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Abstract. We study reiterated homogenization of a nonlinear non-periodic

elliptic differential operator in a general deterministic setting as opposed to

the usual stochastic setting. Our approach proceeds from an appropriate

notion of convergence termed reiterated Σ-convergence. A general deterministic

homogenization theorem is proved and several concrete examples are studied

under various structure hypotheses ranging from the classical periodicity

hypothesis to more complicated, but realistic, structure hypotheses.

1. Introduction

We study the homogenization (as 0 < ε → 0) of the boundary value
problem

(1.1) −div a
(x
ε
,
x

ε2
, Duε

)
= f in Ω, uε ∈W 1,p

0 (Ω; R)
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where Ω is a bounded open set in RN
x (the N -dimensional numerical space

of variables x = (x1, · · ·, xN )), f is given in W−1,p′
(Ω; R) with p′ = p

p−1 ,
1 < p <∞ , D and div denote the usual gradient and divergence operators,
respectively, in Ω, and finally, a is a given function (y, z, ξ) → a(y, z, ξ)
from RN × RN × RN to RN (N ≥ 1) with the following properties :

(1.2)

For any arbitrary ξ ∈ R
N , the function (y, z) → a(y, z, ξ)

possesses the Caratheodory property, i.e.,

(i) for each z ∈ RN , the function y → a(y, z, ξ) is measurable
from RN (with Lebesgue measure) into RN ,

(ii) for almost every y ∈ RN , the function z → a(y, z, ξ) maps

RN continuously into RN .

(1.3)
a(y, z, ω) = ω for almost all y ∈ RN and for all z ∈ RN , where ω
denotes the origin in RN .

(1.4)

There are four constants c1, c2 > 0, 0 < α1 ≤ min(1, p− 1), and
α2 ≥ max(p, 2) such that for almost every y ∈ RN and
for every z ∈ RN we have

(iii) |a(y, z, ξ1) − a(y, z, ξ2)| ≤
c1(1 + |ξ1| + |ξ2|)p−1−α1 |ξ1 − ξ2|α1

(iv) (a(y, z, ξ1) − a(y, z, ξ2)) · (ξ1 − ξ2) ≥
c2(1 + |ξ1| + |ξ2|)p−α2 |ξ1 − ξ2|α2

for ξ1, ξ2 ∈ RN , where the dot denotes the usual Euclidean inner
product in RN , and |·| the associated norm.

For the sake of clearness it is well to note that the equation in (1.1)
actually writes as

−div aε (·, ·, Duε) = f in Ω,

where aε (·, ·, Duε) stands for the function x → a(x
ε ,

x
ε2 , Duε(x)) from Ω

to RN . However, since the set Qε = {(x, x
ε ,

x
ε2 ) : x ∈ Ω} is negligible in

RN
x × RN

y × RN
z (for Lebesgue measure dxdydz ), it is not clear that this

function is well defined. Indeed, unless the function (y, z) → a(y, z, ξ) (for
fixed ξ ) is a continuous mapping of R

N × R
N into R

N and v is taken in
C(Ω; R)N = C(Ω; R)×···×C(Ω; R) (N times), it would be naive to state that
a(x

ε ,
x
ε2 ,v(x)) is the value taken by a(y, z,v(x)) at point (y = x

ε , z = x
ε2 ).

All that will be clarified in Section 2.
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Provided the differential operator u→ div aε (·, ·, Du), u ∈W 1,p(Ω; R),
is well defined and has suitable properties (see Corollary 2.1), it is a classical
matter to prove an existence and uniqueness result for (1.1) (see, e.g., [16]).
Thus, we have a generalized sequence (uε)ε>0 at our disposal, and the
problem is to study, under a suitable condition on a(y, z, ξ) (for fixed ξ )
- called a structure hypothesis, the limiting behaviour of uε as ε → 0.
This lies within the class of so-called reiterated homogenization problems.
Reiterated homogenization was introduced in [4] for linear operators.
Multiscale convergence was first applied to reiterated homogenization in
[8]. The reiterated homogenization of nonlinear elliptic operators was first
studied in [14, 15], and latter in [16], in the usual periodic setting.

In this study we investigate the homogenization of (1.1) not under
the periodicity hypothesis as in the previous references, but in a
general deterministic setting including the periodicity, almost periodicity,
convergence at infinity hypotheses, and others. Our approach proceeds from
an appropriate notion of convergence termed reiterated Σ-convergence. A
general deterministic homogenization theorem for (1.1 ) is established, and
several examples considered in various concrete settings are presented by
way of illustration. Reiterated Σ-convergence is likely to carry over to other
settings. In particular, by a suitable adaptation of the approach carried out
in [2, 3], it is possible to frame, using reiterated Σ-convergence, a reiterated
homogenization theory of integral functionals in a general deterministic
setting similar to that which is introduced in the present study.

The study is organized as follows. Section 2 deals with preliminary
notions and results about the traces a(x

ε ,
x
ε2 ,v(x)) (x ∈ Ω) and

reiterated Σ-convergence. In Section 3 we study the abstract deterministic
homogenization problem for (1.1). The periodicity hypothesis stated in [14,
15, 16] is here replaced by an abstract assumption covering a great variety
of concrete structure hypotheses. Finally, Section 4 is concerned with a few
concrete examples of homogenization problems for (1.1). More precisely,
we consider the problem of investigating the limiting behaviour (as ε→ 0)
of uε (the solution of (1.1)) under various concrete structure hypotheses
ranging from the classical periodicity condition to more complicated (but
realistic) structure hypotheses, and we show how each of them can reduce
to the abstract hypothesis in Section 3.

Except where otherwise stated, vector spaces are considered over the
complex field, C , and scalar functions assume complex values. If X and
F denote a locally compact space and a Banach space, respectively, then
C(X ;F ) stands for the space of continuous functions of X into F , and
B(X ;F ) stands for those functions in C(X ;F ) that are bounded. We
equip B(X ;F ) with the supremum norm ‖u‖∞ = supx∈X ‖u(x)‖ , where
‖·‖ denotes the norm in F . For shortness we write C(X) = C(X ; C)



124 Reiterated homogenization of nonlinear monotone operators

and B(X) = B(X ; C). Likewise the spaces Lp(X ;F ) and Lp
loc(X ;F )

(X provided with a positive Radon measure) are denoted by Lp(X) and
Lp

loc(X), respectively, when F = C (we refer to [6, 7, 9] for integration
theory). Finally, it is always assumed that the numerical space Rd (d a
positive integer) is equipped with Lebesgue measure dx = dx1 · · · dxd.

2. Preliminaries

2.1. Traces. Let Ω be a bounded open set in RN
x . Let ε > 0. For

u ∈ L1
loc(Ω × RN

y × RN
z ) = L1

loc(Ω;L1
loc(R

N
y × RN

z )), we set

(2.1) uε(x) = u
(
x,
x

ε
,
x

ε2

)
(x ∈ Ω)

whenever the right-hand side has meaning. This is obviously the case if u is
continuous on Ω×RN

y ×RN
z , since the right of (2.1) is then none other than

the value of u(x, y, z) at (y = x
ε , z = x

ε2 ), x being given in Ω. If u lies in
Lp(Ω;B) (1 ≤ p ≤ ∞), where B is a closed vector subspace of B(RN

y ×RN
z ),

there is no serious difficulty in verifying that the right-hand side of (2.1) still
has meaning (though in a generalized sense), which determines a function
uε ∈ Lp(Ω) with ‖uε‖Lp(Ω) ≤ ‖u‖Lp(Ω;B) . Our next purpose is to define uε

for u ∈ C(Ω;L∞(RN
y ;B(RN

z ))). First of all, for ψ ∈ L∞(RN
y ;B(RN

z )), put
εψ(y) = ψ

(
y, y

ε

)
(y ∈ R

N ), which gives a function εψ ∈ L∞(RN
y ). Next,

define ψε(x) = εψ(x
ε ) for x ∈ R

N , or more explicitly

(2.2) ψε(x) = ψ
(x
ε
,
x

ε2

)
(x ∈ R

N ).

Clearly ψε ∈ L∞(RN ) with ‖ψε‖L∞(RN ) ≤ ‖ψ‖L∞(RN
y ;B(RN

z )) . This being

so, let u ∈ C(Ω) ⊗ L∞(RN
y ;B(RN

z )), i.e.,

(2.3) u =
∑
finite

ϕi ⊗ ψi, ϕi ∈ C(Ω), ψi ∈ L∞(RN
y ;B(RN

z )).

Put

(2.4) uε(x) =
∑
finite

ϕi(x)ψε
i (x) (x ∈ Ω)

where ψε
i (x) is defined as in (2.2). We have uε ∈ L∞(Ω) with ‖uε‖L∞(Ω) ≤

supx∈Ω ‖u(x)‖L∞(RN
y ;B(RN

z )) (proceed as in [17, Proposition 1.5]). Combin-

ing this with the fact that C(Ω)⊗L∞(RN
y ;B(RN

z )) is dense in C(Ω;L∞(RN
y ;B(RN

z ))),
we get immediately the following
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Proposition 2.1. The operator u → uε (uε given by (2.3)-(2.4)) of
C(Ω)⊗L∞(RN

y ;B(RN
z )) into L∞(Ω) extends by continuity to a continuous

linear mapping, still denoted by u → uε , of C(Ω;L∞(RN
y ;B(RN

z ))) into
L∞(Ω) such that ‖uε‖L∞(Ω) ≤ supx∈Ω ‖u(x)‖L∞(RN

y ;B(RN
z )) for all u ∈

C(Ω;L∞(RN
y ;B(RN

z ))) . Furthermore, if u verifies u(x, y, z) ≥ 0 for all
(x, z) ∈ Ω × RN and for almost all y ∈ RN , then uε(x) ≥ 0 for almost all
x ∈ Ω .

Thus, for u ∈ C(Ω;L∞(RN
y ;B(RN

z ))), the function uε is defined in the
sense of Proposition 2.1 and hence we are justified in still making use of the
notation in (2.1).

Let us now try to give a meaning to the notation a(x
ε ,

x
ε2 , Du(x)) (x ∈ Ω)

with u ∈ W 1,p(Ω,R). We will need the following lemma, which is of interest
in itself.

Lemma 2.1. Let Az be a closed subalgebra of B(RN
z ) and f be a function

of RN
y × RN

z into R with the following properties :
(i) Provided with the supremum norm, Az is separable

(ii) Az contains the constants

(iii) Az is stable under complex conjugation

(iv) For each fixed z ∈ RN , the function y → f(y, z) is measurable from
RN to R

(v) For almost every y ∈ RN , the function z → f(y, z) of RN into R ,
denoted below by f(y, ·) , lies in Az.

