16 21
IC 0 1 1 1 1
CBM 0 4 4 4 4
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(ii) If a metric data of a class is obviously abnormal, the
class is defined as DPC under the category including
the metric as listed in Table 3

We assume that the historical version is aware of bug
reports when we set jEdit 4.3 and Ant 1.7 as the current
versions to be evaluated. -is means that the classes in the
current version are under development and there are no bug
reports yet. -is setting reflects the difficulty of early reli-
ability assessment and is also in line with the actual situation.

-e reliability influence (RI) of the ci category in one
module is defined by

RI ci( 􏼁 � 1 −
Ndpc ci( 􏼁

Nall
􏼠 􏼡􏼢 􏼣∗ 100%, (6)

where Ndpc (ci) is the number of defeat-prone classes in the
module, Nall is the total number of module classes, and ci
indicates the specified aspect (from c1 complexity to c6
process). As shown in Table 4, the input vector x(5) � [28, 15,
21, 1, 4]T only currently tests if the class BrowserView is
defeat-prone from the coupling aspect. -is still needs to
complete the statistics from the remaining five aspects.

-e RI value relates reliability to statistics. And the
aggregation strategy is closely related to the calculation of
the module reliability. Zhang et al. [17] point out that the
summation strategy can often achieve the best performance
when constructing models predict defect rank or count.
Here, we use the summation strategy to aggregate the re-
liability influence (RI) of six categories (aspects) into the
reliability of individual modules. It can be calculated as
follows:

Rmodule � 􏽘
i

ri ∗RI ci( 􏼁( 􏼁, (7)

where ri is the weight of the ci category. Let ri be equal to 1/6
here since every category represents a different logic and any
one of them is important.

In the actual development, reliability engineering often
needs to be implemented by the project manager. Module
developers just calculate the Rmodule value based on (6) and
(7). We introduce formal tools which are described in
Section 2 to apply Rmodule into a DTMC model. We assume
that module developers can submit Rmodule but also related
algebraic expressions based on their understanding of the
system structure.

For example, the developer of the browser (N1) in jEdit
4.3 should submit (i) the module reliability value R1 and (ii)
the algebraic expression N1 ⊕ N23. -e expression N1 ⊕ N23
replaces the directed arc to describe the control transfer flow
between N1 and N23. In jEdit 4.3, the core package is
recorded as N23. -is indicates that tasks via N1 will be
transferred to the core module.

-e submitted algebraic expressions which confirm the
design intent of developers link all modules in the workflow.
-e project manager and architect can also modify ex-
pressions directly based on their overall understanding. As a
typical formal method, the algebraic expressions used here
are precise and unambiguous, which is a lightweight and
easy-to-use tool for software engineers.

As the actual managers of this study, we can collect an
expression set finally which implicitly contains two key
parameters required for the DTMC model: Ri and Pi,j. We
have already discussed the calculation process of Ri which is
the reliability of the ith module in the target open-source
projects. -e transfer probability Pi,j can be estimated by the
Java static code analysis tools. For simplicity, the probability
is equally divided by all possible transfer Ni ⊕ Nj in this
study. A LR parser will be deployed for scanning and parsing
all expressions in order to calculate the overall project
reliability.

5. Results and Discussion

-e experimental results and corresponding discussions are
presented in this section.

5.1. Results. When we apply our framework of early reli-
ability evaluation, the important problem is what kind of
structure granularity is appropriate for the two practical
projects. Early reliability engineering should be started at the
design stage of software system which usually includes
function module differentiation and architecture deploy-
ment. -e structure information is contained in the module
division and the relationship between modules. -is means
that we need to find the appropriate module granularity for
structural analysis.

jEdit and Ant are both Java OO projects. As mentioned
in Section 3, we suggest that the Java OO project should be
analyzed at the package level since functions provided by one
Java package are relatively independent. In addition, the
metric data collected at the package level cover all collected
at the class and method level in the PROMISE repository.

Figure 3 presents the distributions of eight modules of
jEdit 4.3 in four metrics. -e overall distribution of four
metric data of all is also attached for comparison. As shown,
different modules (packages) show significant differences,
which indicate the diversity of function, complexity, and
coding style. -ese differences denote possible quality gaps.
-is is in line with the fact that different modules of the jEdit
project were developed by peoples located in several places.
Besides, some mature packages are also used in the jEdit
project, whose development cycle goes beyond the project
itself. -e Ant project has the same situation.

We use TensorFlow 1.4 to build the model RNN-ci for six
metric categories c1–c6. Table 5 lists classification results by
six RNN-ci for all classes in one package (e.g., the browser
package of jEdit 4.3). 1 in the table represents defeat-prone,
and 0 represents reliable.

By using (6) and (7), we calculate the Rmodule value of the
browser package of jEdit 4.3 as 88.33%. Similarly, the Rmodule
values of the remaining 22 packages in jEdit 4.3 and the
Rmodule values of 15 packages in Ant 1.7 are also obtained.