Then, the function y → f(y, ·) is measurable from RN into B(RN
z ) .

Proof. It is clear that Az is a commutative C∗ -algebra with identity. Its
spectrum, Δ(Az), is a metrizable compact space admitting {δz}z∈RN (δz
the Dirac measure on RN at z ) as a dense subset. Furthermore, the Gelfand
transformation on Az , denoted below by G , is an isometric isomorphism
of the C∗ -algebra Az onto the C∗ -algebra C(Δ(Az)) (see, e.g., [13] for
further details). Having made these preliminaries, let us fix an arbitrary
point s ∈ Δ(Az). Let (zn)n∈N (N denotes the nonnegative integers) be a
sequence in RN such that δzn → s in Δ(Az) as n→ ∞. Then, as n→ ∞ ,
we have 〈δzn , f(y, ·)〉 → 〈s, f(y, ·)〉 = G(f(y, ·))(s) for almost all y ∈ RN ,
where the brackets denote the duality pairing between A′

z (topological
dual of Az ) and Az . It follows that the function y → G(f(y, ·))(s) is
measurable from R

N to R , since the same is true of each of the functions
y → 〈δzn , f(y, ·)〉 = f(y, zn) (n ranging over N), according to property
(iv). In other words, if δs denotes the Dirac measure on Δ(Az) at s , and
g denotes the function y → G(f(y, ·)) from RN to C(Δ(Az)), then the
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function y → 〈δs, g(y)〉 is measurable from RN into R and that for any
arbitrary s ∈ Δ(Az). Therefore, given any arbitrary Radon measure ρ on
Δ(Az) with finite support, i.e., ρ of the form

ρ =
∑
finite

ciδsi (ci ∈ C and si ∈ Δ(Az)),

the function y → 〈ρ, g(y)〉 is measurable from RN into C , the brackets
denoting this time the duality pairing between M(Δ(Az)) = C′(Δ(Az))
(space of complex Radon measures on Δ(Az)) and C(Δ(Az)). With this
in mind, fix freely a Radon measure η on Δ(Az). Note that η is bounded,
since Δ(Az) is compact. Thus, we may assume without loss of generality
that η lies in the closed unit ball B′ ⊂ M(Δ(Az)). But B′ with the
relative weak ∗ topology on M(Δ(Az)) is a metrizabble compact space
(the compacity is classical, the metrizability follows by property (i)). Hence,
recalling a classical result (see, e.g., [6, Chap.III, p.71, Corol.1]), we may
consider a sequence

(ρn)n∈N, ρn ∈ B′, ρn with finite support

such that ρn → η in M(Δ(Az)) (with the weak ∗ topology) as n → ∞.

Consequently, a.e. in y ∈ RN , 〈ρn, g(y)〉 → 〈η, g(y)〉 as n→ ∞ . We deduce
by a classical argument that the function y → 〈η, g(y)〉 is measurable from
RN into C . Therefore, in view of the arbitrariness of η , the lemma follows
by [6, Chap.IV; p.182, Corol.2, and p.174, Thm 1]. �

At the present time, we assume that
(2.5)
ai(y, ·, ξ) ∈ Az (1 ≤ i ≤ N) for all ξ ∈ R

N and for almost all y ∈ R
N

where ai(y, ·, ξ) stands for the function z → ai(y, z, ξ) of RN into R ,
and Az is a closed subalgebra of B(RN

z ) with the properties (i)-(iii) of
Lemma 2.1. We will see that condition (2.5) is fulfilled in practice (see the
forthcoming remark).

Remark 2.1. By combining [part (ii) of] (1.2) with (1.3) and [part
(iii) of] (1.4), we have immediately ai(y, ·, ξ) ∈ B(RN

z ) (1 ≤ i ≤ N ) for
all ξ ∈ RN and for almost all y ∈ RN . Unfortunately Lemma 2.1 does
not apply because the space B(RN

z ) is not separable. We will see that a
condition such as (2.5) is nevertheless fulfilled in practice as a consequence
of the concrete structure hypothesis on ai(y, z, ξ) (for fixed ξ ); see Section
4.
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Now, recalling (1.2)-(1.4), we see that Lemma 2.1 applies with f(y, z) =
ai(y, z, ξ), where i and ξ are freely fixed. Hence

ai(·, ·, ξ) ∈ L∞(RN
y ;B(RN

z )) (1 ≤ i ≤ N)

for any fixed ξ ∈ R
N , where ai(·, ·, ξ) denotes the function (y, z) →

ai(y, z, ξ) of RN×RN into R . With this in mind, let v ∈ CR(Ω)N = CR(Ω)×
· · · × CR(Ω) (N times), where CR(Ω) = C(Ω; R). The function (x, y, z) →
ai(y, z,v(x)) of Ω × RN

y × RN
z into R lies in C(Ω;L∞(RN

y ;B(RN
z ))) (the

verification is an easy matter). Hence, according to Proposition 2.1, we can
define the function x → ai(x

ε ,
x
ε2 ,v(x)) from Ω into R , which belongs to

L∞
R

(Ω) = L∞(Ω; R) and is denoted below by aε
i (·, ·,v).

Proposition 2.2. Let 1 < p < ∞. Suppose (2.5) holds. For each fixed
integer 1 ≤ i ≤ N , the transformation v → aε

i (·, ·,v) of CR(Ω)N into
L∞

R
(Ω) extends by continuity to a continuous mapping, still denoted by

v → aε
i (·, ·,v) , of Lp

R
(Ω)N into Lp′

R
(Ω) (p′ = p

p−1 ). Furthermore, on
letting

aε(·, ·,v) = (aε
i (·, ·,v))1≤i≤N for v ∈ Lp

R
(Ω)N ,

we have

‖aε(·, ·,v) − aε(·, ·,w)‖Lp′(Ω)N ≤
c1 ‖1 + |v| + |w|‖p−1−α1

Lp(Ω) ‖v − w‖α1
Lp(Ω)N

and
(aε(·, ·,v) − aε(·, ·,w)) · (v − w) ≥

c2(1 + |v| + |w|)p−α2 |v − w|α2 a.e. in Ω
for all v,w ∈ Lp

R
(Ω)N .

Proof. This follows in view of the proof of [19, Proposition 2.1]. �

As a direct consequence of this, we have the following

Corollary 2.1. Let the hypotheses of Proposition 2.2 be satisfied. For
u ∈ W 1,p(Ω; R) , let aε(·, ·, Du) = (aε

i (·, ·, Du))1≤i≤N be defined as in
Proposition 2.2, which gives a mapping u→ aε(·, ·, Du) of W 1,p(Ω; R) into
Lp′

(Ω)N . We have

‖aε(·, ·, Du) − aε(·, ·, Dv)‖Lp′(Ω)N ≤
c1 ‖1 + |Du| + |Dv|‖p−1−α1

Lp(Ω) ‖Du−Dv‖α1
Lp(Ω)N

and

(aε(·, ·, Du) − aε(·, ·, Dv)) · (Du−Dv) ≥
c2(1 + |Du| + |Dv|)p−α2 |Du−Dv|α2 a.e. in Ω
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for all u, v ∈W 1,p(Ω; R) .

Remark 2.2. It is sometimes convenient to denote the function
aε

i (·, ·, Du) (with u ∈ W 1,p(Ω; R)) by x → aε
i (

x
ε ,

x
ε2 ·, Du(x)). However,

though entirely justified above, this is merely a formal notation.

2.2. Reiterated Σ-convergence. Let us first state some fundamentals
of homogenization structures beyond the classical two-scale setting.

Let d be a positive integer. Let H = (Hε)ε>0 be an action of R∗
+ (the

multiplicative group of positive real numbers) on the numerical space Rd ,
i.e., H is a family, indexed by R∗

+ , of permutations Hε of Rd such that
(i) Hε ◦Hε′ = Hεε′ for all ε, ε′ > 0

(ii) Hε=1 = IdRd ,
where ◦ and IdRd denote usual composition and the identical mapping,
respectively, of Rd . We assume further that :
(H )1 Each Hε maps continuously Rd into itself.

(H )2 limε→0 |Hε(x)| = +∞ for any x ∈ Rd with x �= ω , where |·| and
ω denote the Euclidean norm and the origin in Rd , respectively.

(H )3 The Lebesgue measure λ on R
d is quasi-invariant under H , i.e.,

to each ε > 0 there is attached some γ(ε) > 0 such that Hε(λ) =
γ(ε)λ.

Remark 2.3. In view of (H )1 , the mapping Hε is a homeomorphism
of R

d onto itself and therefore the image measure Hε(λ) is well defined
(see, e.g., [7]). We recall that Hε(λ) is the Radon measure on Rd given by
〈Hε(λ), ϕ〉 =

∫
ϕ(Hε(x))dx for ϕ ∈ K(Rd) (space of compactly supported

continuous complex functions on Rd ), or equivalently by Hε(λ)(B) =
λ(H−1

ε (B)) for any bounded Borel set B ⊂ Rd. In view of (H )3 , the
transformation u → u ◦ Hε (usual composition) maps Lp

loc(R
d) (resp.

Lp(Rd)) into itself, 1 ≤ p ≤ ∞ .

We denote by Π∞(Rd,H), or simply Π∞ when there is no danger of
confusion, the space of those u ∈ B(Rd) for which a complex number M(u)
exists such that u ◦ Hε → M(u) in L∞(Rd)-weak ∗ as ε → 0. Π∞ is a
closed vector subspace of B(Rd), Π∞ contains the constants, Π∞ is stable
under complex conjugation. Furthermore, the mapping u → M(u) of Π∞

into C is a positive linear form on Π∞ attaining the value 1 on the constant
function 1. Such a linear form is necessarily continuous and of norm exactly
one. We call M the mean value on Rd for H .

We are now in a position to introduce the notion of a homogenization
structure in the present general setting. We begin by setting an underlying
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notion. By a structural representation on Rd for the action H is meant any
set Γ ⊂ B(Rd) with the properties :

(HS1) Γ is a group under multiplication

(HS2) Γ is countable

(HS3) Γ is stable under complex conjugation

(HS4) Γ ⊂ Π∞.

Next, in the collection of all structural representations on Rd for H ,
we consider the equivalence relation ∼ defined as : Γ ∼ Γ′ if and only
if CLS(Γ) = CLS(Γ′), where CLS(Γ) denotes the closed vector subspace
of B(Rd) spanned by Γ. By an H -structure on Rd for H (H stands for
homogenization) we shall understand any equivalence class modulo ∼ .

The notion of an H -structure is intimately connected with that of an
H -algebra. Specifically, let Σ be an H -structure on Rd for H . Let
A = CLS(Γ), where Γ is any equivalence class representative of Σ (such a
Γ is termed a representation of Σ). The space A is a so-called H -algebra
on Rd for H , i.e., a closed subalgebra of B(Rd) with the features :

(HA1) A with the supremum norm is separable

(HA2) A contains the constants

(HA3) A is stable under complex conjugation

(HA4) A ⊂ Π∞.

Furthermore, A depends only on Σ and not on the chosen representation
Γ of Σ; so that we may set A = J (Σ) (the image of Σ), which yields a
mapping Σ → J (Σ) that carries the collection of all H -structures (for H)
bijectively over the collection of all H -algebras (for H) (see [18, Theorem
3.1]).

It is an easy matter to see that the theory of H -structures developed
earlier in the particular setting of [18] carries over to the present general
setting. Thus, basic notions such as the partial derivatives on Δ(A) (A a
given H -algebra on Rd for H), the Sobolev spaces W 1,p(Δ(A)), the Σ-
convergence, etc., remain valid and hence are not worth repeating here. We
refer the reader to [18, 19] for further details.

In the present work we are concerned with three specific actions of R∗
+ :

the action H = (Hε)ε>0 on R
N (integer N ≥ 1) given by Hε(x) = x

ε

(x ∈ RN ), the action H′ = (H ′
ε)ε>0 on RN given by H ′

ε(x) = x
ε2 (x ∈ RN ),

and their product H∗ = H × H′ , which is precisely the action of R
∗
+ on

R2N = RN×RN defined by H∗ = (H∗
ε )ε>0 , H∗

ε = Hε×H ′
ε (direct product),

i.e.,

H∗
ε (x, x′) =

(
x

ε
,
x′

ε2

)
for (x, x′) ∈ R

N × R
N .
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Each of these three actions satisfies properties (H )1 -(H )3 , mutatis
mutandis.

Now, let Σy be an H -structure of class C∞ on RN
y for H , and Σz be

an H -structure of class C∞ on RN
z for H′ . Their product Σ = Σy ×Σz is

defined exactly as in [18, Definition 3.4], and is an H -structure of class C∞

on RN×RN for the product action H∗ . It is an elementary exercise to verify
that Proposition 3.2, Theorem 3.2 and Corollaries 3.1-3.2 of [18] carry over
mutatis mutandis to the present context. We will put Ay = J (Σy) (image
of Σy ), Az = J (Σz) and A = J (Σ), and use the same letter, G , to denote
the Gelfand transformation on Ay , Az and A , as well. Points in Δ(Ay)
(resp. Δ(Az)) are denoted by s (resp. r ). The compact space Δ(Ay)
(resp. Δ(Az)) is equipped with the so-called M -measure, βy (resp. βz )
for Ay (resp. Az ). It is fundamental to recall that Δ(A) = Δ(Ay)×Δ(Az)
(cartesian product) and further the M -measure for A , with which Δ(A) is
equipped, is precisely the product measure β = βy ⊗ βz (see [18]).

Before we can introduce the concept of reiterated Σ-convergence, we
require one further notion.

Definition 2.1. The H -structure Σ = Σy × Σz is called a reiteration
H -structure if for each ψ ∈ A = J (Σ) (image of Σ), we have ψε → M(ψ)
in L∞(RN

x )-weak ∗ as ε→ 0, where ψε is defined (in an obvious manner)
in (2.2), and M is the mean value on R2N = RN × RN for the product
action H∗ .

Remark 2.4. According to (HA4), for each ψ ∈ A = J (Σ) we have
ψ ◦H∗

ε →M(ψ) in L∞(RN
x ×RN

x′)-weak ∗ , which is very different from the
convergence property in the above definition.

We give below a few examples of reiteration H -structures.

Example 2.1. Let Γ = {γk : k ∈ ZN} (Z denotes the integers), where
for each k ∈ RN , we write γk for the usual exponential function on RN , i.e.,
γk(y) = exp(2iπk ·y) (y ∈ RN ). The set Γ is a structural representation on
RN for H and H′ , as well. We define ΣZN (resp. Σ′

ZN ) to be the unique
H -structure on RN for H (resp. H′ ) of which Γ is one representation. ΣZN

is referred to as the periodic H -structure on RN represented by RN (see
[18, Example 3.2]). We have J (ΣZN ) = J (Σ′

ZN ) = P(RN ), where P(RN )
is the space of functions u ∈ C(RN ) such that u(y + k) = u(y) for all
y ∈ RN and all k ∈ ZN (such functions are said to be ZN -periodic). Hence
Σ′

ZN = ΣZN . Finally, we consider the product H -structure Σ = ΣZN ×ΣZN

on RN
y ×RN

z for H∗ . It can be proved that Σ is a reiteration H -structure
(the verification is left to the reader).
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Example 2.2. Let Γy = {γk : k ∈ Ry} and Γz = {γk : k ∈ Rz} ,
where Ry and Rz are countable subgroups of RN . The set Γy (resp. Γz )
is a structural representation on RN for H (resp. H′ ). We define ΣRy

(resp. ΣRz ) to be the unique H -structure on RN for H (resp. H′ ) of
which Γy (resp. Γz ) is one representation. ΣRy (resp. ΣRz ) is referred
to as the almost periodic H -structure on R

N represented by Ry (resp.
Rz ), see [18, Example 3.3]. According to [18, Example 3.6], the product
Σ = ΣRy ×ΣRz , which is an H -structure on RN ×RN for H∗ , is precisely
the almost periodic H -structure on R2N = RN × RN represented by the
countable subgroup R = Ry × Rz of R2N . Thus, Σ = ΣR , and further
there is no serious difficulty in verifying that Σ is a reiteration H -stucture.

Example 2.3. Let Σ∞ be the so-called H -structure of the convergence
at infinity on RN [18, Example 3.4]. This is an H -structure on RN for
H and H′ , as well. The product Σ = Σ∞ × Σ∞ is an H -structure on
RN × RN for the product action H∗ . In view of [18, Proposition 3.2], we
have J (Σ) = B∞(RN

y ;B∞(RN
z )), from which one can easily check that Σ

is a reiteration H -structure.

Example 2.4. Let Σ = Σy ×Σ∞ , where Σz = Σ∞ is as in Example 2.3
and Σy is any H -structure of class C∞ on RN for H . Σ is an H -structure
on RN ×RN for H∗ . Furthermore, J (Σ) = B∞(RN

z ;Ay) with Ay = J (Σy)
(proceed as in [18, Example 3.7]), from which one can easily deduce that Σ
is a reiteration H -structure.

Example 2.5. Let Σ = ΣRy × Σ∞,Rz where Ry , Rz and ΣRy are as
in Example 2.2, and Σ∞,Rz is the H -structure on RN for H′ defined in
[18, Example 3.5]. This is an H -structure on R

N × R
N for H∗ . It can be

shown that Σ is a reiteration H -structure.

Example 2.6. Let Σ = Σ∞,Ry ×Σ∞,Rz where Ry and Rz are as above.
This is clearly an H -structure on R

N ×R
N for H∗ , and there is no serious

difficulty in verifying that Σ is a reiteration H -stucture.

Returning now to the preceding general framework, we assume from now
that the H -structure Σ = Σy ×Σz is a reiteration H -structure. The letter
Ω throughout will denote a bounded open set in RN

x . Here is a fundamental
result.

Proposition 2.3. As ε → 0 , we have uε → ũ in L∞(Ω)-weak ∗ for
u ∈ C(Ω;A) and uε → ũ in Lp(Ω)-weak for u ∈ Lp(Ω;A) (1 ≤ p < ∞),
where uε is defined in (2.1) and ũ denotes the complex function on Ω given
by ũ(x) = M(u(x)) (x ∈ Ω), M as in Definition 2.1.
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Proof. Starting from the convergence property in Definition 2.1, we see
immediately that the proposition follows by the density of C(Ω) ⊗ A in
C(Ω;A) and by that of C(Ω;A) in Lp(Ω;A). �

We are now ready to introduce the concepts of reiterated weak and strong
Σ-convergence. The letter E throughout will denote a family of positive
real numbers admitting 0 as an accumulation point. For example E = R∗

+ .
Attention is drawn to the especial case where E = (εn) (integers n ≥ 0)
with εn > 0 and εn → 0 as n→ ∞ ; E is then referred to as a fundamental
sequence.

Definition 2.2. A sequence (uε)ε∈E ⊂ Lp(Ω) (1 ≤ p <∞) is said to :
(i) weakly Σ-converge reiteratively in Lp(Ω) to some u0 ∈ Lp(Ω×Δ(A))

if as E � ε→ 0, we have

(2.6)
∫

Ω

uεv
εdx→

∫ ∫
Ω×Δ(A)

u0v̂dxdβ

for every v ∈ Lp′
(Ω;A) ( 1

p′ = 1 − 1
p ), where vε is defined as in (2.1),

and v̂ = G ◦ v (i.e., v̂ denotes the function in Lp′
(Ω; C(Δ(A))) given by

v̂(x) = G(v(x)), x ∈ Ω);
(ii) strongly Σ-converge reiteratively in Lp(Ω) to some u0 ∈ Lp(Ω×Δ(A))

if the following condition is fulfilled :

(SC)
Given η > 0 and v ∈ Lp(Ω;A) with ‖u0 − v̂‖Lp(Ω×Δ(A)) ≤ η

2 , there
is some α > 0 such that ‖uε − vε‖Lp(Ω) ≤ η provided E � ε ≤ α.

We express this by writing uε → u0 reiteratively in Lp(Ω)-weak Σ in
case (i), and uε → u0 reiteratively in Lp(Ω)-strong Σ in case (ii).

There is no difficulty in verifying the following results.

(1) Suppose u0 = v̂0 with v0 ∈ Lp(Ω;A). Then uε → u0 reiteratively
in Lp(Ω)-strong Σ if and only if ‖uε − vε

0‖Lp(Ω) → 0 as E � ε→ 0.

(2) For u ∈ Lp(Ω;A) we have uε → û reiteratively in Lp(Ω)-strong Σ.

(3) If uε → u in Lp(Ω) (strong) as E � ε → 0, then uε → u

reiteratively in Lp(Ω)-strong Σ.

Also, the proof of the next proposition is a simple exercise left to the
reader.