In Table 1, 4.3 is the current version to be evaluated in the
jEdit project and 1.7 is the current version in the Ant project.
-is means that the input series for jEdit are 3.2⟶
4.0⟶ 4.1⟶ 4.2, and series for Ant are
1.3⟶1.4⟶1.5⟶1.6. -e length of both series is 4. For
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comparison, we can also set jEdit 4.2 and Ant 1.6 as the
version to be evaluated. -e corresponding input series are
3.2⟶ 4.0⟶ 4.1 and 1.3⟶1.4⟶1.5, respectively. -e
length of both series is 3. In extreme cases, we have the
inputs 3.2⟶ 4.0 for jEdit 4.1 and 1.3⟶1.4 for Ant 1.5.
-e length of both series is 2.

Table 6 lists part of the Rmodule calculation results when
taking jEdit 4.1, 4.2, 4.3 and Ant 1.5, 1.6, 1.7 as the version to
be evaluated, respectively.

Here we present the first six modules in the two
projects and boldface some items. -e bold items in
Table 6 describe the special circumstances that may be
encountered during the calculation. -ere are three sit-
uations as follows:

(i) -e Rmodule value of bufferio/bufferset in jEdit 4.3:
these two modules are both newly added. In fact,
they are derived from the module buffer in previous
versions. -e simplification of one module greatly
increases the reliability value of the module buffer.
-is is in line with the original design. -e value of
the two new modules can only be estimated simply
by not having a time series. -e estimation rules
refer to the DPC rules in Section 3.

(ii) -e Rmodule value of dispatch in Ant 1.7: it belongs
to the real new function module in the last version.
Its value also needs to be estimated without using
the RNNs.

Table 5: Classification results by RNN-ci (e.g., the browser package
of jEdit 4.3).

Class name
Classification results by six

RNN-ci
c1 c2 c3 c4 c5 c6

BrowserCommandsMenu 0 0 0 0 0 0
BrowserIORequest 0 0 0 0 0 0
BrowserListener 0 0 0 0 0 0
BrowserView 0 0 1 0 0 0
FileCellRenderer 0 0 0 0 0 0
VFSBrowser 1 0 1 0 0 0
VFSDirectoryEntryTable 0 1 0 0 0 1
VFSDirectoryEntryTableModel 1 0 0 0 0 0
VFSFileChooserDialog 0 0 0 0 0 1
VFSFileNameField 0 0 0 0 0 0
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Figure 3: Boxplots of data distribution in four metrics (e.g., eight different packages and overall packages of jEdit 4.3): (a) the inheritance
category represented by DIT; (b) the coupling category represented by CBO; (c) the complexity category represented by MAX_CC; (d) the
size category represented by RFC.
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(iii) -e Rmodule value of launch in Ant 1.6: in version
1.6, it belongs to the new functional module. But we
still want to use RNNs in version 1.7. For this case,
we construct a sequence of full length with the same
value.

We calculate the overall reliability for three versions of
the two Java projects by the DTMC model and the formal

tools. From the perspective of reliability engineering, we
need module developer to provide the relationship between
modules in addition to Rmodule, which can be described
conveniently by algebraic expressions. In the case of jEdit
4.3, an expression set which replaces the graphic repre-
sentation of a DTMC model can be established as follows:

N1 ⊕ N4, N1 ⊕ N23, N2 ⊕ N23, N3 ⊕ N12,&, N21 ⊕ N23, N22 ⊕ N23, N23 ⊕ N24{ }. (8)

In the set, N24 is a virtual module constructed to indicate
the termination state. It corresponds to the end node in the
DTMC model. -e Rmodule value of N24 is equal to 100%.
Most modules are migrated to the core module N23, and
N23⊕N24 indicates that business termination requirement is
initiated only by N23. In cases of jEdit 4.1, 4.2 and Ant 1.5,
1.6, 1.7, we have also constructed a set of algebraic ex-
pressions and used virtual modules to represent terminal
nodes. -ese expression sets are automatically parsed by the
LR parser to complete the calculation of system reliability.

We use different input series for verification. In addition,
two traditional reliability models—the classical G-O model
[29] and Huang’s model [30]—have used for performance
comparison. Both of them belong to the growth model. -e
former is representative of the classical model, and the latter
has excellent predictive performance because of the inte-
gration of testing effort. -ese two models use testing failure
data which can be obtained according to bug reports from
the official website [21, 22]. -at is, these models cannot be
used for early reliability evaluation.