Proposition 2.4. Suppose a sequence (uε)ε∈E ⊂ Lp(Ω) (1 ≤ p < ∞)
weakly Σ-converges reiteratively in Lp(Ω) to some u0 ∈ Lp(Ω × Δ(A)) .
Define u∗0 ∈ Lp(Ω × Δ(Ay)) as u∗0(x, s) =

∫
Δ(Az)

u0(x, s, r)dβz(r) (x ∈ Ω ,
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s ∈ Δ(Ay)), and ũ ∈ Lp(Ω) as ũ(x) =
∫
Δ(Az)

∫
Δ(Ay)

u0(x, s, r)dβy(s)dβz(r)
(x ∈ Ω). Then, as E � ε→ 0 ,

(i) uε → u∗0 in Lp(Ω)-weak Σy [18, Definition 4.1]

(ii) uε → ũ0 in Lp(Ω)-weak.

The results of the Σ-convergence setting [18] carry over mutatis mutandis,
together with their proofs, to the present setting. Let us state the most
important of such results.

Proposition 2.5. Assume that 1 < p < ∞ . Given a fundamental
sequence E and a sequence (uε)ε∈E which is bounded in Lp(Ω) , a
subsequence E′ can be extracted from E such that the sequence (uε)ε∈E′

weakly Σ-converges reiteratively in Lp(Ω) .

Proposition 2.6. Suppose a sequence (uε)ε∈E strongly Σ-converges
reiteratively in Lp(Ω) to some u0 ∈ Lp(Ω × Δ(A)) . Then, as E � ε→ 0 ,

(i) uε → u0 reiteratively in Lp(Ω)-weak Σ

(ii) ‖uε‖Lp(Ω) → ‖u0‖Lp(Ω×Δ(A)) .

Reciprocally, if p = 2 and if assertions (i)-(ii) hold, then uε → u0

reiteratively in Lp(Ω)-strong Σ.

Proposition 2.7. Suppose the two real numbers p, q ≥ 1 are such that
1
σ = 1

p + 1
q ≤ 1. Let u0 ∈ Lp(Ω × Δ(A)) and v0 ∈ Lq(Ω × Δ(A)) , and

let uε ∈ Lp(Ω) and vε ∈ Lq(Ω) for ε ∈ E . Finally, assume that uε → u0

reiteratively in Lp(Ω)-strong Σ and vε → v0 reiteratively in Lq(Ω)-weak
Σ . Then uεvε → u0v0 reiteratively in Lσ(Ω)-weak Σ.

The notion of a W 1,p(Ω)-proper reiteration H -structure will play a
fundamental role in this study. We refer to, e.g., [1] for the classical
Sobolev space W 1,p(Ω), to [19] (see also [18]) for special Sobolev spaces such
as W 1,p(Δ(Ay)) and W 1,p

# (Δ(Ay)) together with the various associated
derivative operators.

Definition 2.3. The reiteration H -structure Σ = Σy × Σz is termed
W 1,p(Ω)-proper (p a given real number with p ≥ 1) if the following three
conditions are satisfied.

(PR)1 Σy is total for p , i.e., D(Δ(Ay)) is dense in W 1,p(Δ(Ay))

(PR)2 Σz is total for p

(PR)3 Given a fundamental sequence E and a sequence (uε)ε∈E which is
bounded in W 1,p(Ω), there are a subsequence E′ extracted from
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E and three functions u0 ∈ W 1,p(Ω), u1 ∈ Lp(Ω;W 1,p
# Δ(Ay)) and

u2 ∈ Lp(Ω;Lp(Δ(Ay); W 1,p
# Δ(Az))) , such that, as E′ � ε→ 0,

uε → u0 in W 1,p(Ω)−weak

∂uε

∂xj
→ ∂u0

∂xj
+ ∂ju1 + ∂ju2 reit.in Lp(Ω)−weak Σ(1 ≤ j ≤ N),

where reit. stands for reiteratively.

Our next purpose is to present a few examples of W 1,p(Ω)-proper
reiteration H -structures.

Example 2.7. Our goal here is to show that the reiteration H -structure
Σ = ΣZN × ΣZN of Example 2.1 is W 1,p(Ω)-proper for any arbitrary
real p > 1. Let us first recall that when dealing with periodic H -
structures, it is possible to do without the Gelfand representation theory
(see, e.g., [19, Example 3.1]). So, let Y = (0, 1)N (the open unit cube
in RN

y ) and Z = (0, 1)N (the open unit cube in RN
z ). We denote by

Cper(Y × Z) the space of functions ψ ∈ C(RN
y × RN

z ) that are Y × Z -
periodic, i.e., that verify ψ(y + k, z + �) = ψ(y, z) for (y, z) ∈ RN × RN

and (k, �) ∈ ZN × ZN . Note that Cper(Y × Z) = J (Σ) (the image of
Σ = ΣZN × ΣZN ). On the other hand, we need the space Lp

per(Y × Z) of
Y × Z -periodic functions in Lp

loc(R
N
y × RN

z ), and the space Vdiv(Y × Z)
of those u ∈ C∞

per(Y × Z)N such that divyu = 0 and divzu = 0, where
C∞

per(Y × Z) = Cper(Y × Z) ∩ C∞(RN
y × RN

z ). As a preliminary step, we
have the following

Lemma 2.2. Assume that 1 < p < ∞ . Let f = (fj) ∈ Lp
per(Y × Z)N .

Suppose we have
N∑

j=1

∫ ∫
Y ×Z

fjvjdydz = 0

for all v = (vj) ∈ Vdiv(Y × Z) . Then, there exists a unique couple of
functions u1 ∈ W 1,p

# (Y ) = {v ∈ W 1,p
loc (RN

y ) : v Y -periodic,
∫

Y v(y)dy = 0} ,
u2 ∈ Lp(Y ;W 1,p

# (Z)) , such that f = Dyu1 +Dzu2.

Proof. This is a simple adaptation of the proof of [19, Lemma 3.4]. �
We are now able to state the desired result.

Proposition 2.8. The reiteration H -structure Σ = ΣZN × ΣZN is
W 1,p(Ω)-proper for each real p > 1.
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Proof. Properties (PR)1 -(PR)2 of Definition 2.3 follow by [19,
Proposition 3.2], and (PR)3 follows by a classical approach using Lemma
2.2 (see, e.g., [16, Theorem 13]). �

Example 2.8. The aim here is to verify that the reiteration H -structure
Σ = ΣRy × ΣRz of Example 2.2 is W 1,2(Ω)-proper. The first step
will be to frame a preliminary lemma analogous to Lemma 2.2. For
u = (ui) ∈ D(Δ(A))N = G(A∞)N , where G is the Gelfand transformation
on A (we recall that G maps A∞ isomorphically over D(Δ(A))), let
d̂ivyu = G(divyG−1(u)), and d̂ivzu = G(divzG−1(u)), where G−1(u) =
(G−1ui)1≤i≤N .

Lemma 2.3. Let f = (fj) ∈ L2(Δ(A))N . Suppose

N∑
j=1

∫
Δ(A)

fjvjdβ = 0

for all v = (vj) ∈ D(Δ(A))N with d̂ivyv = 0 and d̂ivzv = 0 . There exists a
couple of functions u1 ∈W 1,2

# (Δ(Ay)) , u2 ∈ L2(Δ(Ay);W 1,2
# (Δ(Az))) such

that f = ∂su1 +∂ru2 , where ∂su1 = (∂iu1)1≤i≤N and ∂ru2 = (∂iu2)1≤i≤N .

Proof. This follows in view of the proof of [17, Lemma 4.2]. �

This leads to the next proposition.

Proposition 2.9. The reiteration H -structure Σ = ΣRy × ΣRz is
W 1,2(Ω)-proper.

Proof. Properties (PR)1 -(PR)2 of Definition 2.3 follow by [17,
Proposition 4.3] whereas (PR)3 is deduced from Lemma 2.3 in a classical
way (see, e.g., the proof of [17, Theorem 4.1]). �

Further useful examples of W 1,p(Ω)-proper reiteration H -structures can
be deduced from Examples 2.7 and 2.8 by means of the following lemma.

Lemma 2.4. Consider a further reiteration H -structure Σ2 = Σ2y×Σ2z

on R
N
y × R

N
z for H∗ , where Σ2y (resp. Σ2z ) is a further H -structure of

class C∞ on R
N
y (resp. R

N
z ) for H (resp. H′ ). Suppose each of the couples

(Σy,Σ2y) and (Σz,Σ2z) satisfies a hypothesis similar to hypothesis (H) of
[19, Section 3]. If the reiteration H -structure Σ2 is W 1,p(Ω)-proper for
some real p ≥ 1 , then so also is Σ.
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Proof. Assuming that Σ2 is W 1,p(Ω)-proper for some given real p ≥ 1,
we see immediately by [19, Lemma 3.1] that conditions (PR)1 -(PR)2 of
Definition 2.3 are fulfilled. Thus, it remains to verify (PR)3 . But this
follows by an adaptation of a well-known line of argument (see, e.g., [19,
Theorem 3.1]). �

We are now able to provide further examples of W 1,p(Ω)-proper
reiteration H -structures.

Example 2.9. The H -structure of Example 2.5 is W 1,p(Ω)-proper for
p = 2 in general, for any real p > 1 in the particular case where Ry = ZN

and Rz = ZN . Indeed, this follows by Lemma 2.4 with Σ = ΣRy ×Σ∞,Rz ,
Σ2 = ΣRy × ΣRz , and use of Propositions 2.8-2.9 and the fact that the
couple {ΣRz ,Σ∞,Rz } satisfies hypothesis (H) (see [18, 19]).

Example 2.10. Let Ry be a countable subgroup of RN
y . The reiteration

H -structure Σ = ΣRy ×Σ∞ (Example 2.4) is W 1,2(Ω)-proper. This follows
by the same argument as used to prove [18, Corollary 4.4 and Example 4.4].
The details are left to the reader.

Example 2.11. The reiteration H -structure of Example 2.6 is W 1,p(Ω)-
proper for p = 2 in general, and for any p > 1 in the particular case when
Ry = ZN , Rz = ZN . Indeed, this follows by applying Lemma 2.4 with
Σ = Σ∞,Ry ×Σ∞,Rz , Σ2 = ΣRy ×ΣRz , and proceeding as in Example 2.9.

Example 2.12. The H -structure of Example 2.3 is W 1,2(Ω)-proper.
Indeed, since Σ∞ = Σ∞,{ω} , this is nothing else but a particular case of
Example 2.11.

3. The abstract homogenization problem

3.1. Setting of the abstract problem and preliminaries. Before we
can state the abstract homogenization problem for (1.1) we need further
details. The basic notation is as in Section 2. Let 1 ≤ p < ∞ . We denote
by Ξp(RN

y ;B(RN
z )), or simply Ξp when there is no danger of confusion, the

space of those functions u ∈ Lp
loc(R

N
y ;B(RN

z )) for which

sup
0<ε≤1

∫
U

∥∥∥u(x
ε
, ·

)∥∥∥p

∞
dx <∞

for any bounded open set U in RN
x . This is a Banach space with norm

‖u‖Ξp = sup
0<ε≤1

(∫
BN

∥∥∥u(x
ε
, ·

)∥∥∥p

∞
dx

) 1
p

(u ∈ Ξp)
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where BN is the open unit ball in RN
x .

Remark 3.1. It should be noted that the way we defined ψε (in (2.2))
for ψ ∈ L∞(RN

y ;B(RN
z )) remains rigorously valid when L∞(RN

y ;B(RN
z ))

is replaced by Lp
loc(R

N
y ;B(RN

z )), so that (2.2) extends to all ψ ∈
Lp

loc(R
N
y ;B(RN

z )). Furthermore, for each bounded open set U ⊂ RN
x , we

have

sup
0<ε≤1

(∫
U

∣∣∣u(x
ε
,
x

ε2

)∣∣∣p dx) 1
p

≤ n
N
p ‖u‖Ξp (u ∈ Ξp),

where n is some positive integer such that U ⊂ nBN . Thus, as ε ranges
over (0, 1), the mappings u → uε are uniformly equicontinuous from Ξp

into Lp
loc(R

N
x ).

Now, in the notation of Subsection 2.2, let Σ = Σy × Σz be a reiteration
H -structure on R

N
y × R

N
z for H∗ . We define Xp

Σ(RN
y ;B(RN

z )) (or Xp
Σ ,

or simply Xp when there is no danger of confusion) to be the closure of
A = J (Σ) in Ξp . We provide Xp

Σ with the Ξp -norm, which makes it a
Banach space. Propositions 2.3-2.4 and Corollaries 2.1-2.2 of [18] carry over
mutatis mutandis, together with their proofs, to the present context. Let us
especially attract attention to the following two fundamental propositions.

Proposition 3.1. The mean value M on RN × RN for H∗ , viewed as
defined on A = J (Σ) , extends by continuity to a positive continuous linear
form (still denoted by M ) on Xp

Σ . Furthermore, for each u ∈ Xp
Σ , we have

uε → M(u) in Lp(Ω)-weak as ε → 0 , where uε (defined as in (2.2)) is
considered as a function in Lp(Ω) , and Ω is any fixed bounded open set in
RN

x .

Proposition 3.2. The Gelfand transformation G : A → C(Δ(A))
extends by continuity to a (unique) continuous linear mapping, still denoted
by G , of Xp

Σ into Lp(Δ(A)) .

Remark 3.2. As a direct consequence of the preceding propositions, we
have M(u) =

∫
Δ(A)

G(u)dβ for all u ∈ Xp
Σ.

At the present time, let Xp,∞
Σ = Xp

Σ ∩ L∞(RN
y ;B(RN

z )) be provided
with the L∞(RN

y ;B(RN
z ))-norm. It can be shown (as in part (v) of [18,

Corollary 2.2]) that for u ∈ Xp,∞
Σ , we have G(u) ∈ L∞(Δ(A)) and

‖G(u)‖L∞(Δ(A)) ≤ ‖u‖L∞(RN
y ;B(RN

z )) . Another result worth mentioning is
the following, where Ω is as in Proposition 3.1.
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Proposition 3.3. Let 1 < p < ∞ . Let E be a fundamental sequence.
Suppose a sequence (uε)ε∈E weakly Σ-converges reiteratively in Lp(Ω) to
some u0 ∈ Lp(Ω × Δ(A)) (Definition 2.2). Then, as E � ε → 0 , (2.6)
holds for v ∈ C(Ω; Xp′,∞

Σ ) (p′ = p
p−1 ).

Proof. There is no difficulty in showing that (2.6) holds for v ∈
C(Ω) ⊗ Xp′,∞

Σ . Hence the desired result follows by mere routine and use
of the density of C(Ω) ⊗ Xp′,∞

Σ in C(Ω; Xp′,∞
Σ ). �

The next result is a direct consequence of Proposition 3.3.

Corollary 3.1. Let the hypotheses be as in Proposition 3.3. If v ∈
C(Ω; Xp′,∞

Σ ) , then vε → v̂ reiteratively in Lp(Ω)-weak Σ as E � ε→ 0 .

We turn now to the statement of the abstract homogenization problem
for (1.1).

Throughout the remainder of the present section it is assumed that
1 < p < ∞ . Our main goal is to investigate the limiting behaviour, as
ε → 0, of uε (the solution of (1.1) for fixed ε > 0) under the abstract
hypothesis

(3.1) ai(·, ·, ψ) ∈ Xp′
Σ (RN

y ;B(RN
z )) for all ψ ∈ (AR)N (1 ≤ i ≤ N)

where p′ = p
p−1 and

AR = A ∩ C(RN
y × R

N
z ; R) with A = J (Σ),

where ai(·, ·, ψ) stands for the function (y, z) → ai(y, z, ψ(y, z)) from
RN × RN into R .

This is referred to as the homogenization problem for (1.1) in the
abstract deterministic setting associated with the reiteration H -structure
Σ = Σy × Σz .

The resolution of this problem requires a few preliminaries. We start with
one fundamental lemma.

Lemma 3.1. Let (3.1) hold. Then, ai(·, ·, ψ) ∈ L∞(RN
y ;Az) (1 ≤ i ≤

N ) for any ψ ∈ (AR)N .

Proof. Thanks to part (iii) of (1.4), the lemma is proved if we can check
that for ψ ∈ (AR)N and 1 ≤ i ≤ N , the function ai(·, ·, ψ) is measurable
from RN

y into Az . Thus, in view of (3.1), it is enough to establish that

(3.2) Xq
Σ(RN

y ;B(RN
z )) ⊂ Lq

loc(R
N
y ;Az) (1 ≤ q <∞).
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But for any fixed real q ≥ 1, we clearly have Ay ⊗ Az ⊂ Lq
loc(R

N
y ;Az),

where Ay = J (Σy) and Az = J (Σz), of course. Hence (3.2) follows by
three facts : 1) Ay ⊗ Az is dense in Xq

Σ(RN
y ;B(RN

z )), as a consequence of
the fact that Ay⊗Az is dense in A [18, Proposition 3.2]; 2) Ξq(RN

y ;B(RN
z ))

is continuously embedded in Lq
loc(R

N
y ;B(RN

z )); 3) Lq
loc(R

N
y ;Az) is closed in

Lq
loc(R

N
y ;B(RN

z )). �

Remark 3.3. Lemma 3.1 shows immediately that (3.1) implies (2.5).

At the present time, let the index 1 ≤ i ≤ N be fixed. For ϕ = (ϕj)1≤j≤N

in CR(Δ(A))N , where CR(Δ(A)) = C(Δ(A); R), let

(3.3) bi(ϕ) = G(ai(·, ·,G−1ϕ))

where G−1ϕ = (G−1ϕj)1≤j≤N . Assuming (3.1), we see by Lemma 3.1 that
ai(·, ·,G−1ϕ) lies in Xp′,∞

Σ (RN
y ;B(RN

z )); hence (3.3) defines a mapping bi
of CR(Δ(A))N into L∞(Δ(A)). The next proposition and corollary can be
achieved using Proposition 2.2 and Corollary 3.1 and reasoning as in the
proof of [19, Proposition 4.1 and Corollary 4.1].

Proposition 3.4. Let 1 < p <∞. Let Ω be a bounded open set in R
N
x .

Suppose (3.1) holds. Then the following assertions are true :

(i) Let the index 1 ≤ i ≤ N be fixed. For ψ = (ψj)1≤j≤N in
C(Ω; (AR)N ) , the function bi ◦ ψ̂ (usual composition) of Ω into L∞(Δ(A))
lies in C(Ω;L∞(Δ(A))) and further aε

i (·, ·, ψε) → bi ◦ ψ̂ reit. in Lp′
(Ω)-

weak Σ as E � ε→ 0 , where ψε = (ψε
j )1≤j≤N (ψε

j defined as in (2.1)).
(ii) The mapping φ → b(φ) = (bi ◦ φ)1≤i≤N of C(Ω; CR(Δ(A))N ) into

Lp′
(Ω × Δ(A))N extends by continuity to a mapping, still denoted by b, of

Lp(Ω;Lp
R
(Δ(A))N ) into Lp′

(Ω × Δ(A))N such that

‖b(u) − b(v)‖Lp′(Ω×Δ(A))N

≤ c1 ‖1 + |u| + |v|‖p−1−α1
Lp(Ω×Δ(A)) ‖u − v‖α1

Lp(Ω;Lp(Δ(A))N )

and

(b(u) − b(v)) · (u − v)

≥ c2(1 + |u| + |v|)p−α2 |u− v|α2 a.e. in Ω × Δ(A)(3.4)

for all u,v ∈ Lp(Ω;Lp
R
(Δ(A))N ).

Corollary 3.2. Let the hypotheses be those of Proposition 3.4. For each
real ε > 0 , Let φε ∈ DR(Ω) = C∞

0 (Ω; R) be given by
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(3.5) φε(x) = ψ0(x) + εψ1

(
x,
x

ε

)
+ ε2ψ2

(
x,
x

ε
,
x

ε2

)
(x ∈ Ω)

with ψ0 ∈ DR(Ω), ψ1 ∈ DR(Ω)⊗ RA
∞
y , ψ2 ∈ DR(Ω)⊗ RA

∞
y ⊗ RA

∞
z , where

RA
∞
y = A∞

y ∩ C(RN ; R) and a similar definition for RA
∞
z . Let the index

1 ≤ i ≤ N be fixed. Then, as ε→ 0 ,

aε
i (·, ·, Dφε) → bi(Dψ0 + ∂sψ̂1 + ∂rψ̂2) reit. in Lp′

(Ω)-weak Σ,

where : ∂sψ̂1 = (∂j ψ̂1)1≤j≤N with ∂jψ̂1 = ∂j ◦ ψ̂1 , the partial derivative
∂j being here taken on Δ(A) = Δ(Ay) × Δ(Az) with respect to Δ(Ay) ;
∂rψ̂2 = (∂j ψ̂2)1≤j≤N with ∂jψ̂2 = ∂j ◦ψ̂2 , ∂j being this time taken on Δ(A)
with respect to Δ(Az) ; the functions ψ̂1 and ψ̂2 are viewed as defined on
Ω with values in D(Δ(A)).