Figure 4 presents the evaluation results of the proposed
framework for jEdit 4.1, 4.2, 4.3 and Ant 1.5, 1.6, 1.7 with
different learning rates. We first set the initial learning rate η
to 5 and the initial regularization rate λ to 1 in both projects.
As shown, the curve is not as expected. -en two smaller
learning rates—0.5 and 0.05—have been gradually experi-
mented. We found that as the learning rate η becomes
smaller, the curve trend is more and more consistent with

the trend of the G-O model and Huang’s model. As versions
increase, the gap between the proposed method and tradi-
tional models is also narrowing. -is reflects that a longer
input series length will achieve better prediction perfor-
mance, where the input series length of both of two target
versions (jEdit 4.3 and Ant 1.7) is 4.

In Figure 5, we further experimented with different
regularization rates to adjust the goodness of fit of the RNNs,
which is based on the parameter λ in (3). We got the
evaluation result 95.466% for jEdit 4.3 with η� 0.05, λ� 0.02,
which is very close to the calculation result of Huang’s model
(96.224%). Similarly, the evaluation result 93.073% for Ant
1.7 with η� 0.05, λ� 0.01 is very close to the result of
Huang’s model (93.577%).

5.2.Discussion. We use two traditional reliability models for
comparison in Figures 4 and 5. Curves of the proposed
method are basically consistent with curves of traditional
models. In fact, these traditional models are based on the
testing failure data, which is different from our method
based on software structure analysis and code metrics. It is
unfair to directly compare the performance with traditional
models. Results close to traditional models also show the
effectiveness of the proposed method in this study. -is
means that reliability engineering could be implemented at
the early development stage if the software metric data are
used properly.

Table 6: Part of the Rmodule values when taking jEdit 4.1, 4.2, 4.3 and Ant 1.5, 1.6, 1.7 as the version to be evaluated, respectively.
jEdit
Package v4.1 v4.2 v4.3
Browser 86.39 87.80 88.75
Bsh 88.41 91.84 94.38
Buffer 87.45 89.33 95.81
Bufferio — — 93.54
Bufferset — — 94.11
Gui 85.23 89.32 91.26
Ant
Package v1.5 v1.6 v1.7
Dispatch — — 96.87
Filters 92.35 95.64 97.02
Helper 89.12 91.08 94.14
Input 91.56 93.25 96.32
Launch — 91.39 92.61
Listener 96.97 88.55 92.74
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As shown in Figures 4 and 5, the values of the proposed
method are lower than those of traditional models usually.
-e reason is that the calculation process established by the
framework of Figure 1 is dedicated to finding those defect-
prone classes which can not necessarily lead to software
failure. In other words, amplification of software code de-
fects leads to conservative results of reliability evaluation in
this study. In contrast, traditional models are relatively
optimistic because they believe that the reliability curve of

one software project will continue to increase with bugs
fixing.

We tried different learning rates and regularization rates
in the experiment. It can be seen that when the learning rate
η is 5, a very different curve is obtained in both target
projects. -is slow-growing curve shows that the update of
the RNN does not match the changes in the input series well.
We then gradually reduced the learning rate and experi-
mented with a wide range of regularization rates to optimize
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Figure 4: Reliability curves of the proposed method with different learning rates: (a) the learning rate η is set to 5, 0.5, and 0.05 on the target
jEdit; (b) η is set to 5, 0.5, and 0.05 on the target Ant.
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Figure 5: Reliability curves of the proposedmethod with different regularization rates when η is set to 0.05: (a) the regularization rate λ is set
to 0.3 and 0.02 on the target jEdit; (b) λ is set to 10 and 0.001 on the target Ant.
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the fitting problem. We found that under the data scale of
this study, the optimal value for the parameter λ is at 10−2

magnitude.
-e applicability of this study is explained as follows.-e

DTMC model used in the framework is the most important
structural model at present [1–4, 9, 10]. Formal tools to
match this model have been fully verified in our previous
studies [20]. -e software metric data needed for modeling
can be obtained from public repository such as PROMISE or
calculated directly from source codes. -e metric elements
and its classification used in the experiment are generally
accepted in most literature studies of software defect pre-
diction. In our follow-up research, the correlation analysis
will be applied to eliminate redundant information in similar
metrics.

6. Conclusion

In this study, we propose a complete framework in order to
implement early reliability engineering in two open-source
Java projects. We use the RNNmodel to process metric data
for identifying defeat-prone classes in one package and
calculate the module reliability of the package based on the
definition of reliability influence and aggregation strategies.
-en we introduce formal tools to automatically build the
structural reliability model and calculate the overall reli-
ability. Experiments show that results of the proposed
method can approach the results of traditional reliability
models which use failure data. Our method works at the
software design and coding stage and can adapt to any
structural changes and code changes in these stages. -is
study provides ideas for the practical application of the
structural reliability model which plays an important role in
reliability engineering. -e next step of empirical research
should be carried out for larger-scale, longer-period open-
source software projects. Furthermore, structural analysis
methods could be used to optimize the framework of this
paper to reveal the impact of structural changes on reliability
assessment in the process of software project version change.
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