Furthermore, if (vε)ε∈E is a sequence in Lp(Ω) such that vε → v0 reit.
in Lp(Ω)-weak Σ as E � ε→ 0 , then, as E � ε→ 0 ,∫

Ω

aε
i (·, ·, Dφε)vεdx→

∫ ∫
Ω×Δ(A)

bi(Dψ0 + ∂sψ̂1 + ∂rψ̂2)v0dxdβ.

Remark 3.4. Let ϕ ∈ C1(Δ(A)). By ∂jϕ to be the partial derivative
(of index j ) on Δ(A) = Δ(Ay) × Δ(Az) with respect to Δ(Ay) we mean
the function (s, r) → [∂jϕ(·, r)](s) of Δ(A) into C , where ∂jϕ(·, r) (for
fixed r ∈ Δ(Az)) denotes the partial derivative (of index j ) of ϕ(·, r) on
Δ(Ay).

3.2. The abstract homogenization result. Let the basic notation be
as above. Let 1 < p < ∞ . We assume that the reiteration H -structure
Σ = Σy × Σz is W 1,p(Ω)-proper (Definiton 2.3). Let

F
1,p
0 = W 1,p

0 (Ω; R) × Lp(Ω;W 1,p
# (Δ(Ay); R))

× Lp(Ω;Lp(Δ(Ay);W 1,p
# (Δ(Az); R)))

where

W 1,p
# (Δ(Ay); R) = {v ∈W 1,p

# (Δ(Ay)) : ∂jv ∈ Lp
R
(Δ(Ay)) (1 ≤ j ≤ N)}

and an analogous definition for W 1,p
# (Δ(Az); R). We provide F

1,p
0 with the

norm

‖u‖
F
1,p
0

=
N∑

i=1

[
‖Dxiu0‖Lp(Ω) + ‖∂iu1‖Lp(Ω×Δ(Ay)) + ‖∂iu2‖Lp(Ω×Δ(A))

]
,

u = (u0, u1, u2) ∈ F
1,p
0 (with Dxi = ∂

∂xi
)
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which makes it a Banach space. We will need the space

F∞
0 = DR(Ω) × [DR(Ω) ⊗ Jy(DR(Δ(Ay))/R)]×

[DR(Ω) ⊗DR(Δ(Ay)) ⊗ Jz(DR(Δ(Az))/R)],

where

DR(Δ(Ay)) = D(Δ(Ay)) ∩ C(Δ(Ay); R),

DR(Δ(Ay))/C =

{
ϕ ∈ DR(Δ(Ay)) :

∫
Δ(Ay)

ϕdβy = 0

}
,

and Jy denotes the canonical mapping of W 1,p(Δ(Ay))/C into its separated
completion W 1,p

# (Δ(Ay)) (of course, all that remaining valid with z in place
of index y ).

In view of (PR)1 -(PR)2 in Definition 2.3 (use also [19, Remark 3.5]), F∞
0

is dense in F
1,p
0 .

Remark 3.5. It amounts to the same thing to define F∞
0 as the space of

all φ = (ψ0, Jy ◦ ψ̂1, Jz ◦ ψ̂2) with ψ0 ∈ DR(Ω), ψ1 ∈ DR(Ω)⊗(RA
∞
y /C) and

ψ2 ∈ DR(Ω)⊗ RA
∞
y ⊗ (RA

∞
z /C), where : RA

∞
y /C = {ψ ∈ RA

∞
y : M(ψ) =

0} (M the mean value on RN
y for H), RA

∞
z /C = {ψ ∈ RA

∞
z : M(ψ) = 0}

(M the mean value on RN
z for H′ ), ψ̂1 = G ◦ ψ1 is viewed as a mapping

of Ω into D(Δ(Ay)) and ψ̂2 = G ◦ ψ2 as a mapping of Ω × Δ(Ay) into
D(Δ(Az)).

We will also need the variational problem

(3.6)
u = (u0, u1, u2) ∈ F

1,p
0 :∫ ∫

Ω×Δ(A) b(Du) · Dvdxdβ = 〈f, v0〉
for all v = (v0, v1, v2) ∈ F

1,p
0

where f ∈ W−1,p′
(Ω; R), 〈 , 〉 stands for the duality pairing between

W−1,p′
(Ω; R) and W 1,p

0 (Ω; R), and where for each v = (v0, v1, v2) in F
1,p
0 ,

we denote Dv = Dv0 + ∂sv1 + ∂rv2 with ∂sv1 = (∂jv1)1≤j≤N and ∂rv2 =
(∂jv2)1≤j≤N . According to (3.4), there is at most one u = (u0, u1, u2)
verifying (3.6).

We are now in a position to prove the basic deterministic homogenization
theorem for (1.1).

Theorem 3.1. Let 1 < p < ∞. Suppose (3.1) holds and further
Σ = Σy × Σz is W 1,p(Ω)-proper. For each fixed real number ε > 0, let
uε be the solution of (1.1). Then, as ε→ 0 ,

(3.7) uε → u0 in W 1,p
0 (Ω)-weak,
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(3.8)
∂uε

∂xi
→ ∂u0

∂xi
+ ∂iu1 + ∂iu2 reit. in Lp(Ω)-weak Σ (1 ≤ i ≤ N),

where u = (u0, u1, u2) is uniquely defined by (3.6).

Proof. It is an easy matter to check using Corollary 2.1 that the
(generalized) sequence (uε)ε>0 is bounded in W 1,p

0 (Ω). Thus, given an
arbitrary fundamental sequence E , appeal to the W 1,p(Ω)-properness of
Σ yields a subsequence E′ from E and some triple u = (u0, u1, u2) ∈ F

1,p
0

such that (3.7) and (3.8) hold as E′ � ε → 0. Therefore, recalling
that the variational problem (3.6) admits at most one solution, we see
that the theorem is proved if we can show that u = (u0, u1, u2) verifies
the variational equation in (3.6). For this purpose, let us fix freely
φ = (ψ0, Jy ◦ ψ̂1, Jz ◦ ψ̂2) ∈ F∞

0 as in Remark 3.5, and let us attach to
φ the sequence (φε)ε>0 , φε given by (3.5). It is a simple exercise to verify
that

(3.9) 〈f, uε − φε〉 −
∫

Ω

aε(·, ·, Dφε) · (Duε −Dφε)dx ≥ 0.

The next step is to pass to the limit in (3.9) when E′ � ε → 0. Before we
can do this, however, we need to know that as ε→ 0,

(3.10) Dxiφε → Dxiψ0 + ∂iψ̂1 + ∂iψ̂2 reit. in Lp(Ω)-weak Σ (1 ≤ i ≤ N)

and

(3.11) φε → ψ0 in W 1,p
0 (Ω)-weak,

where Dxi = ∂
∂xi

. Let us verify this. Considering the obvious equality

Dxiφε = Dxiψ0+(Dyiψ1)ε+(Dziψ2)ε+ε[(Dxiψ1)ε+(Dyiψ2)ε]+ε2(Dxiψ2)ε

where the index i is freely fixed and the notation uε is as in (2.1), one is
immediately led to

‖Dxiφε −Dxiψ0 − (Dyiψ1)ε − (Dziψ2)ε‖Lp(Ω) → 0

as ε → 0. Since (Dyiψ1)ε → ∂iψ̂1 reit. in Lp(Ω)-strong Σ as ε → 0 and
(Dziψ2)ε → ∂iψ̂2 reit. in Lp(Ω)-strong Σ as ε→ 0, we deduce that

Dxiφε → Dxiψ0 + ∂iψ̂1 + ∂iψ̂2 reit. in Lp(Ω)-strong Σ.

Hence (3.10) follows by Proposition 2.6, whereas (3.11) follows from (3.10)
by [part (ii) of] Proposition 2.4 and use of the fact that

∫
Δ(A)

(∂iψ̂1 +
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∂iψ̂2)dβ = 0. Having made this point and recalling on the other hand
(3.7)-(3.8) as E′ � ε → 0, we can now pass to the limit in (3.9) using
Corollary 3.2 and we get

〈f, u0 − ψ0〉 −
∫ ∫

Ω×Δ(A)

b(Dφ) · (Du − Dφ)dxdβ ≥ 0,

where φ ranges over F∞
0 and hence over F

1,p
0 too, since the former space

is dense in the latter. Therefore, the theorem follows by mere routine (see
the proof of [19, Theorem 4.1]). �

4. Concrete homogenization problems for (1.1)

In this section, we consider a few examples of homogenization problems
for (1.1) in a concrete setting (as opposed to the abstract framework of
Section 3) and we show how their study leads naturally to the abstract
setting of Section 3 and so we may conclude by merely applying Theorem
3.1.

4.1. Problem I (Periodic setting). We assume here that for each fixed
ξ ∈ RN , the function (y, z) → a(y, z, ξ) satisfies the following condition,
commonly known as the periodicity hypothesis :

(4.1)
For each k ∈ ZN and each � ∈ ZN , we have
a(y + k, z + �, ξ) = a(y, z, ξ) a.e. in (y, z) ∈ RN × RN .

One also expresses (4.1) by saying that a(y, z, ξ) (for fixed ξ ∈ RN ) is Y -
periodic in y and Z -periodic in z , or simply that a(y, z, ξ) is Y ×Z -periodic
in (y, z), where Y = (0, 1)N and Z = (0, 1)N (see Example 2.7).

Our purpose is to study the homogenization of (1.1) under the periodicity
hypothesis. This problem was studied in [16] from a different point of view.
Here we present an approach which is in keeping with the general pattern
of deterministic homogenization theory.

It is clear that the right reiteration H -structure for this problem is
the periodic H -structure Σ = ΣZN × ΣZN of Example 2.1. So we have
here Σy = ΣZN , Σz = ΣZN ; thus, Ay = Cper(Y ), Az = Cper(Z) and
A = Cper(Y × Z) (see Example 2.7). In this setting, (3.6) takes a rather
simple form :

(4.2)
u = (u0, u1, u2) ∈ F

1,p
0 :∫

Ω

∫
Y

∫
Z
a(y, z,Du(x, y, z)) · Dv(x, y, z)dxdydz = 〈f, v0〉

for all v = (v0, v1, v2) ∈ F
1,p
0 ,
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where :

F
1,p
0 = W 1,p

0 (Ω; R) × Lp(Ω;W 1,p
# (Y ; R)) × Lp(Ω;Lp(Y ;W 1,p

# (Z; R))),
W 1,p

# (Y ; R) = {v ∈W 1,p
loc (RN

y ; R) : v Y -periodic,
∫

Y
vdy = 0},

Dv = Dxv0 +Dyv1 +Dzv2 for v = (v0, v1, v2) ∈ F
1,p
0 .

Given an arbitrary real p > 1, the aim is to show that as ε → 0, we
have uε → u0 in W 1,p

0 (Ω)-weak and Dxiuε → Dxiu0 + Dyiu1 + Dziu2

reiteratively in Lp(Ω)-weak Σ (1 ≤ i ≤ N ), where uε is the solution of
(1.1) (for fixed ε > 0) and u = (u0, u1, u2) is (uniquely) defined by (4.2).
But since Σ is W 1,p(Ω)-proper (Proposition 2.8), we see by Theorem 3.1
that the whole problem reduces to verifying that (3.1) holds.

Let 1 ≤ i ≤ N and ψ ∈ (AR)N be freely fixed. Let z ∈ RN be
arbitrarily fixed. In view of (1.2) and part (iii) of (1.4), the function
h : R

N × R
N → R given by h(y, ξ) = ai(y, z, ξ) (y, ξ ∈ R

N ) has the
Caratheodory property. Hence, a classical result (see, e.g., [11, p.75]) reveals
that if u is any measurable function from RN into RN , then the function
y → h(y, u(y)) is measurable from RN into R . Choosing in particular
u(y) = ψ(y, z) (y ∈ RN ), we see that the function y → ai(y, z, ψ(y, z))
is measurable from R

N into R , and that for any arbitrary z in R
N . On

the other hand, by a routine calculation using [part (ii) of] (1.2) and [part
(iii) of] (1.4) one can easily show that the function z → ai(y, z, ψ(y, z))
(for fixed y ) is continuous on RN . Taking account of (4.1), we deduce
that, a.e. in y ∈ RN , the function z → ai(y, z, ψ(y, z)) of RN into R ,
denoted below by ai(y, ·, ψ(y, ·)), lies in Cper(Z). Hence it follows by
Lemma 2.1 that the function y → ai(y, ·, ψ(y, ·)), denoted by ai(·, ·, ψ),
is measurable from RN into Cper(Z). From this we deduce using (1.3),
part (iii) of (1.4), and (4.1), that ai(·, ·, ψ) lies in L∞

per(Y ; Cper(Z)). But
L∞

per(Y ; Cper(Z)) ⊂ Lp′
per(Y ; Cper(Z)). Hence (3.1) follows by the facts that

A = Cper(Y × Z) is dense in Lp′
per(Y ; Cper(Z)) and the latter space is

continuously embedded in Ξp′
(RN

y ;B(RN
z )).

4.2. Problem II. We study here the homogenization of (1.1) under the
structure hypothesis

(4.3) ai(·, ·, ξ) ∈ B∞(RN
z ; Cper(Y )) for any ξ ∈ R

N (1 ≤ i ≤ N),

where B∞(RN
z ; Cper(Y )) denotes the space of continuous functions ψ :

RN
z → Cper(Y ) such that ψ(z) = ψ(·, z) has a limit in B(RN

y ) when
|z| → ∞ .
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Proposition 4.1. Let (4.3) be satisfied. Then (3.1) holds with Σ =
ΣZN × Σ∞ (i.e., with Σy = ΣZN and Σz = Σ∞ ) as in Example 2.10, so
that the conclusion of Theorem 3.1 holds for p = 2 .

Proof. First of all, we note that B∞(RN
z ; Cper(Y )) is exactly the image of

the reiteration H -structure Σ = ΣZN ×Σ∞ (Example 2.4) and further the
latter is W 1,2(Ω)-proper. Therefore, the proof is complete once we have
established that

(4.4) ai(·, ·, ψ) ∈ A = B∞(RN
z ; Cper(Y )) for all ψ ∈ (AR)N (1 ≤ i ≤ N).

To do this, let 1 ≤ i ≤ N and ψ ∈ (AR)N be freely fixed. Let K be
a compact set in RN such that ψ(y, z) ∈ K for all (y, z) ∈ RN × RN .
According to (4.3), we may view ai as a function ξ → ai(·, ·, ξ) of RN into
AR , which function lies in C(RN ;AR) (use part (iii) of (1.4)). Still calling ai

the restriction of the latter function to K , we have therefore ai ∈ C(K;AR).
Recalling that CR(K) ⊗ AR is dense in C(K;AR) (see, e.g., [6, p.46]), we
see that we may consider a sequence (qn)n≥1 in CR(K) ⊗AR such that

sup
(y,z,ξ)∈RN×RN×K

|qn(y, z, ξ) − ai(y, z, ξ)| → 0 as n→ ∞.

Hence qn(·, ·, ψ) → ai(·, ·, ψ) in B(RN
y × RN

z ) as n → ∞ . Thus, (4.4) is
proved if we can check that each qn(·, ·, ψ) lies in A . However, it is enough
to verify that we have q(·, ·, ψ) ∈ A for any function q : R

N
y ×R

N
z ×R

N
ξ → R

of the form

q(y, z, ξ) = χ(ξ)φ(y, z) (y, z, ξ ∈ R
N ) with χ ∈ C(K; R) and φ ∈ AR.

Given one such q , by the Stone-Weierstrass theorem we may consider a
sequence (fn) of polynomials in ξ = (ξ1, · · ·, ξN ) ∈ K such that fn → χ in
C(K) as n → ∞ , hence fn(ψ) → χ(ψ) in B(RN

y × R
N
z ) as n → ∞ , where

fn(ψ) stands for fn ◦ ψ (usual composition) and χ(ψ) stands for χ ◦ ψ .
We deduce that χ(ψ) lies in AR , since the same is true of each fn(ψ) (AR

being an algebra). The proposition follows thereby. �

4.3. Problem III. We investigate here the limiting behaviour, as ε → 0,
of uε (defined for each ε > 0 by (1.1)) under the structure hypothesis

(4.5) ai(·, ·, ξ) ∈ B∞(RN
z ;AP (RN

y )) for any ξ ∈ R
N (1 ≤ i ≤ N)

where AP (RN
y ) is the space of almost periodic continuous complex functions

on RN
y [5, 12, 13].
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Proposition 4.2. Let (4.5) be satisfied. There is a countable subgroup
Ry of RN

y such that (3.1) holds with Σ = ΣRy × Σ∞ as in Example 2.10,
so that the conclusion of Theorem 3.1 holds for p = 2 .

Proof. As shown in [20, Corollary 4.1], there exists a countable subgroup,
Ry , of RN

y such that ai(·, ·, ξ) ∈ B∞(RN
z ;APRy (RN

y )) for all ξ ∈ RN and
all 1 ≤ i ≤ N , where APRy (RN

y ) denotes the space of those u ∈ AP (RN
y )

such that M(γku) = 0 for all k ∈ RN\Ry (γk is as in Example 2.1
and M is the mean value on R

N for the action H). But then the space
A = B∞(RN

z ;APRy (RN
y )) is nothing else but the image of the W 1,2(Ω)-

proper H -structure Σ = ΣRy ×Σ∞ . Hence, we are through with the proof
if we can show that ai(·, ·, ψ) ∈ A for all ψ ∈ (AR)N and all 1 ≤ i ≤ N .
But this follows by repeating word for word the proof of (4.4). �

4.4. Problem IV. The case to be examined in the present subsection states
as above except that in place of (4.5) we have here the almost periodicity
hypothesis

(4.6) ai(·, ·, ξ) ∈ AP (RN
y × R

N
z ) for all ξ ∈ R

N (1 ≤ i ≤ N).

Proposition 4.3. Under assumption (4.6), condition (3.1) is fulfilled
with Σ = ΣRy × ΣRz (Example 2.2), where Ry (resp. Rz ) is a suitable
countable subgroup of RN

y (resp. RN
z ). Since Σ is W 1,2(Ω)-proper

(Proposition 2.9), the conclusion of Theorem 3.1 holds for p = 2 .

Proof. Appeal to [20, Corollary 4.1], once again, yields some countable
subgroup R of R2N = RN × RN such that ai(·, ·, ξ) ∈ APR(R2N ) for all
ξ ∈ R

N and all 1 ≤ i ≤ N . Letting Ry = pry(R) and Rz = prz(R), where
pry (resp. prz ) denotes the natural projection of R2N = RN

y × RN
z onto

RN
y (resp. RN

z ), we deduce

ai(·, ·, ξ) ∈ A = APR(RN
y × R

N
z ) for all ξ ∈ R

N (1 ≤ i ≤ N)

where R = Ry × Rz (a countable subgroup of RN × RN ). But then
APR(RN

y ×RN
z ) is precisely the image of Σ = ΣRy ×ΣRz (see [18, Examples

3.3 and 3.6]), and the latter is W 1,2(Ω)-proper. Therefore the proposition
is proved if we can show that ai(·, ·, ψ) ∈ A = APR(RN

y × RN
z ) for all

ψ ∈ (AR)N and all 1 ≤ i ≤ N . But the proof of this is a verbatim copy of
that of (4.4) and therefore is not worth repeating. �

4.5. Problem V. Let B∞,ZN (RN
y ) denote the closure in B(RN

y ) of the
space of all finite sums

∑
finite

ϕiui with ϕi ∈ B∞(RN
y ), ui ∈ Cper(Y ), where
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B∞(RN
y ) is the space of those continuous complex functions on RN

y that
converge at infinity.

We intend to study the homogenization of (1.1) under the structure
hypothesis

(4.7) ai(·, ·, ξ) ∈ B∞(RN
z ;B∞,ZN (RN

y )) for all ξ ∈ R
N (1 ≤ i ≤ N).

Proposition 4.4. Under hypothesis (4.7), we have (3.1) with Σ =
Σ∞,ZN × Σ∞ . Furtheremore, the H -structure Σ is W 1,2(Ω)-proper, so
that the conclusion of Theorem 3.1 holds for p = 2 .

Proof. It is worth recalling that B∞,ZN (RN
y ) is an H -algebra on RN

y

for H , and Σ∞,ZN denotes the H -structure of which B∞,ZN (RN
y ) is the

image (see [18, Example 3.5]). Now, there is no difficulty in showing that
B∞(RN

z ) ⊗ B∞,ZN (RN
y ) is dense in B∞(RN

z ;B∞,ZN (RN
y )). Hence, recalling

that Σ∞ is the H -structure on RN
z (for H′ ) of which B∞(RN

z ) is the
image (see [18, Example 3.4]), it follows by [18, Proposition 3.2] that the
space A = B∞(RN

z ;B∞,ZN (RN
y )) is exactly the image of the H -structure

Σ = Σ∞,ZN × Σ∞ on RN
y × RN

z (for H∗ ). On the other hand, the latter
is W 1,2(Ω)-proper, as is immediate by Example 2.11 and use of the fact
that Σ∞ = Σ∞,Rz={ω} (ω the origin in RN

z ). Therefore, the proof is
complete once we have verified that ai(·, ·, ψ) ∈ A for all ψ ∈ (AR)N and
all 1 ≤ i ≤ N . But this follows by repeating word for word the proof of
(4.4). �

Corollary 4.1. Suppose we have ai(·, ·, ξ) ∈ B∞(RN
z ;B∞(RN

y )) for all
ξ ∈ RN and all 1 ≤ i ≤ N . Then, the conclusion of Proposition 4.4 stands.

Proof. Indeed, we have B∞(RN
z ;B∞(RN

y )) ⊂ B∞(RN
z ;B∞,ZN (RN

y )),
hence the desired result follows by the preceding proposition. �

4.6. Problem VI. The problem to be worked out here states as in
Subsection 4.5 except that (4.7) is replaced by the structure hypothesis

(4.8) ai(·, ·, ξ) ∈ Cper(Z;B∞,ZN (RN
y )), for all ξ ∈ R

N (1 ≤ i ≤ N)

where Cper(Z;B∞,ZN (RN
y )) is the space of Z -periodic continuous functions

of RN
z into B∞,ZN (RN

y ).

Proposition 4.5. Under hypothesis (4.8), we have (3.1) with Σ =
Σ∞,ZN × ΣZN . Furtheremore, the H -structure Σ is W 1,p(Ω)-proper, so
that the conclusion of Theorem 3.1 holds.

Proof. The space A = Cper(Z;B∞,ZN (RN
y )) coincides with the closure of

B∞,ZN (RN
y ) ⊗Cper(Z) in B(RN

y ×RN
z ). Hence it follows by [18, Proposition
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3.2] that A is nothing but the image of the H -structure Σ = Σ∞,ZN ×ΣZN .
On the other hand, by a procedure similar to that followed in Example 2.9
it can be shown that Σ is W 1,p(Ω)-proper. Therefore, the proposition is
proved if we can check that ai(·, ·, ψ) lies in A for all ψ ∈ (AR)N and all
1 ≤ i ≤ N which can be obtained by repeating the proof of (4.4). �

4.7. Problem VII. We assume that the following condition is satisfied :

(4.9)

For each bounded set Λ ⊂ R
N and each real η > 0, there is

some ρ > 0 such that |a(y − t, z − σ, ξ) − a(y, z, ξ)| ≤ η
for all (z, ξ) ∈ RN × Λ and for almost all y ∈ RN provided
|t| + |σ| ≤ ρ;

and we want to investigate the homogenization of (1.1) under the structure
hypothesis

(4.10) ai(·, ·, ξ) ∈ B∞(RN
z ;L2

per(Y )) for all ξ ∈ R
N (1 ≤ i ≤ N)

which generalizes (4.3).
For this purpose, let us introduce a suitable function space generalizing

the usual amalgam of Lp and �∞ on RN (see [10]). Let 1 ≤ p <

∞ . We define (Lp, �∞)(RN
y ;B(RN

z )) to be the space of functions u ∈
Lp

loc(R
N
y ;B(RN

z )) such that

‖u‖p,∞ = sup
k∈ZN

(∫
k+Y

‖u(y, ·)‖p
∞ dy

) 1
p

<∞.

This is a vector space over C and further ‖·‖p,∞ is a norm under which
(Lp, �∞)(RN

y ; B(RN
z )) is a Banach space. One fundamental result is that

(Lp, �∞)(RN
y ;B(RN

z )) is continuously embedded in Ξp(RN
y ;B(RN

z )) (this is
immediate by [20, inequality (4.1)]). Let us turn now to the proof of

Proposition 4.6. Let (4.9)-(4.10) hold. Then (3.1) is satisfied with p = 2
and Σ = ΣZN × Σ∞ (W 1,2(Ω)-proper reiteration H -stucture on RN × RN

for H∗ ), so that the conclusion of Theorem 3.1 holds for p = 2 .

Proof. Let (θn)n≥1 be a mollifier on R
N
y , i.e., (θn)n≥1 ⊂ C∞

0 (RN
y ) with

θn ≥ 0,
∫
θn(y)dy = 1, θn has support in εnBN , where BN is the closed

unit ball in RN
y and 0 < εn ≤ 1 with εn → 0 as n → ∞ . Let n be freely

fixed. For any arbitrary 1 ≤ i ≤ N , let

qi
n(y, z, ξ) =

∫
θn(t)ai(y − t, z, ξ)dt (y, z, ξ ∈ R

N ),
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which gives a function (y, z, ξ) → qi
n(y, z, ξ) of RN ×RN ×RN into R with

qi
n(·, ·, ξ) ∈ C(RN

z ; Cper(Y )) for any ξ ∈ R
N ,

as it follows by (4.9). Furthermore, on letting qn = (qi
n)1≤i≤N and recalling

(1.3)-(1.4), we have for all z ∈ RN and almost all y ∈ RN , qn(y, z, ω) = 0
and

|qn(y, z, ξ1) − qn(y, z, ξ2)| ≤ c1(1 + |ξ1| + |ξ2|)p−1−α1 |ξ1 − ξ2|α1 ,

where ξ1 and ξ2 are arbitrary.
The next point is to show that qi

n(·, z, ξ) (where ξ is fixed) has a limit
in B(RN

y ) when |z| → ∞ . To this end, let us introduce the mapping
ξ → a∗i (·, ξ) of RN into L2

per(Y ) such that ai(·, z, ξ) → a∗i (·, ξ) in L2(Y )
as |z| → ∞ (see (4.10)), where ξ is arbitrarily fixed. Put

pi
n(y, ξ) =

∫
θn(t)a∗i (y − t, ξ)dt (y, ξ ∈ R

N ).

This defines a function (y, ξ) → pi
n(y, ξ) of RN ×RN into R with pi

n(·, ξ) ∈
Cper(Y ) for each fixed ξ . Let us show that qi

n(·, z, ξ) → pi
n(·, ξ) as |z| → ∞ .

To do this, we start from

qi
n(y, z, ξ) − pi

n(y, ξ) =
∫
θn(t)[ai(y − t, z, ξ) − a∗i (y − t, ξ)]dt.

We apply Holder’s inequality to get

∣∣qi
n(y, z, ξ)− pi

n(y, ξ)
∣∣ ≤ cn

(∫
BN

|ai(y − t, z, ξ) − a∗i (y − t, ξ)|2 dt
) 1

2

,

where cn = ‖θn‖
1
2∞ . Now, note that as k ranges over ZN , the sets k + Y

form a covering of RN . Thus, we may consider a finite set S ⊂ ZN such
that BN is contained in the union

⋃
k∈S(k+Y ). Then y−BN is contained

in
⋃

k∈S(k + y+ Y ) (where y is freely fixed in RN ). Hence, by the change
of variable σ = y− t in the preceding integral and use of the Y -periodicity
we arrive at

∣∣qi
n(y, z, ξ) − pi

n(y, ξ)
∣∣ ≤ cn |S| 12

(∫
Y

|ai(σ, z, ξ) − a∗i (σ, ξ)|2 dσ
) 1

2

,
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where |S| denotes the cardinality of S . This being so, let η > 0. Let ρ > 0
be such that (∫

Y

|ai(σ, z, ξ) − a∗i (σ, ξ)|2 dσ
) 1

2

≤ η

cn |S| 12

for any z ∈ RN verifying |z| ≥ ρ . Then, clearly

sup
y∈RN

∣∣qi
n(y, z, ξ) − pi

n(y, ξ)
∣∣ ≤ η (z ∈ R

N , |z| ≥ ρ).

Therefore

qi
n(·, ·, ξ) ∈ B∞(RN

z ; Cper(Y )), for all ξ ∈ R
N (1 ≤ i ≤ N)

where the integer n ≥ 1 is arbitrary. So we are justified in carrying over to
the present situation the line of argument leading to (4.4). This yields

(4.11) qi
n(·, ·, ψ) ∈ A = B∞(RN

z ; Cper(Y )) for all ψ ∈ (AR)N (1 ≤ i ≤ N).

Let us next show the following assertion

(4.12)
Let ψ ∈ (AR)N and 1 ≤ i ≤ N be fixed. To each η > 0 there
is assigned some integer ν ≥ 1 such that∥∥qi

n(·, ·, ψ) − ai(·, ·, ψ)
∥∥

2,∞ ≤ η for any integer n ≥ ν.

First, by Holder’s inequality we have∣∣qi
n(y, z, ψ(y, z))− ai(y, z, ψ(y, z))

∣∣2
≤ ∫

θn(t) |ai(y − t, z, ψ(y, z))− ai(y, z, ψ(y, z))|2 dt.
On the other hand, given η > 0, let ρ > 0 be such that
|ai(y − t, z, ξ) − ai(y, z, ξ)| ≤ η for almost all y ∈ RN and for all (z, ξ) ∈
RN × Λ provided |t| ≤ ρ , where Λ is a compact set in RN containing the
range of ψ . Finally, let ν be a positive integer such that εn ≤ ρ for any
n ≥ ν . Then, recalling that integration above is actually taken over εnBN ,
one quickly arrives at∣∣qi

n(y, z, ψ(y, z))− ai(y, z, ψ(y, z))
∣∣2 ≤ η2

for any integer n ≥ ν , for all z ∈ RN and for almost all y ∈ RN . Hence
(4.2) follows in an obvious manner. Combining this with (4.11) and recalling
that (L2, �∞)(RN

y ;B(RN
z )) is continuously embedded in Ξ2(RN

y ;B(RN
z )), we

obtain (3.1) with p = 2 and Σ = ΣZN ×Σ∞ , which completes the proof.�
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Remark 4.1. It can be proved by a similar approach that Proposition
4.2 remains valid if in (4.5) AP (RN

y ) is substituted by L2
AP (RN

y ) (the space
of those functions in L2

loc(R
N
y ) that are almost periodic in the Stepanoff

sense [10, 17]) provided (4.9) is satisfied.
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